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Figure S1. BET isotherms of (a) pristine GO/PAMAM, (b) ARS–adsorbed GO/PAMAM at pH=2 and (b) ARS–adsorbed GO/PAMAM modified at pH=0.
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Figure S2. SEM images of (a) pristine GO/PAMAM and (b) GO/PAMAM modified at pH=0. 
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Figure S3. EDS spectra of GO/PAMAM and GO/PAMAM modified in 1M HCl at pH=0.
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Figure S4. Nitrogen, carbon and hydrogen mass percentages of pristine GO/PAMAM. 











Adsorption Equations and Models
Adsorption Experiments


The adsorption experiments were carried out in a series of glass bottles. About 0.001 g of GO/PAMAM was added to each bottle and then filled with 10 ml of ARS solution with a certain initial concentration ranging from 10–5–10–3 M. These bottles were shaken in a temperature controlled shaking water bath (Fater electronic Co., Persian Gulf model) at 308, 318 and 328 K and at 100 rpm for 9 h to attain the final equilibrium. After reaching the adsorption equilibrium, the concentration of ARS solution in each bottle was measured by photometry (UV mini 1240V, Shimadzu) at  values of different forms of ARS at different pHs and ionic strengths. The ARS adsorption capacity on the adsorbent,  (mg g–1), was calculated as follows

                                                                                                                       (S-1)


where  and are the initial and equilibrium concentrations of adsorbate in each solution (M) respectively, v is the volume of solution (ml), w is the weight of the used adsorbent (g) and M is the molecular weight of adsorbate (mg mole–1).





Adsorption kinetic tests were carried out by adding 0.001 g of GO/PAMAM to each of a series of bottles including 10 ml of ARS solutions with initial concentrations (7×10–5, 2.5×10–4, 7×10–4 or 10–3 M). Adsorption kinetic experiments were done at 308, 318 and 328 K and at 30, 70 and 100 rpm. At certain contact times, the concentrations of ARS in the solutions were measured at their . In adsorption kinetic experiments,  (adsorption capacity at time t) and  (adsorbate concentration at time t) replaced  and  in Eq. (1), respectively.
Adsorption thermodynamics analysis
The adsorption isotherms were analyzed by the ARIAN model which is an abbreviation of "adsorption isotherm regional analysis model".32,33 ARIAN is a Persian word meaning Iranian. The ARIAN model is used for studying adsorption isotherms up to four regions. In this model, it is assumed that region I obeys the Henry’s law:

                                                                                                                                     (S-2)
where K is the binding constant of adsorbate on the surface. The adsorption in this region increases linearly with the adsorbate concentration. Region II begins at the starting second region concentration (abbreviated as ssc) point. In this region only the monolayer adsorption occurs and can be studied by a suitable isotherm like the Langmuir, Temkin equations and etc. The linearized form of the Langmuir equation34 is given as

                                                                                                                    (S-3)

where is the monolayer capacity of adsorbent and K is the Langmuir adsorption equilibrium constant. The Temkin equation35 is shown by

                                                                                                                           (S-4)


where  is a constant and  is an adsorption equilibrium constant.
In region III, new surface aggregates of molecules form. The starting third region concentration (abbreviated as stc) point defines the starting of this region. Data of this region are analyzed by the bilayer isotherm, Eq. (S-5), and isotherms derived from it, Eqs. (S-6) and (S-7).32 In region III, by assuming adsorption happens mostly in the first and second layers, we have

                                                                                                     (S-5)




where  and  are the adsorption equilibrium constants of adsorbate molecules on the first layer of surface aggregates and that of adsorbate molecules in all layers excluding the first layer, respectively.  and  are the monolayer and equilibrium adsorption capacity, respectively. If adsorbate molecules are adsorbed mostly on the first layer,32 Eq. (S-5) is written as

                                                                                                     (S-6)
which is used for surface low bilayer coverage and is called LBC isotherm. LBC is an abbreviation for “low bilayer coverage” isotherm. If the adsorption process causes the formation of a monolayer,32 Eq. (S-6) is simplified to

