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Abstract
The drug discovery process, traditionally a lengthy and costly endeavor, is being revolutionized by integrating innovative 
approaches. This review delves into how modern techniques accelerate drug discovery and development, significant-
ly reducing costs. We focus on the robust synergy of bioinformatics, artificial intelligence (AI), and high-throughput 
screening (HTS). Bioinformatics aids in the identification and validation of drug targets by analyzing vast genomic 
and proteomic datasets. AI enhances lead compound identification and optimization through predictive modeling and 
machine learning (ML) algorithms, slashing the time required for these stages. HTS facilitates the rapid screening of 
vast compound libraries to pinpoint potential drug candidates. AI-based approaches, such as HTS and predictive mod-
eling, enhance early-stage decision-making, minimize trial-and-error experimentation, and contribute to cost-efficiency 
across the pipeline. Moreover, advancements in computational chemistry and molecular dynamics simulations provide 
deeper insights into drug-target interactions, further accelerating the design of effective and selective drugs. In drug dis-
covery, drug candidates are tested in laboratory and live animal settings to assess their effectiveness, pharmacokinetics, 
and safety. By integrating these preclinical methods, the efficiency and success of drug discovery can be significantly 
improved, leading to more effective and safer drugs. This review underscores the important role of these technologies in 
contemporary drug development and explores their promising implications for future research and clinical applications.

Keywords: Artificial Intelligence (AI), Drug Development Pipeline, Drug Discovery, Bioinformatics, AI-Driven Drug 
Discovery

1. Introduction

Drug development is a complex process encompass-
ing several stages, each essential for ensuring the efficacy 
and safety of new therapeutics. These phases, from dis-
ease-related genomic analysis to clinical testing, are the 
backbone of the pharmaceutical industry, driving innova-
tion and improving patient outcomes.1 The drug develop-
ment process is generally categorized into two primary 
stages: discovery and development, which are crucial for 
advancing medicine.2 Artificial intelligence (AI) has trans-
formed the early phases of drug development, from dis-
ease understanding to compound optimization. Drug dis-

covery refers to the early stages of identifying potential 
drug targets and compounds, whereas drug development 
includes preclinical and clinical testing phases aimed at 
bringing a drug to market. This manuscript adopts this 
distinction consistently throughout. Figure 1 illustrates 
the integration of AI across key stages of drug develop-
ment, from disease characterization and target identifica-
tion to lead compound optimization, preclinical evalua-
tion, and clinical trials.

Drug screening and target identification are not sim-
ple tasks but pivotal aspects of drug development. They are 
aimed at resolving challenges such as insufficient efficacy 
and substantial adverse effects, which are common hurdles 
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in the process.3 The drug discovery and development pro-
cess has become increasingly lengthy and costly over the 
past decades4, with current estimates suggesting an aver-
age duration of 10–15 years and capitalized R&D costs 
ranging from $1 to $4.5 billion per approved drug.5,6 The 
final stage in the drug development process is not a mere 
formality but a critical step in product marketing.7 To re-
duce the likelihood of failure during drug development, 
new methodologies have been developed to evaluate ab-
sorption, distribution, metabolism, excretion, and toxicity 
(ADMET) profiles at early stages of the pipeline.8 Early 
ADMET profiling helps identify pharmacokinetic and tox-
icity issues before clinical testing, thereby improving deci-
sion-making and reducing the risk of costly late-stage fail-
ures.9,10

Despite the increasing urgency in minimizing drug 
resistance, the drug development pipeline incurs signifi-
cant time and budget costs, with a high failure rate for 
most drug candidates during the clinical stages.11 In this 
regard, drug design and development aspire to acquire a 
drug that effectively modulates the drug targets while 
maintaining an optimal balance of physicochemical 
properties and minimal toxicity.12 Clinically approved 
medications, which have completed multiple phases of 
the drug development process, generally contain exten-
sive information regarding dosage, interactions with oth-
er drugs, safety, adverse effects, potential harm, drug 

movement within the body, and the effects of the drug on 
the body’s functions. The drug discovery and develop-
ment process has become lengthier and costlier over 
time, necessitating strategies to reduce attrition rates 
during drug discovery and development.13 In this con-
cept, efficient computational methods for the identifica-
tion of drug targets can help mitigate the high costs asso-
ciated with experiments, making them crucial for 
successful drug development.14

