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Abstract. The First and Second Zagreb indices were first introduced by I. Gutman and N. Trinajstic in 
[image: image1.wmf]1972

. It is reported that these indices are useful in the study of anti-inflammatory activities of certain chemical instances, and in elsewhere. Recently, the first and second multiple Zagreb indices of a graph 
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 were introduced by Ghorbani and Azimi in 
[image: image3.wmf]2012

. In this paper, we calculate the Zagreb indices and the multiplicative versions of the Zagreb indices of an infinite class of Titania nanotubes 
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1  Introduction

Mathematical chemistry is a branch of theoretical chemistry in which we discuss and predict the chemical structure by using mathematical tools. Chemical graph theory is a branch of mathematical chemistry in which we apply tools from graph theory to model the chemical phenomenon mathematically. This theory plays a prominent role in the fields of chemical sciences.

A molecular graph is a simple graph in which vertices denote the atoms and edges denote the chemical bonds in underlying chemical structure. The hydrogen atoms are often omitted in a molecular graph. Let 
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 be a molecular graph with vertex set 
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 correspond to atoms and an edge between two vertices corresponds to the chemical bond between these vertices. An edge in 
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. Two vertices 
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 are said to be adjacent if there is an edge between them. The set of all vertices adjacent to a vertex 
[image: image18.wmf]u

 is said to be the neighbourhood of 
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A topological index is a molecular graph invariant which correlates the physico-chemical properties of a molecular graph with a number1. The first topological index was introduced by a chemist Harold Wiener in 
[image: image37.wmf]1947

 to calculate the boiling points of paraffins2. This numerical representation of a molecular graph has shown to be very useful quantity to use in the quantitative structure-property relationship3. It has also many applications in communication, facility location, cryptography, etc., that are effectively modeled by a connected graph 
[image: image38.wmf]G

 with some restrictions4. This index was originally defined for trees to correlate the certain physico-chemical properties of alkanes, alcohols, amines and their compounds. Hosoya5 defined the notion of Wiener index for any graph 
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 as 
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A pair of molecular descriptors known as the First Zagreb index 
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, first appeared in the topological formula for the total 
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-energy of conjugated molecules that has been derived in 
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 by Gutman and Trinajstic6. Soon after these indices have been used as branching indices7. Later the Zagreb indices found applications in QSPR and QSAR studies8,9. Many topological indices have been studied in the literature for different chemical structures10-13.
The first Zagreb index 
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 are respectively defined as 
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The new multiplicative versions of 
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 (respectively), were first defined in Ghorbani and Azimi14. These inidces are defined as follows. 
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In this paper we study the Zagreb and the multiplicative versions of Zagreb indices of Titania 
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TiO

 nanotubes. As a well-known semiconductor with a numerous technological applications, Titania is comprehensively studied in materials science. Titania nanotubes were systematically synthesized during the last 10-15 years using different methods and carefully studied as prospective technological materials. Since the growth mechanism for 
[image: image57.wmf]2
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 nanotubes is still not well defined, their comprehensive theoretical studies attract enhanced attention. The 
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 sheets with a thickness of a few atomic layers were found to be remarkably stable15.

2  Main results

The graph of the Titania nanotube 
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 is presented in Figure 1 where 
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 denote the number of octagons in a row and 
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 denote the number of octagons in a column of the titania nanotube. 
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Figure 1: The graph of 
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In the following we perform some necessary calculations for computing the Zagreb indices and the multiplicative versions of the Zagreb indices defined in the previous section.

Let us define the partitions for the vertex set and the edge set of the Titania nanotube 
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In the molecular graph of 
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 Similarly, the edge partitions of the graph 
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 are as follows. 



[image: image80.wmf]4}

=

)

(

 

&

 

2

=

)

(

 

|

 

)

(

=

{

=

=

*

8

6

v

d

u

d

G

E

uv

e

E

E

Î




[image: image81.wmf]5}

=

)

(

 

&

 

2

=

)

(

 

|

 

)

(

=

{

=

=

*

12

*

10

7

v

d

u

d

G

E

uv

e

E

E

E

Î

È




[image: image82.wmf]4}

=

)

(

 

&

 

3

=

)

(

 

|

 

)

(

=

{

v

d

u

d

G

E

uv

e

Î

È




[image: image83.wmf]5}.

=

)

(

 

&

 

3

=

)

(

 

|

 

)

(

=

{

=

=

*

15

8

v

d

u

d

G

E

uv

e

E

E

Î


 The vertex partition 
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The cardinalities of the vertex and edge partitions are presented in the Table 1.
Table 1: The vertex and edge partitions of the 
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 nanotubes along with their cardinalities.
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Theorem 2.1 The first Zagreb index of the 
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Proof. From equation 2, we have 
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. Using the cardinalities of the edge partitions from Table 1, we get that 
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Theorem 2.2 The second Zagreb index of the 
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Proof. Using equation 3, we get 
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Theorem 2.3 The first multiple Zagreb index of the 
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Proof. From equation 4, we have 
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Theorem 2.4 The second multiple Zagreb index of the 
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Proof. Using equation 5, we have 
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3  Conclusion

The Zagreb indices were first appeared in the topological formula for the total 
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-energy of conjugated molecules that has been derived in 
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 by Gutman and Trinajstic3. These indices have also been used as branching indices and have found applications in QSPR and QSAR studies. In this paper, we studied the Zagreb indices and the newly defined multiplicative versions of the Zagreb indices of an infinite class of Titania nanotubes 
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. Closed form formulas have been derived for the above mentioned indices.
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