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Abstract
Some well defined connectivity topological indices are Randic index, atom-bond connectivity index and the geometric-arithmetic index and Shigehalli & Kanabur indices, brought into light by M. Randic, Estrada et al, Vukicevic et al and defined by V. S. Shigehalli and R. Kanabur respectively, in their research articles. Topological indices preserve the symmetry of molecular structures and provide a mathematical formulation to predict their properties like boiling points, viscosity and the radius of gyrations,1 mainly their study gets a cover under the category of physical chemistry. Due to its mathematical nature, this idea has caught the eye of many chemists. It is also been reported that these indices are useful in the study of anti- inflammatory activities of particular chemical instances. In this paper, we shall calculate these topological indices of an infinite class of octagonal tilling structures OT [m, n], which is a molecular graph of a semiconductor allotrope consisting of octagons and rectangles, for all possible values of m and n.  We shall also calculate three Shigehalli & Kanabur indices of infinite structure of the TiO2 nanotubes.
Keywords. Randic index, atom-bond connectivity index, octagonal tilling OT [m, n], Shigehalli & Kanabur indices, TiO2 nanotubes.
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1. Introduction

Mathematical chemistry is a branch of theoretical chemistry in which we discuss and predict the chemical structure by using mathematical techniques. Chemical graph theory is a branch of mathematical chemistry in which we apply techniques of graph theoretic ideas to form the chemical phenomenon mathematically. This theory plays an enigmatic part in the fields of chemical sciences. Primarily, a molecular graph is a simple graph in which vertices denote the atoms and edges denote the chemical bonding in underlying chemical structure. Let G be a molecular graph with vertex set V(G) = {v1, v2, . . . , vn} and edge set E(G). The order and size of G are denoted by p = |V (G)| and q = |E(G)|, respectively. Where, the order is defined to be number of vertices in G and size is defined to be number of edges in G. Also, an edge in E(G) with end vertices u and v is denoted by uv. A topological index is a molecular graph invariant which correlates the physic-chemical properties of a molecular graph with a number.2 The first topological index was introduced by a chemist Harold Wiener in 1947 to derive the boiling points of paraffins. This mathematical representation of a molecular graph has shown to be very useful quantity to be used in the quantitative structure-property relationship abbreviated as QSPR.3 It has also many applications in communication, networking, coding theory and cryptography that are effectively modeled by a connected graph G under certain conditions.4 This index was originally derived for tree structures to correlate specific physic-chemical properties of alkanes, alcohols, amines and their compounds. 
H. Hosoya,5 defined the notion of Wiener index for any graph G as; 


A. Ashrafi et al,6 calculated the PI, Szeged and edge Szeged indices of some nanostar dendrimers. Recently, authors investigated m-order connectivity indices of nanostar dendrimers.7 The atom-bond connectivity index and geometric-arithmetic index of nanostar dendrimers and some polyomino-chains were studied by S. Hayat et al.8 The atom-bond connectivity index and geometric-arithmetic index of some fullerenes were studied by M. Baca et al.9 Rostami et al. studied the first kind of geometric-arithmetic index of some nanostar dendrimers.10 Ghorbani et al. 11 did their study on the nullity of an infinite class of nanostar dendrimers. 
The elemental two-dimensional 2D materials such as graphene, silicene, germanene, and black phosphorus have pulled considerable attention due to their fascinating physic-chemical properties. Structurally, they possess the honeycomb, distorted honeycomb and continuous honeycomb lattices, which are composed of six atom rings. Recently,12 P. Li and W. Luo have studied a new structure of 2D allotropes of group V elements composed of eight-atom rings, which they named as the octagonal tiling structure, denoted generally by OT. These kinds of allotropes are comprehensively studied in materials sciences. Their findings indicated that these allotropes are dynamically stable and are also thermally stable at temperatures up to 600 K. They also showed, these allotropes are semiconductors with band gaps ranging from 0.3 to 2.0 eV , thus, they are potentially useful in near and mid-infrared devices. The molecular graph of these octagonal tilling structure, OT[m, n], is presented in Figure 1, in which, m denotes the number of octagons in an alternate row and n denotes the number of octagons in an alternate column of OT[m, n].
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                           (a) Top View                                                         (b) Birds View (courtesy 12)
Figure 1. General formation of molecular octagonal tilling structure OT[m, n].
2. The Randic´, ABC and GA indices of molecular octagonal tilling structure OT[m, n]



Let H be a simple connected graph with vertex set V(H) and edge set E(H). The degree dv of a vertex v ∈ V(H) is the number of edges incident on v and .
M. Randic defined the Randic index as follows,13 