The swift advancement of computer technologies has 
led to a notable increase in the screening of compounds 
using high-throughput methods, the application of combi-
natorial chemistry, and the ability to synthesize com-
pounds. Additionally, there is an increasing need for AD-
MET data on lead compounds, and the methods for 
assessing ADMET in vitro are steadily expanding. Numer-
ous effective in silico methods have been utilized for the in 
vitro prediction of ADMET, and in silico models have been 
devised to substitute in vivo models for forecasting phar-
macokinetics, toxicity, and other parameters.15,16

Likewise, ADMET, various techniques such as QSAR 
(Quantitative Structure–Activity Relationship), which 
models the relationship between a compound’s chemical 
structure and its biological activity using statistical or ma-
chine machine learning (ML), pharmacophore modeling, 
which identifies the essential chemical features required 
for a molecule to interact with a specific biological target, 

Fig 1. Ilustration of the AI-driven drug development pipeline from disease identification to final product. The schematic outlines key stages, includ-
ing target selection via analysis of complex big data (Step 2), lead compound identification (Step 3), compound optimization (Step 4), preclinical 
candidate selection (Step 5), and progression through clinical development phases (Step 6), culminating in an approved therapeutic product (Step 
7). This framework highlights how artificial intelligence streamlines the entire pipeline by enhancing data interpretation and decision-making at 
each stage.



583Acta Chim. Slov. 2025, 72, 581–600

Besli et al.:   How to Expedite Drug Discovery: Integrating Innovative   ...

molecular docking, and molecular dynamics simulations 
have proven effective at different stages of drug develop-
ment, resulting in significant cost and time savings com-
pared to traditional methods.17 Collaborations and merg-
ers in pharmaceutical research are strategic moves that 
enhance research and development initiatives. Further-
more, they have been observed to enhance the availability 
of pharmaceutical products in the market, particularly 
when these partnerships are forged at the outset of the 
drug development process.18

Integrating innovative approaches is a well-estab-
lished strategy to enhance the efficiency of drug discov-
ery. The success of utilizing organic synthesis methods 
compatible with biomacromolecules, machine-assisted 
synthesis planning, and artificial intelligence (AI) in ex-
pediting drug discovery is a testament to their effective-
ness.

Computer-aided drug design (CADD) techniques 
have been instrumental in expediting drug discovery, re-
ducing costs, minimizing failures, and laying a solid foun-
dation for future endeavors. Moreover, advancements in 
computational methodologies, such as generative chemis-
try and deep learning models, are promising and showing 
tangible results in hastening drug discovery. Strategies 
like repurposing existing therapeutics, leveraging tradi-
tional medicines, and employing large-scale data analyt-
ics and AI can enrich and revolutionize contemporary 

drug development. These multidimensional approaches, 
encompassing target identification, structure-based virtu-
al screening, and in vitro assays, have proven to be the 
drivers of drug discovery, leading to more effective and 
successful outcomes. Figure 2 presents a conceptual 
framework of drug design, depicting the interplay among 
computational and experimental strategies, such as 
CADD, bioassays, and AI/ML, in identifying and refining 
drug candidates.

2. Identification of Drug Target:  
How to Get from DNA to Drug?
The journey from DNA to drugs in the drug discov-

ery process is a complex and multi-stage process that be-
gins with genomic information and culminates in the de-
velopment of effective therapeutic molecules. The initial 
and crucial step in this process is identifying the correct 
target. In drug discovery, a ‘target’ refers to a specific bio-
molecule, often a protein, that is involved in a disease and 
can be modified by a drug to treat the disease. The design 
of drugs to target these specific molecules can lead to bet-
ter therapeutic outcomes by directly influencing the func-
tion of the target. This approach can be more effective and 
less harmful to other cells or organ systems, potentially 
increasing the success rate in clinical trials.19,20