                                                                                                                 (S-7)
where Eq. (S-7) is called the Langmuir-type equation. The region IV begins where the adsorption capacity reaches the maximum, showing a plateau on the isotherm, or where the isotherm begins to go down. The latter situation in region IV is named as the reverse desorption and obeys from the reverse desorption equation.32 Depending upon the features of adsorption sites and adsorbate, it is possible two or more sub-regions in each of regions II or III or IV of an isotherm are observed. Each sub-region is called a section and to discriminate among them, they are denoted by English capital letters and shown as IIA, IIB, IIC, IIIA etc.
Also, in some adsorption processes, some factors like repulsion interaction between adsorbate-adsorbed surface and free adsorbate molecules, stop the process in a certain adsorbate concentration range. This range of adsorbate concentration is called CRAC and is an abbreviation of “concentration range of leveling off between two successive adsorption isotherm curves”.26 A typical adsorption isotherm of ARS on GO/PAMAM based on the ARIAN model was represented in Figure S5.
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Figure S5. Schematic representation of bi-curve adsorption isotherm of ARS on GO/PAMAM. Various regions according to the ARIAN model are shown in the isotherm. The first and second curves are shown before and after CRAC.

Equations and Models for Analysis of Adsorption Kinetics
The adsorption kinetic data were studied by several equations. The intraparticle diffusion (pore-diffusion) equation36 is given as:

                                                                                                                         (S-8)

where I is proportional to the thickness of boundary layer and  is the rate constant for intraparticle diffusion.
Also, analysis of adsorption kinetic data was done by the KASRA model and KASRA equation.26 KASRA is an abbreviation of “kinetics of adsorption study in the regions with constant adsorption acceleration”. KASRA is a Persian word meaning king. The KASRA model is based on the following assumptions: (1) the time range in which the acceleration of adsorption is constant, is called a "region", (2) there are two regions before reaching the plateau region, and (3) the boundaries between the first and second regions and the second and third (plateau) regions are called ssr (an abbreviation of starting second region) point and kat (an abbreviation of kinetics of adsorption termination) point, respectively. Both ssr and kat points are found by the KASRA equation32 given as follows:

                                                          (S-9)











where  is the acceleration of adsorption kinetics in the ith region whereas  and ,  and  are , velocity and time at the starting in the ith region, respectively. Due to the decrease in the adsorbate concentration during the adsorption process, all   are negative values. In the first region,  and  are equal to zero. The second region begins at ssr point whose coordinates are  and .






Finally, the third (plateau) region starts at the equilibrium time,  and equilibrium adsorption capacity,  which are the coordinates of kat point. In this region, ,  and . Hence, Eq. (S-9) is reduced to . Due to different characteristics of the first and second regions, parameters for these two regions, such as rate constants, are different from each other and their KASRA equations have different qt-intercepts.
In this study, in order to avoid the confusion of the usage of “regions” in both kinetic curves and isotherms, kinetic regions are represented by numbers like region 1 and etc. A typical adsorption kinetic curve of ARS on GO/PAMAM according to the KASRA model was shown in Figure S6.
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Figure S6. Scheme of a bi-curve kinetic diagram of adsorption of ARS on GO/PAMAM. Various regions based on the KASRA model are represented in the kinetic diagram. The first and second curves are shown before and after TRAK.

The ideal-second-order (or abbreviated as ISO) equation37 is given as

                                                                                                      (S-10)















where  [26,38] and  are the first-and second-order adsorption rate constants of the ISO equation in each region of a kinetic curve and are in M–1 mg g–1 min-1 and M–1 min–1, respectively and . , where v is the volume of solution (ml), M is the molecular weight of adsorbate (mg mole-1) and w is the weight of the used adsorbent (g). Some adsorbents have m different adsorption sites and the adsorption occurs in sequence on their first, then second, . . . ,  and  sites respectively. In these cases, there are m kinetic curves and in Eq. (S-10)  and  are used for  site or other  sites, these symbols are replaced with  and , where .  and  are the maximum adsorption capacities of adsorbent and adsorbate concentration after the absorption is completed on the ith adsorption site, respectively. Thus, the ISO equation is used m times to analyze these m kinetic curves.26,38 As referred before, based on the KASRA model, there are two regions in adsorption kinetic curves before reaching the plateau which result from nonideality in the adsorption. In region 1, a completely ideal adsorption happens on the bare surface of adsorbent. The progressively changes occurred on the surface of adsorbent in region 1 finally result in emerging another ideal region (region 2) in which the adsorption carries out on a partly adsorbate-covered surface.
Using the ISO equation shows that region 2 is composed of two another ideal parts that are called 2a and 2b. The first part of the second region, 2a, starts after ssr point and the second one, 2b, begins after starting second part (or abbreviated as sp) point and finishes at the kat point.37



