Variability of Omega-3/6 Fatty Acid Obtained Through Extraction-Transesterification Processes from Phaeodactylum tricornutum

Authors

DOI:

https://doi.org/10.17344/acsi.2020.6621

Keywords:

diatom, lipids, fatty acids, DHA/EPA, ALA/LA, PUFA

Abstract

The effect of direct transesterification methods on the omega-3/6 composition of extracts from Phaeodactylum tricornutum was studied. The aim of this work was to identify an extraction method which allowed to obtain the most suitable profile of fatty acids in terms of its potential benefits to health, particularly if further used in the food industry. Seven methods using acids, alkalis, and heterogeneous-catalysts, (namely methods from 1 to 7, abbreviated as M1-M7) were performed to determine α-linolenic (ALA), linoleic (LA), docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids. The composition of fatty acids was in all cases characterized by the major abundance of palmitic (23.95–34.08%), palmitoleic (30.94–35.56%), oleic acids (3.00–7.41%), and EPA (0.5–6.45%). Unsaturated fatty acids extraction yield was higher with a two-step transesterification process (M6, 63.65%). The total fatty acid methyl ester content (FAME) obtained with acid-transesterification (M1) reached about 21% wt, and 60% w/w total lipids. ALA higher relative content (ALA/LA ratio) was obtained when a lipid pre-extraction step was performed prior to acid-catalysis (M4). The transesterification method based on alkali-catalyst (M3, KOH catalyst) led to obtain higher DHA relative contents (DHA/EPA ratio up to 0.11), although its FAME content was 3.75-fold lower than that obtained with acid-transesterification (M1). Overall, this study shows that direct transesterification with alkali-catalyst (M3) improves the determination of PUFA content from the diatom through a more efficient transesterification-based extraction process, and thus allow to assess the value of the biomass more accurately for application in the food industry.

Author Biographies

Mari Carmen Ruiz-Dominguez, Universidad de Antofagasta

Laboratorio de Microencapsulación de Compuestos Bioactivos, (LAMICBA), Departamento de Ciencias de los Alimentos y Nutrición, Facultad de Ciencias de la Salud, Universidad de Antofagasta (Chile)

Constanza Toledo, Universidad de Antofagasta

Laboratorio de Microencapsulación de Compuestos Bioactivos, (LAMICBA), Departamento de Ciencias de los Alimentos y Nutrición, Facultad de Ciencias de la Salud, Universidad de Antofagasta (Chile)

Daniel Órdenes, Universidad de Antofagasta

Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, 1240000 Antofagasta, Chile

Carlos Vílchez, University of Huelva

CIDERTA and Faculty of Sciences, University of Huelva

Paula Ardiles, Universidad de Antofagasta

Laboratorio de Microencapsulación de Compuestos Bioactivos, (LAMICBA), Departamento de Ciencias de los Alimentos y Nutrición, Facultad de Ciencias de la Salud, Universidad de Antofagasta (Chile)

Jenifer Palma, Universidad de Antofagasta

Laboratorio de Microencapsulación de Compuestos Bioactivos, (LAMICBA), Departamento de Ciencias de los Alimentos y Nutrición, Facultad de Ciencias de la Salud, Universidad de Antofagasta (Chile)

Pedro Cerezal, Universidad de Antofagasta

Laboratorio de Microencapsulación de Compuestos Bioactivos, (LAMICBA), Departamento de Ciencias de los Alimentos y Nutrición, Facultad de Ciencias de la Salud, Universidad de Antofagasta (Chile)

Published

15.09.2021

Issue

Section

Biochemistry and molecular biology