Fig 2. Conceptual map illustrating the interconnected components of modern drug design. The diagram illustrates the integration of artificial intel-
ligence (AI), machine learning (ML), and computer-aided drug design (CADD) tools, including structure-based and ligand-based design, molecular 
dynamics, and ADMET prediction, to generate drug candidates. Additional elements, such as pharmacophore modeling, QSAR analysis, and bio-
assay validation, are also shown to be essential parts of the iterative drug discovery process.
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In drug discovery, the pivotal role of data mining 
through bioinformatics approaches using sources such as 
genomic methods like Genome-Wide Association Studies 
(GWAS) and gene expression profiling, proteomic analy-
ses, transgenic phenotyping, and compound profiling data 
is of paramount importance. This process is integral to the 
target identification process, providing crucial information 
for further analysis. Conducting mutation and polymor-
phism analysis to examine disease-associated mutations 
and genetic changes, as well as functional genomic analysis 
to investigate the function of specific genes and their im-
pact on the disease, is a targeted approach in this process.21

With the striking progress in computer systems, in-
tegrating AI/ML in genomics has become increasingly es-
sential. This is primarily due to the vast amount of data 
generated by advanced technologies in biomedicine. In 
clinical genomics, deep learning algorithms process large 
and complex genomic datasets, enabling more efficient 
analysis and interpretation of genetic information.22 AI/
ML algorithms, such as convolutional neural networks 
(CNNs), have been widely employed to interpret complex 
genomic data. Tools like DeepVariant utilize deep learning 
to accurately call genetic variants,23 while AlphaFold lev-
erages AI to predict protein 3D structures with unprece-
dented accuracy,24 significantly aiding in structure-based 
target identification and validation. The systematic analy-
sis of genomic data using AI/ML technologies has led to 
measurable advancements in precision medicine, particu-
larly in chronic airway diseases such as asthma and 
COPD.25 For instance, convolutional neural networks and 
ensemble models have been successfully applied to predict 
asthma exacerbations from electronic health records with 
high accuracy (AUC ≈ 0.85),26 while AI-driven biomarker 
discovery has facilitated the stratification of asthma endo-
types to support individualized treatment strategies.27

The application of AI in genomics is still in its nascent 
stages, but its potential impact is already significant. With 
the rapid growth of biomedical data facilitated by advanced 
experimental technologies, AI/ML have emerged as indis-
pensable tools for drawing meaningful insights and im-
proving decision-making processes in various areas, in-
cluding drug discovery.28 In the context of cancer genomics, 
the development of AI-based platforms capable of integrat-
ed analyses of large-scale multiomics data is pivotal for en-
hancing the diagnosis and therapy of cancer patients.29 
Furthermore, the use of AI/ML in cancer genomics is seen 
as a key component in integrating genomic analysis for pre-
cision cancer care, underscoring the importance of these 
technologies in advancing personalized medicine.30 Yet, 
using AI/ML in genomics is not without challenges. Before 
AI/ML applications can be widely adopted in clinical care, 
rigorous studies are needed to test the safety and effective-
ness of these technologies in real-world settings.31 Efforts 
must be made to overcome these challenges, harness the 
potential benefits of AI/ML in genomics, and firmly ensure 
their successful integration into clinical practice.

The application of AI-powered spatial analysis in mi-
croenvironments, particularly in the context of cancer 
drug identification, represents a paradigm shift in re-
search. This innovative study area significantly uses ML 
and AI techniques to enhance drug discovery processes. 
The tumor microenvironment (TME) is a complex ecosys-
tem comprising various cell types, signaling molecules, 
and extracellular matrix components that interact dynam-
ically to influence tumor growth, progression, and re-
sponse to therapy.32 Understanding the intricate interac-
tions within the TME is crucial for developing effective 
cancer treatments. Recent technological advancements, 
such as AI-supported spatial analysis and multiplex assays, 
have significantly enhanced our ability to dissect the tu-
mor microenvironment (TME) with high precision and 
resolution.33 By integrating deep learning techniques with 
spatial omics data modeling methods like SOTIP34, re-
searchers can gain insights into spatial heterogeneity and 
differential microenvironments within tumors. This ap-
proach provides a comprehensive understanding of the 
tumor microenvironment, identifying potential drug tar-
gets and responses to treatment.35