The ISO second-order rate constant of region 1 is shown with  and those of the second region are shown with  and . As referred before, in some adsorbents, there are two or more different adsorption sites which result in observing two or more successive adsorption kinetic curves in the adsorption kinetic diagram. In these cases, region 1 (completely ideal region related to adsorption on the bare surface) is only observed in the first adsorption kinetic curve, Figure S-6.
Sometimes, due to the braking effect37 an interval is observed between two successive adsorption kinetic curves or between regions 1 and 2 of the first adsorption curve and/or the parts 2a and 2b of the region 2 of the first and/or next kinetic curve(s) which is called TRAK. TRAK is an abbreviation of “time range of interval between two successive adsorption kinetic curves” and is used to compare this effect in different cases.26,38















On the other hand, in some cases, due to some factors such as repulsion interaction between adsorbate and adsorbent surface, the adsorption process is lagged and then region 1 starts with time delay. This time period is called TD which is an abbreviation of “Time Delay”. Also, if adsorption results in a TRAK,  and  in the ISO equation are replaced by  and , respectively.  and  are adsorbate concentration and adsorption capacity of adsorbent at starting the TRAK between  and  kinetic curves, respectively. In these cases, we have and subscript T is the symbol for TRAK.26,38 Also, ,  and   are adsorbate concentration, time and adsorption capacity at the end of adsorption on a type of adsorption site, respectively (corresponding to ,  and  in the last curve).
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Figure S7. (a) (1) 5×10–2 mM ARS, (2) 5×10–2 mM MB, (3) 5×10–2 mM MB+GO/PAMAM, (4) 5×10–2 mM MB+ 5×10–2 mM ARS and (5) 5×10–2 mM MB+5×10–2 mM ARS+GO/PAMAM, (b) (1) 5×10–2 mM ARS, (2) 5×10–2 mM AO, (3) 5×10–2 mM AO+GO/PAMAM, (4) 5×10–2 mM AO+ 5×10–2 mM ARS and (5) 5×10–2 mM AO+5×10–2 mM ARS+GO/PAMAM, (c) (1) 5×10–2 mM ARS, (2) 5×10–2 mM Th, (3) 5×10–2 mM Th+GO/PAMAM, (4) 5×10–2 mM Th+ 5×10–2 mM ARS and (5) 5×10–2 mM Th+5×10–2 mM ARS+GO/PAMAM, (d) (1) 5×10–2 mM ARS, (2) 5×10–2 mM PY, (3) 5×10–2 mM PY+GO/PAMAM, (4) 5×10–2 mM PY+ 5×10–2 mM ARS and (5) 5×10–2 mM PY+5×10–2 mM ARS+GO/PAMAM, (e) (1) 5×10–2 mM ARS, (2) 2.5×10–2 mM MEB, (3) 2.5×10–2 mM MEB+GO/PAMAM, (4) 2.5×10–2 mM MEB+ 5×10–2 mM ARS, (5) 2.5×10–2 mM MEB+5×10–2 mM ARS+GO/PAMAM and (f) (1) 5×10–2 mM ARS, (2) 5×10–2 mM JG, (3) 5×10–2 mM JG+GO/PAMAM (4) 5×10–2 mM JG+5×10–2 mM ARS (5) 5×10–2 mM JG+5×10–2 mM ARS+GO/PAMAM at pH=2 and room temperature. 0.001 g GO/PAMAM was used in each test as adsorbent. 

Tables:


Table S1- Parameters obtained from the Henry’s law and and values for adsorption of ARS on GO/PAMAM nanocompound in water, alkaline and acidic solutions at 100 rpm and 308–328 K.
	