E. Estrada et al,14 defined the atom-bond connectivity index, abbreviated as ABC-index, as:


Another well used connectivity topological descriptor of the molecular graphs is the geometric-arithmetic index (GA-index), introduced by Vukicevic and Furtula and is defined by,14


With each edge uv, we associate a pair (du, dv). The edge partition of octagonal tilling OT[m, n] with respect to the degrees of the end-vertices of edges is presented in Table 1.
	(du, dv)-Partition
	Edge Cardinality

	(2, 2)
	2(m + n + 2)

	(2, 3)
	4(m + n − 2)

	(3, 3)
	4(3mn − 2m − 2n + 1)


Table 1. The (du , dv )-type edge partition of octagonal tilling OT [m, n].
Theorem 1. For all m and n, the Randic index χ of the octagonal tilling structure OT[m, n] is


Proof. The (du, dv)-type edge partition of the graph OT[m, n] is shown in Table 1. We prove the desired result by using partition of Table 1 and the formula of Randic index given by Equation 1 as follows.


















Example 1. Consider a 2D structure of allotrope we are discussing called octagonal tilling OT [7, 8] consisting of 448 atoms and 642 chemical bonds, we obtain,


Example 2. The Randic´ index of 2D allotrope, octagonal tilling OT [m, n], for m = 1, 2, . . . , 5 and n = 1, 2, . . . , 10 are given as follows
	OT[m, n]
	X(OT[m, n])

	OT[1, 1]
	4

	OT[1, 2]
	7.9664

	OT[1, 3]
	11.9328

	OT[1, 4]
	15.8992

	OT[1, 5]
	19.8656

	OT[1, 6]
	23.832

	OT[1, 7]
	27.7984

	OT[1, 8]
	31.7648

	OT[1, 9]
	35.7312

	OT[1, 10]
	39.6976

	OT[2, 1]
	7.9664

	OT[2, 2]
	15.9328

	OT[2, 3]
	23.8992

	OT[2, 4]
	31.8656

	OT[2, 5]
	39.832

	OT[2, 6]
	47.7984

	OT[2, 7]
	55.7648

	OT[2, 8]
	63.7312

	OT[2, 9]
	71.6976

	OT[2, 10]
	79.664

	OT[3, 1]
	11.9328

	OT[3, 2]
	23.8992

	OT[3, 3]
	35.8656

	OT[3, 4]
	47.832

	OT[3, 5]
	59.7984

	OT[3, 6]
	71.7648

	OT[3, 7]
	83.7312

	OT[3, 8]
	95.6976

	OT[3, 9]
	107.664

	OT[3, 10]
	119.6304

	OT[4, 1]
	15.8992

	OT[4, 2]
	31.8656

	OT[4, 3]
	47.832

	OT[4, 4]
	63.7984

	OT[4, 5]
	79.7648

	OT[4, 6]
	95.7312

	OT[4, 7]
	111.6976

	OT[4, 8]
	127.664

	OT[4, 9]
	143.6304

	OT[4, 10]
	159.5968

	OT[5, 1]
	19.8656

	OT[5, 2]
	39.832

	OT[5, 3]
	59.7984

	OT[5, 4]
	79.7648

	OT[5, 5]
	99.7312

	OT[5, 6]
	119.6976

	OT[5, 7]
	139.664

	OT[5, 8]
	159.6304

	OT[5, 9]
	179.5968

	OT[5, 10]
	199.5632



Theorem 2. For all m and n, the atom-bond connectivity index of the octagonal tilling structure OT[m, n] is


Proof. The (du, dv)-type edge partition of the graph OT[m, n] is shown in Table 1. We prove the desired result by using partition of Table 1 and the formula of atom bond connectivity index given by Equation 2 as:
















Example 3. Consider a 2D structure of allotrope we are discussing called octagonal tilling OT [7, 9] consisting of 504 atoms and 724 chemical bonds. Then, its atom bond connectivity index             is                        


Example 4. The atom bond connectivity index of 2D allotrope, octagonal tilling OT [m, n], for m = 1, 2, . . . , 5 and n = 1, 2, . . . , 10 are given as follows:
	OT[m, n]
	ABC(OT[m, n])