The advent of multiplexed methodologies has 
opened doors for the simultaneous examination of differ-
ent components of the TME, providing insights into the 
biological cross-talk occurring at the tumor-host inter-
face.36 By harnessing digital analysis tools, researchers can 
scrutinize paraffin tumor tissues at subcellular and cell 
population levels, illuminating the complex interactions 
within the TME.36 These approaches enable identifying bi-
omarker-positive cells and their spatial colocalization 
within tumor regions, offering valuable information for 
predicting treatment outcomes.37 Furthermore, AI-pow-
ered spatial analysis tools, such as Lunit SCOPE IO, have 
been developed to automate the segmentation and quanti-
fication of histologic components in hematoxylin and eo-
sin-stained whole-slide images (WSI).33 These tools en-
hance the characterization of tumor-infiltrating 
lymphocytes (TILs) and serve as complementary biomark-
ers for immune checkpoint inhibition in non-small-cell 
lung cancer.33Additionally, ML and AI-driven spatial anal-
ysis techniques applied to pathology slides have facilitated 
a deeper understanding of the tumor immune microenvi-
ronment.38

This collaborative effort underscores the importance 
of our collective work in characterizing the molecular, cel-
lular, and spatial properties of tumor microenvironments 
across different cancer types.39 By combining image analy-
sis algorithms with multiplex staining, researchers can 
conduct in-depth quantitative and spatial analyses of the 
broader TME, enhancing our comprehension of tu-
mor-immune interactions.40 These advancements under-
score the potential of automated methodologies in charac-
terizing tumor microenvironments’ molecular, cellular, 
and spatial properties across different cancer types, ulti-
mately leading to improved patient outcomes.41 These in-
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novative approaches highlight the importance of advanced 
imaging and analysis techniques in unraveling the com-
plexities of the TME. In parallel with these developments, 
some pharmaceutical companies (see Table 1) use AI-sup-
ported spatial techniques.

Several pharmaceutical companies listed in Table 1 
are actively applying AI-supported spatial analysis to ad-
dress complex biomedical questions. For instance, Astra-
Zeneca collaborates with DeepMind to analyze tissue sam-
ples for elucidating disease mechanisms and identifying 
targets. Pfizer uses IBM Watson’s AI to study tumor mi-
croenvironments in oncology research. Novartis, through 
PathAI, advances diagnostic accuracy by identifying spa-
tial patterns in tissue. Companies like Roche (via Genen-
tech) and Sanofi (via Insilico Medicine) apply spatial tools 
for personalized medicine and biomarker discovery, re-
spectively. These applications demonstrate how AI is ena-
bling a precise, spatially resolved understanding of tissue 
pathology, thereby enhancing decision-making in both the 
early discovery and clinical phases.

2. 1. �Computer Aided Drug Discovery 
(CADD)
CADD is a crucial approach that utilizes computer 

models, data analyses, and artificial intelligence (AI) tech-
niques to improve the efficiency and effectiveness of drug 
development processes. The integration of ML algorithms, 
deep learning technologies, and AI-driven solutions has 
transformed various stages of drug discovery and develop-
ment.42,43 These technologies are essential for tasks such as 
structure- and ligand-based virtual screening, de novo 

drug design, physicochemical property prediction, and 
drug repurposing.42 Pharmaceutical companies and re-
search groups increasingly rely on computer-aided drug 
discovery techniques.44

CADD is recognised as a cutting-edge strategy with 
numerous advantages, including cost and time savings, 
high efficiency and success rates, better alignment and se-
lectivity to the target, rational drug design, ADMET pre-
diction, environmentally friendly approaches and ethical 
benefits, such as reduced reliance on animal testing. Struc-
ture-based drug discovery (SBDD) and ligand-based drug 
discovery (LBDD) are the two primary methods used in 
CADD.45

2. 1. 1. Structure-based Drug Design (SBDD)
SBDD, a method that comes into play when the 

three-dimensional structure of the target molecule is 
known or can be predicted, is a testament to precision in 
drug design and optimization. It strives to create and en-
hance drug candidates that will bind specifically to the tar-
get, thereby exhibiting biological activity. This is achieved 
by leveraging the structural information of the target pro-
tein or nucleic acid.46