Solvent
	
T
	
	
Henry’s law
	
	


	


	
	
(K)
	
A
	
K
	
R2
	
(mM)
	
(mg g–1)

	
     pH=0
	
318
	
2.23
	
3.32×107
	
0.97
	
2.25×10−3
	
  72.7

	pH=0.3
	318
	0.45
	8.41×106
	0.99
	1.29×10−2
	107.9

	     pH=1
	318
	4.91
	7.19×107
	0.99
	3.56×10−3
	252.6

	     pH=2
	308
	5.38
	4.95×107
	0.99
	4.45×10−3
	222.7

	
	318
	     –4.77
	3.22×107
	0.99
	4.81×10−3
	154.7

	
	328
	     –4.99
	1.09×107
	0.98
	7.03×10−3
	133.7

	pH=3
	318
	     –2.21
	3.09×107
	0.98
	4.96×10−3
	154.2

	pH=5
	318
	     –1.28
	2.47×106
	0.99
	3.15×10−2
	  79.1

	pH=10
	318
	0.75
	5.70×106
	0.98
	3.74×10−3
	  21.4

	pH=13
	318
	0.37
	3.50×106
	0.97
	6.19×10−3
	  21.7

	pH=14
	318
	0.88
	1.71×106
	0.99
	1.32×10–2
	  23.3



Dimensions of A and K are in mg g–1 and mg g–1 M–1, respectively. Henry’s law for experimental data is as 



Table S2- Parameters obtained from the Temkin and Langmuir equations and and values for adsorption of ARS on GO/PAMAM nanocompound in water, alkaline and acidic solutions at 100 rpm and 308–328 K.
	
Solvent
	
   T
	
Temkin
	
         Langmuir
	
      
	
  

	
	
   (K)
	

	

	
R2
	

	
K
	
R2
	
  (mM)
	
 (mg g–1)

	
     pH=0
	
318
	
  54.1
	
1.55×106
	
0.99
	
  250.0
	
2.00×105
	
0.98
	
0.16
	
291.1

	pH=0.3
	318
	108.0
	1.96×105
	0.98
	  500.0
	2.22×104
	0.99
	0.21
	380.4

	     pH=1
	318
	119.0
	2.26×106
	0.97
	  574.7
	2.16×105
	0.96
	0.18
	759.6

	     pH=2
	308
	111.1
	1.73×106
	0.99
	  613.5
	1.26×105
	0.98
	0.25
	636.7

	
	318
	147.5
	6.19×105
	0.97
	  724.6
	5.45×104
	0.98
	0.18
	633.2

	
	328
	235.5
	2.85×105
	0.99
	1941.7
	1.17×104
	0.94
	0.18
	919.3

	pH=3
	318
	141.7
	7.45×105
	0.98
	  751.9
	2.68×102
	0.97
	0.23
	754.2

	      pH=5
	318
	  39.4
	2.39×105
	0.97
	  200.0
	2.50×104
	0.98
	0.38
	   544.3

	  pH=10
	318
	  23.4
	7.29×105
	0.98
	  142.9
	7.00×104
	0.98
	3.2×10–2
	     72.6

	  pH=13
	318
	  14.7
	6.66×105
	0.97
	    58.8
	8.50×104
	0.98
	2.5×10–2
	  42.8

	 pH=14
	318
	  79.9
	9.94×104
	0.99
	 –38.0
	–2.9×104
	0.98
	3.4×10–2
	  63.7





Dimension of  and is in mg g-1. Dimension ofand K is in M–1. 












Table S3- Parameters obtained from the Temkin and Langmuir equations and  and  values for adsorption of ARS on GO/PAMAM nanocompound in water, alkaline and acidic solutions at 100 rpm and 308–328 K.
	
Solvent
	
T
	
Temkin
	
Langmuir
	
    
	
  

	
	
(K)
	

	

	
R2
	

	
K
	
R2
	
   (mM)
	
(mg g–1)

