Theoretical Study of Ability of Boron Nitride Nanocone to Oxidation of Sulfur Monoxide
DOI:
https://doi.org/10.17344/acsi.2017.3924Keywords:
Catalyst, nanostructure, metal adoption, oxidation reaction, adsorption energyAbstract
In recent years, the discovery of suitable catalyst to oxidation of sulfur monoxide (SO) in normal temperature is a major concern in the industry. In this study, in first step; the boron nitride nanocone (BNNC) with Ge were doped and the surface of Ge-BNNC by using of the O2 molecule were activated. In second step; oxidation of SO on surface of Ge-BNNC through the Langmuir Hinshelwood (LH) and Eley Rideal (ER) mechanisms was investigated. Calculated data reveal that surface of O2-Ge-BNNC oxide the SO molecule with Ge-BNNC-O-O* + SO → Ge-BNNC-O-O*-SO → Ge-BNNC-O* + SO2 and Ge-BNNC-O* + SO → Ge-BNNC + SO2 reactions. It can be concluded, the energy barrier of LH mechanism to oxidation of SO on Ge-BNNC is lower than ER mechanism. Finally, the Ge-BNNC is acceptable catalyst with low price and high performance to oxidation of SO in normal temperature.
Downloads
Additional Files
Published
Issue
Section
License
Except where otherwise noted, articles in this journal are published under the Creative Commons Attribution 4.0 International License