SBDD is the method of choice when the crystal 
structure of the target protein has been resolved, a feat ac-
complished through techniques like X-ray crystallography 
or Cryo-EM (electron microscopy). These methods pro-
vide high-resolution structural data, offering a clear view 
of the binding sites of ligands and the active regions of the 
target. Similarly, it is employed when the three-dimen-
sional structure of the target protein in solution is deter-

Table 1: Pharmaceutical companies that are using AI-supported spatial analysis in their drug development processes

Pharmaceutical	 AI Provider/	 Application	 Description
Company	 Tool
 

AstraZeneca	 DeepMind	 Drug discovery, 	 Utilizing AI for spatial analysis of tissue samples to understand 
		  tissue analysis 	 disease mechanisms and identify new drug targets.
Pfizer	 IBM Watson	 Oncology research	� Applying AI-supported spatial analysis to study tumor 

microenvironments and improve cancer treatment strategies.
Novartis	 PathAI	 Pathology, diagnostic	 Using AI to analyze spatial patterns in tissue samples for better 
		  advancements 	 diagnostics and treatment planning.
Sanofi	 Insilico Medicine	 Biomarker discovery	� Leveraging spatial analysis to identify biomarkers and 

understand disease progression.
Roche	 Genentech	 Personalized medicine	� Implementing AI for spatial analysis to tailor treatments based 

on individual tissue profiles.
Merck	 NVIDIA	 Immunotherapy research	� Using spatial analysis to study immune cell interactions within 

tissues to enhance immunotherapy approaches.
Johnson & Johnson	 Atomwise	 Drug target identification	� Applying AI-supported spatial analysis to identify and validate 

new drug targets.
GlaxoSmithKline	 BenevolentAI	 Drug discovery	� Utilizing spatial analysis to understand disease mechanisms at 

the cellular level and identify potential drug candidates.
Eli Lilly	 Flatiron Health	 Clinical trials	� Using spatial analysis in clinical trial data to improve patient 

stratification and treatment efficacy.
Bristol-Myers Squibb	 GNS Healthcare	 Drug development	� Implementing AI-supported spatial analysis to enhance 

understanding of tissue responses to treatments.
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mined using NMR spectroscopy, a particularly valuable 
tool for small proteins and protein complexes. If the struc-
ture of the target protein is unknown, homology modeling 
steps in, creating a predicted structure based on a known 
structure. This process involves using the structure of a 
closely related protein as a reference.47 In this regard, re-
searchers access approximately 1 million Computed Struc-
ture Models (CSMs) from AlphaFoldDB and RoseTTA-
Fold (from the Model Archive) and ~200,000 empirically 
determined PDB structures at https://www.rcsb.org/.

Docking and virtual screening:
Finding and improving therapeutic compounds re-

quires understanding the binding mechanism between 
proteins and small molecules.48 Molecular docking is a 
widely used SBDD method. Molecular docking estimates 
the optimal position, orientation, and conformation of a 
drug candidate (small molecule) when binding to a pro-
tein. Most docking systems currently in use achieve suc-
cess rates between 70% and 80% in terms of accurately re-
producing known ligand binding poses, typically within a 
root mean square deviation (RMSD) of 1.5 to 2 Å when 
compared to crystallographic reference structures.49 A vir-
tual screening computational technique evaluates a vast 
library of compounds to determine if they can bind to spe-
cific locations on target molecules, such as proteins and, 
well-compounds examined.50 It focuses on rapidly search-
ing enormous chemical structure libraries using comput-
ers to find those structures most likely to bind to a thera-
peutic target, usually an enzyme or protein receptor.