	
     pH=0
	
318
	
–
	
–
	
–
	
–
	
–
	
–
	
0.16
	
  291.1

	pH=0.3
	318
	332.1
	1.58×104
	0.95
	1831.5
	  1.31×103
	0.93
	0.37
	  575.6

	     pH=1
	318
	1127.0
	1.08×104
	0.98
	–9174
	–3.99×102
	0.96
	0.27
	1182.6

	     pH=2
	308
	888.9
	7.39×103
	0.99
	–5848
	–3.59×102
	0.99
	0.38
	  929.4

	
	318
	599.6
	1.60×104
	0.99
	2188.2
	  2.34×103
	0.97
	0.41
	1027.6

	
	328
	526.6
	2.36×104
	0.96
	2257.3
	  2.77×103
	0.95
	0.49
	1275.2

	    pH=3
	318
	878.0
	9.26×103
	0.97
	7633.6
	 4.44×102
	0.95
	0.39
	1091.5

	    pH=5
	318
	9148.0
	7.32×103
	0.97
	–333.0
	–3.00×103
	0.95
	   0.38*
	  544.3*

	   pH=10
	318
	63.9
	9.98×104
	0.96
	500.0
	  6.67×103
	0.96
	6.5×10−2
	  112.5

	   pH=13
	318
	113.4
	5.86×104
	0.99
	–125.0
	–1.00×104
	0.94
	4.7×10−2
	  114.0

	   pH=14
	318
	–
	–
	–
	–
	–
	–
	–
	–













Unit of  and is in mg g–1. Unit of and K is in M-1. *At pH=5, mM and  mg g-1 and the third region (region IIC) starts after this point. The Temkin parameters of this section are mg g–1 and M–1 and its Langmuir parameters are  mg g-1 and  M–1. In this region,  mM  and  mg g–1.







Table S4- Relative magnitude of regions I and II (sections IIA, IIB and IIC) for adsorption of ARS on GO/PAMAM nanocompound in water, alkaline and acidic solutions at 100 rpm and 308–328 K.
	
Solvent
	
T (K)
	
Region I
	
Section IIB
	
  Section IIC
	 


	
       pH=0
	
318
	
0.25
	
0.75
	
–
	
–

	  pH=0.3
	318
	0.19
	0.45
	0.39
	–

	       pH=1
	318
	0.21
	0.31
	0.36
	–

	
       pH=2
	
308
	0.19
	0.35
	0.45
	–

	
	318
	0.14
	0.42
	0.44
	–

	
	328
	0.10
	0.62
	0.28
	–

	pH=3
	318
	0.13
	0.51
	0.35
	–

	
Solvent
	
T (K)
	
Region I
	
Section IIA
	
  Section IIB
	
Section IIC

	       pH=5
	318
	0.12
	0.08
	0.62
	0.15

	
Solvent
	
T (K)
	
Region I
	
Section IIA
	
  Section IIB
	 


	  pH=10
	318
	0.19
	0.46
	0.35
	            –

	  pH=13
	318
	0.19
	0.18
	0.63
	            –

	  pH=14
	318
	0.37
	0.63
	–
	            –








	
Solvent
	
  T
	


	
 rpm
	


	
   KASRA region 1 (1st curve)
	
 KASRA region 2 (1st curve)
	
KASRA region 2 (2nd curve)

	
	
(K)
	
 (mM)
	
	
	
         
	
 
	
 
	
 
	
  
	

	

	


	
    Corresponding to  thermodynamic
	   
               ARIAN region I
	
ARIAN section IIA
	
ARIAN section IIB

	
pH=0A
	
 318
	
0.25
	
100
	
(270,206.3)
	
–0.048
	
2.79
	
(45,73.7)
	
–4.0×10-3
	
  1.29
	
–
	
–
	
–

	pH=2
	 318
	0.07
	100
	(180,202.2)
	  –0.23
	9.16
	(45,181.8)
	–2.0×10-3
	  0.32
	–
	–
	–

	(0.1 M NaCl)     318
	0.07
	100
	(420,174.0)
	  –0.47
	6.88
	(10,44.8)
	–1.6×10-3
	  0.64
	–
	–
	–

	
	308 B
	0.70
	100
	(360,991.9)
	–10.40
	     61.00
	(5,169.9)
	  –0.11
	  8.24
	(90,469.2)
	–0.012
	3.94

	
	318 B
	0.70
	100
	(420,965.9)
	–14.28
	     71.25
	(5,184.2)
	  –0.13
	  8.35
	(60,449.2)
	–0.006
	2.99

	
	328 B
	0.70
	100
	(300,960.1)
	–16.94
	     88.84
	(5,232.6)
	  –0.14
	11.32
	(90,681.0)
	–0.004
	1.96

	     
	318 B
	0.70
	 70
	(360,815.4)
	–4.00
	     34.13
	(9,120.6)
	  –0.08
	  6.95
	(60,402.8)
	–0.002
	1.85

	
	318 B
	0.70
	 40
	(480,893.4)
	–2.40
	     23.70
	(10,120.1)
	  –0.11
	  7.54
	(90,376.7)
	–0.004
	2.70

	    pH=3C
	 318
	0.70
	100
	(480,931.5)
	–8.45
	     63.88
	(5,213.8)
	  –0.11
	10.07
	(60,585.1)
	–0.002
	1.67