	OT[1, 1]
	5.6571

	OT[1, 2]
	12.5665

	OT[1, 3]
	19.4759

	OT[1, 4]
	26.3853

	OT[1, 5]
	33.2947

	OT[1, 6]
	40.2041

	OT[1, 7]
	47.1135

	OT[1, 8]
	54.0229

	OT[1, 9]
	60.9323

	OT[1, 10]
	67.8417

	OT[2, 1]
	12.5665

	OT[2, 2]
	27.4759

	OT[2, 3]
	42.3853

	OT[2, 4]
	57.2947

	OT[2, 5]
	72.2041

	OT[2, 6]
	87.1135

	OT[2, 7]
	102.0229

	OT[2, 8]
	116.9323

	OT[2, 9]
	131.8417

	OT[2, 10]
	146.7511

	OT[3, 1]
	19.4759

	OT[3, 2]
	42.3853

	OT[3, 3]
	65.2947

	OT[3, 4]
	88.2041

	OT[3, 5]
	111.1135

	OT[3, 6]
	134.0229

	OT[3, 7]
	156.9323

	OT[3, 8]
	179.8417

	OT[3, 9]
	202.7511

	OT[3, 10]
	225.6605

	OT[4, 1]
	26.3853

	OT[4, 2]
	57.2947

	OT[4, 3]
	88.2041

	OT[4, 4]
	119.1135

	OT[4, 5]
	150.0229

	OT[4, 6]
	180.9323

	OT[4, 7]
	211.8417

	OT[4, 8]
	242.7511

	OT[4, 9]
	273.6605

	OT[4, 10]
	304.5699

	OT[5, 1]
	33.2947

	OT[5, 2]
	72.2041

	OT[5, 3]
	111.1135

	OT[5, 4]
	150.0229

	OT[5, 5]
	188.9323

	OT[5, 6]
	227.8417

	OT[5, 7]
	266.7511

	OT[5, 8]
	305.6605

	OT[5, 9]
	344.5699

	OT[5, 10]
	383.4793



Theorem 3. For all m and n, the geometric-arithmetic connectivity index of the octagonal tilling structure OT[m, n] is


Proof. The (du, dv)-type edge partition of the graph OT[m, n] is shown in Table 1. We prove the required result by using partition of Table 1 and the formula geometric-arithmetic connectivity index given by Equation 3 by following calculations:



















Example 5. Consider a 2D structure of allotrope we are discussing called octagonal tilling OT [13, 14] consisting of 504 atoms and 724 chemical bonds. Then, its gepmetric arithmetic index                          is                        

Example 6. The geometric-arithmetic index of 2D allotrope, octagonal tilling OT [m, n], for m = 1, 2, . . . , 5 and n = 1, 2, . . . , 10 are given as:
	OT[m, n]
	GA(OT[m, n])

	OT[1, 1]
	8

	OT[1, 2]
	17.9192

	OT[1, 3]
	27.8384

	OT[1, 4]
	37.7576

	OT[1, 5]
	47.6768

	OT[1, 6]
	57.596

	OT[1, 7]
	67.5152

	OT[1, 8]
	77.4344

	OT[1, 9]
	87.3536

	OT[1, 10]
	97.2728

	OT[2, 1]
	17.9192

	OT[2, 2]
	39.8384

	OT[2, 3]
	61.7576

	OT[2, 4]
	83.6768

	OT[2, 5]
	105.596

	OT[2, 6]
	127.5152

	OT[2, 7]
	149.4344

	OT[2, 8]
	171.3536

	OT[2, 9]
	193.2728

	OT[2, 10]
	215.192

	OT[3, 1]
	27.8384

	OT[3, 2]
	61.7576

	OT[3, 3]
	95.6768

	OT[3, 4]
	129.596

	OT[3, 5]
	163.5152

	OT[3, 6]
	197.4344

	OT[3, 7]
	231.3536

	OT[3, 8]
	265.2728

	OT[3, 9]
	299.192

	OT[3, 10]
	333.1112

	OT[4, 1]
	37.7576

	OT[4, 2]
	83.6768

	OT[4, 3]
	129.596

	OT[4, 4]
	175.5152

	OT[4, 5]
	221.4344

	OT[4, 6]
	267.3536

	OT[4, 7]
	313.2728

	OT[4, 8]
	359.192

	OT[4, 9]
	405.1112

	OT[4, 10]
	451.0304

	OT[5, 1]
	47.6768

	OT[5, 2]
	105.596

	OT[5, 3]
	163.5152

	OT[5, 4]
	221.4344

	OT[5, 5]
	279.3536

	OT[5, 6]
	337.2728

	OT[5, 7]
	395.192

	OT[5, 8]
	453.1112

	OT[5, 9]
	511.0304

	OT[5, 10]
	568.9496




3. The Shigehalli & Kanabur indices of the TiO2 nanotubes
Another well know semiconductor, Titania is comprehensively discussed in materials sciences, which has many aspects of technological applications. Titania nanotubes were systematically synthesized in the course of last 10-20 years using different methods in labs. The growth mechanism for TiO2 nanotubes has been studied well.16 Due to high applicability of the Titania nanotubes, their comprehensive theoretical studies are getting enhanced attention. Also, the TiO2 sheets with a thickness of a few atomic layers were discovered to be remarkably stable.17 In this section, We shall calculate three Shigehalli & Kanabur indices,18 of the TiO2 nanotubes. These indices are given as follows:

                     




[image: F:\TIO2 NANOTUBES.png]Further, Figure 2 shows the graph of  TiO2[m, n] nanotubes, where number of octagons represent m in rows and n in columns respectively.








Figure 2. General formation of the molecular graph of titania TiO2[m, n] nanotubes.
Once again with each edge uv, we correspond a pair (du, dv). The edge partition of TiO2 [m, n] nanotubes with respect to the degrees of the end-vertices of edges is presented in Table 2.
	(du, dv)- Partition
	Edge Cardinality

	(2, 4)
	6n

	(2, 5)
	2n+ 4mn

	(3, 4)
	2n

	(3, 5)
	6mn- 2n


Table 2. The (du , dv )-type edge partition of titania TiO2[m, n] nanotubes.
Theorem 4. For all m and n, the 1st Shigehalli & Kanabur index, SK, of the titania TiO2[m, n] nanotubes is


Proof. The (du, dv)-type edge partition of the graph TiO2[m, n] are shown in Table 2. We prove the desired result by using partition of Table 2 and the formula of the 1st Shigehalli & Kanabur index given by Equation 4 as follows.




.

Example 7. The 1st Shigehalli & Kanabur of the titania TiO2 [8, 9] nanotube consisting of 784 chemical bonds is given as    

      

Theorem 5. For all m and n, the 2nd Shigehalli & Kanabur index, SK1, of the titania TiO2[m, n] nanotubes is
.

Proof. The (du, dv)-type edge partition of the graph TiO2[m, n] are shown in Table 2. We obtain the required calculation by using partition of Table 2 and the formula of the 2nd Shigehalli & Kanabur index given by Equation 5 as follows.






Example 9. The 2nd Shigehalli & Kanabur index of the titania TiO2 [10, 12] nanotube consisting of 1280 chemical bonds is given as    

                       

Theorem 6. For all m and n, the 3rd Shigehalli & Kanabur index, SK2, of the titania TiO2[m, n] nanotubes is
.

Proof. The (du, dv)-type edge partition of the graph TiO2[m, n] are shown in Table 2. We obtain the required calculation by using partition of Table 2 and the formula of the 3rd Shigehalli & Kanabur index given by Equation 6 as follows.




.
Example 10. The 3rd Shigehalli & Kanabur index of the titania TiO2 [20, 9] nanotube consisting of 1960 chemical bonds is given as    

                       

Conclusion 
In this article, we have calculated some degree based topological indices of an infinite class of molecular graph, termed as octagonal tilling structure OT[m, n]. Precisely, we have studied the Randic index, atom-bond connectivity index and geometric-arithmetic connectivity index of OT[m, n], defined by M. Randic,13 Estrada et al.14 and Vukicevic et al.,15 respectively. Secondly, we have also studied the 1st, 2nd and 3rd Shigehalli & Kanabur indices of the titania TiO2 [m, n] nanotube. These topological indices are the mathematical predictors for various chemical properties of molecular structures as boiling point and viscosity,1 they are also reported to be useful in anti-inflammatory properties of certain chemical instances. They have also been used as branching indices and have implemented applications in QSPR and QSAR studies.2 We are confident that these indices will help the researchers and chemists in analyzing various chemical instances of the octagonal tilling 2D allotrope structure OT[m, n], discussed in this article and of the titania TiO2 nanotubes. From these indices of OT[m, n] and TiO2 nanotubes we can observe two strict chains which concludes our research article. These chains are:

   

[image: C:\New folder\MY RESEARCH PAPERS\CHEMICAL GRAPH THEORY\ACTA CHIMICA SLOVENICA\FIGURES\OCTAGONAL TILLING COMPARISON.png]                                 
Graphically these strict inequality MATLAB comparison is presented in Figures 3 and 4.






Figure 3. A comparison of Randic, ABC and GA indices of OT[m, n]; m, n ϵ [1, 20].
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Figure 4. A comparison of SK, SK1 and SK2 indices of  the titania TiO2 [m, n] nanotubes; where m, n ϵ [1, 10].
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