	
	
               KASRA region 1 (1st curve)
	
   KASRA region 2 (2nd curve)
	
   KASRA region 2 (3rd curve)

	
Corresponding to thermodynamic
	
ARIAN region I and section IIA
	
ARIAN section IIB
	
ARIAN section IIC

	   
    pH=5D
	
318
	
1.00
	
100
	
(360,577.8)
	
–1.19
	
12.32
	
(10,61.8)
	
–0.106
	  
7.83
	
(120,362.5)
	
–0.006
	
1.97

	    pH=10E
	318
	0.07
	100
	(480,90.4)
	
–0.65
	5.85
	(30,27.1)
	–4.0×10–4
	 0.23
	–
	–
	–

	    pH=13F
	318
	0.07
	100
	(120,109.0)
	–0.95
	9.60
	(15,53.7)
	–4.0×10–3
	 0.75
	–
	–
	–








Table S5- Experimental , , , ,  and  values and coefficients of the KASRA equation for kinetics of ARS adsorption on GO/PAMAM at different temperatures and in various shaking rates and initial ARS concentrations (complete data).




































Units of ,  and  are in mg g-1 min-2 and those of ,  and  are in mg g–1 min–1. Units of , and   are in min and those of ,  and  are in mg g–1. In region 1,  and  are equal to zero. AAdsorption of  occurs on  and  sites in the kinetic curve, respectively. BAdsorption of  occurs on  and  sites in the first curve and on  site in the second curve. CAdsorption of  occurs on  and  sites in the first curve and on  site in the second curve. DAt pH=5, data in three boxes from left to right belong to the adsorption of on Ph sites (1st kinetic curve), onsites (2nd kinetic curve) and  on  sites (3rd kinetic curve), respectively. EAdsorption of  occurs on  site in the first curve and on  site in the second curve. FAdsorption of  occurs on  site in the first curve and on  site in the second curve.
Table S6- Coefficients of the intraparticle diffusion equation for kinetics of ARS adsorption on GO/PAMAM at different temperatures and in various shaking rates and initial ARS concentrations (complete data).

	
Solvent
	
T
	


	
rpm
	
KASRA region 1 (1st curve)
	
    KASRA region 2 (1st curve)
	
 KASRA region 2 (2nd curve)

	
	(K)
	(mM)
	
	
 
	

	
        
	

	

	TRAK
	
 
	

	

	TRAK

	
Corresponding to thermodynamic
	
        ARIAN region I 
	
           ARIAN section IIA
	
ARIAN section IIB 

	
pH=0
	
318
	
0.25
	
100
	  
11.2
	
–3.06
	
(45,73.7)
	
14.1
	
–12.6
	
–
	
–
	
–
	
–
	
–

	pH=2
	 318
	  0.07
	100
	32.6
	–24.0
	(45,181.8)
	  3.2
	161.3
	–
	–
	–
	–
	–

	(0.1 M NaCl)
	 318
	  0.07
	100
	19.2
	–15.5
	(10,44.8)
	  8.4
	  10.5
	
	
	
	
	

	
	308 B
	  0.70
	100
	97.1
	–40.2
	(5,169.9)
	44.3
	  71.6
	–
	(90,469.2)
	56.2
	 –31.1
	–

	
	318 B
	  0.70
	100
	82.5
	  –1.9
	(5,184.2)
	50.7
	   69.5
	–
	(60,449.2)
	45.4
	  92.7
	–

	
	328 B
	  0.70
	100
	  105.7
	  –0.7
	(5,232.6)
	65.0
	 101.9
	–
	(90,681.0)
	37.9
	308.7
	–

	
	318 B
	  0.70
	  70
	66.3
	–32.3
	(9,120.6)
	52.5
	   –4.6
	–
	(60,402.8)
	35.3
	138.4
	–

	
	318 B
	  0.70
	  40
	43.8
	–11.8
	(10,120.1)
	38.4
	   34.0
	–
	(90,376.7)
	44.9
	–36.8
	–

	pH=3
	318
	0.70
	100
	  119.4
	–53.2
	(5,213.8)
	71.6
	   30.9
	–
	(60,585.1)
	24.9
	403.3
	  –

	       pH=5*
	318
	1.00
	100
	24.9
	–15.6
	(10,61.8)
	75.0
	–180.4
	–
	(30,237.0)
	70.1
	  30.9
	90–120

	
                                                                           KASRA region 1 (1st curve)
	
	
       KASRA region 2 (2nd curve)

	Corresponding to thermodynamic  

	ARIAN region I and section IIA 

	
	              ARIAN section IIB


	
pH=10
	
318
	
0.07
	
100
	
      7.7
	
  2.0
	
–
	
–
	
–
	
10–30
	
(30,27.1)
	
4.0
	
3.29
	
–

	pH=13
	318
	0.07
	100
	    19.8
	–9.4
	–
	–
	–
	10–15
	(15,53.7)
	7.8
	22.8
	–



































Units of and  are in mg g-1 min–0.5 and min–0.5. Units of  and  are in min and those of  and  are in mg g–1 and . Boundary points coordinates of diffusion regions, , are similar to those of the KASRA model,  in Table S7. *Data in the boxes from left to right belong to the first and second kinetic curves and third kinetic curve (corresponding to the ARIAN section IIC) starts after TRAK in the range of 90–120 min and for that and  are 36.3 mg g-1 min–0.5 and -45.4 min–0.5, respectively. AAdsorption of  occurs on  and  sites in the kinetic curve, respectively. BAdsorption of  occurs on  and  sites in the first curve and on  site in the second curve. CAdsorption of  occurs on  and  sites in the first curve and on  site in the second curve. DAt pH=5, data in three boxes from left to right belong to the adsorption of on Ph sites (1st kinetic curve), onsites (2nd kinetic curve) and  on  sites (3rd kinetic curve), respectively. EAdsorption of  occurs on  site in the first curve and on  site in the second curve. FAdsorption of  occurs on  site in the first curve and on  site in the second curve.
Table S7- Coefficients of region 1 and region 2 (parts 2a and 2b) of the ISO equation for kinetics of ARS adsorption on different sites of GO/PAMAM at 308–328 K (complete data).
	
Solvent
	
T
	


	
rpm
	
       KASRA regions 1 and 2 (1st curve)

	
	
(K)
	
(mM)
	
	

	

	

	
    
	

	

	
    
	
   
	


	
       Corresponding to thermodynamic                             
	
ARIAN region I and section IIA

	
pH=0A
	
 318
	
0.25
	
100
	
2.83×104
	
0.99
	
(45,73.7)
	
8.43×103
	
 0.99
	
(120,140.9)
	
2.32×104
	
0.96
	
–

	pH=2
	 318
	0.07
	100
	3.91×105
	0.99
	(45,181.8)
	1.87×105
	0.97
	Adsorption only on Ph site
	–

	(0.1 M NaCl)     318
	0.07
	100
	6.46×104
	0.99
	(10,44.8)
	9.33×104
	0.98
	Adsorption only on Ph site
	–

	
	 318 B
	0.70
	100
	4.85×104
	0.99
	(5,169.9)
	1.83×104
	0.99
	(20,267.9)
	3.89×104
	0.99
	(0.59,90,469.2)

	
	318 B
	0.70
	100
	5.50×104
	0.99
	(5,184.2)
	1.70×104
	0.99
	(25,290.4)
	7.11×104
	0.99
	(0.556,60,449.2)

	
	328 B
	0.70
	100
	8.50×104
	0.99
	(5,232.6)
	2.88×104
	0.98
	(30,469.9)
	7.84×104
	0.98
	(0.521,90,681.0)

	
	318 B
	0.70
	  70
	3.19×104
	0.99
	(90,163.7)
	1.66×104
	0.99
	(20,227.6)
	2.99×104
	0.96
	(0.606,60,402.8)

	
	318 B
	0.70
	  40
	2.68×104
	0.99
	(6,95.8)
	1.53×104
	0.97
	(15,160.6)
	3.19×104
	0.99
	(0.59,90,376.7)

	pH=3C
	 318
	0.70
	100
	1.35×104
	0.99
	(5,213.8)
	6.23×103
	0.99
	(20,342.8)
	1.35×104
	0.99
	(0.563,60,585.1)

	 pH=5D
	318
	1.00
	100
	1.78×104
	0.99
	(0.97,10,61.8)**
	1.75×104
	0.99
	(30,237.0)
	1.11×104
	0.98
	(0.85,90,362.2)

	pH=10E
	318
	0.07
	100
	1.98×105
	0.99
	–
	–
	–
	–
	–
	–
	(6.32×10–2,10,25.7)

	pH=13F
	318
	0.07
	100
	2.35×105
	0.98
	–
	–
	–
	–
	–
	–
	(5.79×10–2,10,51.6)
























,  and  are ARS concentration, time and adsorption capacity at the end of adsorption on a type of adsorption site, respectively (corresponding to ,  and  in the last curve). ,  and  are ARS concentration, time and adsorption capacity at the beginning of the plateau. Units of ,  and , are in min–1. Units of , ,  and  are in min–1. Units of , ,  and  are in mg g–1.  and  are in mM. **This parenthesis shows data of ending point for adsorption of ARS– on Ph sites.



Continuation of Table S7
Coefficients of region 1 and region 2 (parts 2a and 2b) of the ISO equation for kinetics of ARS adsorption on different sites of GO/PAMAM at 308–328 K (complete data).
	
Solvent
	
T
	


	
rpm
	
                                                                      KASRA region 2 (2nd curve)

	
	
(K)
	
(mM)
	
	


	


	


	

	

   
	


	



	
Corresponding to thermodynamic
	
ARIAN section IIB

	
 pH=0A
	
318
	
0.25
	
100
	
–
	
–
	
–
	
–
	
–
	
–
	
(0.196,270,206.3)

	pH=2
	 318B
	0.07
	100
	–
	–
	–
	–
	–
	–
	(2.27×10–2,180,202.2)

	(0.1M NaCl)
	 318B
	0.07
	100
	–
	–
	–
	–
	–
	–
	(2.42×10–2,420,174.0)

	
	  318
	0.70
	100
	(0.59,90,469.2)
	1.40×104
	0.99
	(180,742.1)
	5.39×104
	0.99
	(0.49,360,991.9)

	
	318
	0.70
	100
	(0.556,60,449.2)
	1.39×104
	0.99
	(240,811.1)
	7.86×104
	0.99
	(0.418,420,965.9)

	
	328
	0.70
	100
	(0.521,90,681.0)
	9.81×103
	0.98
	(150,766.8)
	2.21×104
	0.96
	(0.391,300,960.1)

	
	318
	0.70
	70
	(0.606,60,402.8)
	6.12×103
	0.96
	(210,616.0)
	1.22×104
	0.99
	(0.533,360,815.4)

	
	318
	0.70
	40
	(0.59,90,376.7)
	8.76×103
	0.99
	(240,690.6)
	6.57×104
	0.98
	(0.204,480,893.4)

	pH=3C
	318
	0.70
	100
	(0.563,60,585.1)
	7.73×103
	0.99
	(120,693.5)
	1.15×104
	0.99
	(0.482,480,931.5)

	 pH=5D*
	318
	1.00
	100
	(0.85,90,362.2)*
	7.81×103
	0.98
	(240,514.8)
	1.77×104
	0.98
	(0.814,360,577.8)

	pH=10E
	318
	0.07
	100
	(6.32×10–2,10,25.7)
	3.70×103
	0.99
	(120,43.8)
	9.25×103
	0.99
	(4.89×10–2,480,90.4)

	pH=13F
	318
	0.07
	100
	(5.79×10–2,10,51.6)
	3.59×104
	0.99
	(60,83.0)
	1.14×105
	0.98
	(5.21×10–2,180,110.0)

























* Third kinetic curve (corresponding to the ARIAN section IIC) starts after passing TRAK (in the range of 90–120 min) and ending it. AAdsorption of  occurs on  and  sites in the kinetic curve, respectively. BAdsorption of  occurs on  and  sites in the first curve and on  site in the second curve. CAdsorption of  occurs on  and  sites in the first curve and on  site in the second curve. DAt pH=5, data in three boxes from left to right belong to the adsorption of on Ph sites (1st kinetic curve), onsites (2nd kinetic curve) and  on  sites (3rd kinetic curve), respectively. EAdsorption of  occurs on  site in the first curve and on  site in the second curve. FAdsorption of  occurs on  site in the first curve and on  site in the second curve.
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