Structure-based virtual screening (SBVS): SBVS is 
a computer-aided drug discovery method that uses the 
three-dimensional structure of a target molecule (usually a 
protein) to identify potential drug candidates.51 SBVS 
screens an extensive library of chemical compounds, pre-
dicting how these compounds might bind to the target 
molecule and identifying the most promising candidates.48 
Docking techniques are frequently employed in SBVS on 
extensive chemical libraries due to their rapidity in scan-
ning millions of molecules with a simplified scoring func-
tion. Scoring functions are utilized by docking tools like 
DOCK, AutoDock, Glide, FRED, GOLD, and Surflex-Dock 
to assess protein–ligand binding.48

Ligand-based virtual screening (LBVS): LBVS is a 
computer-aided drug discovery method that uses the 
properties of known active ligands to predict the binding 
potential of chemical compounds to specific biological tar-
gets. LBVS uses the molecular similarity concept to ana-
lyze the structural details and physicochemical character-
istics of the chemical scaffold of known active and inactive 
compounds. Accordingly, similarity measurements utiliz-
ing appropriate chemical descriptors are used to investi-
gate the links between compounds in a particular library 
and one or more known actives.51 These measurements 

can be carried out using 3D descriptors related to molecu-
lar fields, shape, and volume as well as pharmacophores, as 
well as 1D and 2D descriptors that often include informa-
tion on the chemical nature of compounds and their topo-
logical properties. The following circumstances make LB-
VS a better choice: (a) when little is known about the 
molecular target’s structure. Additionally, it is used to en-
hance the database for SBVS experiments; (b) LBVS meth-
ods are generally superior to SBVS methods for targets 
with a large amount of available experimental data or 
where the drug-binding site is not well defined; (c) using 
both approaches simultaneously can improve the accuracy 
of the VS by removing some false-positive compounds that 
the SBVS technique identified as promising, increasing the 
likelihood of obtaining positive results.52 When informa-
tion on the structure of ligand-target complexes and simi-
larity relationships to active compounds are available, 
combining the methods of SBVS and LBVS may be a viable 
approach that can result in a comprehensive framework 
that can improve the success of drug discovery efforts.51

Despite their widespread use, both SBVS and LBVS 
come with notable limitations. SBVS often suffers from 
high false-positive rates due to inaccuracies in scoring 
functions, may fail to rank active compounds over decoys 
reliably. Additionally, the quality and resolution of protein 
structures especially for flexible or disordered regions can 
significantly affect docking results. LBVS, on the other 
hand, is inherently limited by its dependence on the avail-
ability of well-characterized ligands with known activity. 
This restricts its application to targets with rich ligand da-
tabases, making it unsuitable for novel or poorly studied 
targets. Both approaches also entail substantial computa-
tional costs, especially in large-scale screenings, and are 
sensitive to the quality of input data, which can impact the 
robustness of the outcomes.

2. 1. 2. Ligand-based Drug Design (LBDD)
To anticipate the properties of a novel compound, 

LBDD examines current activities using techniques such 
as pharmacophore modeling, QSAR models, and 3D shape 
matching.48

Pharmacophore modeling: An abstract representa-
tion of the structural characteristics needed by a biological 
macromolecule to identify a ligand is called a pharma-
cophore. To develop a pharmacophore model, an initial set 
of compounds is chosen with a variety of structural fea-
tures. Compatibility analysis is performed to make a list of 
low-energy conformations for each chosen molecule, in-
cluding the likely bioactive conformation. The low-energy 
conformations of molecules in every possible combination 
are stacked. Functional groups (such as carboxylic acid 
groups or phenyl rings) that are common to all the com-
pounds in the collection can be added. It is thought that 
the collection of conformations that yields the best fit is 
the active conformation. Molecules are stacked and repre-

https://www.rcsb.org/
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sented abstractly. The pharmacological effects of a collec-
tion of substances that bind to the same biological target 
are evaluated.53

Quantitative structure-activity relationships 
(QSAR): One of the traditional uses of ML techniques in 
drug discovery is QSAR.54 Building prediction models of 
biological activities based on the structural and molecular 
details of a compound library is known as quantitative 
structure-activity relationship, or QSAR, modeling. The 
idea of quantitative structure-property relationship, or 
QSAR, was first applied in drug discovery and develop-
ment. Since then, it has found widespread use in the corre-
lation of molecular data with various physicochemical 
properties as well as biological activities.50 In QSAR, the 
selection of molecular descriptors and the evaluation of 
molecular similarity are crucial. It is important to note 
that, regardless of the field of study, comparing object rep-
resentations, similarity metrics, and the interactions be-
tween related attributes and relationships among objects 
are generally relevant for data modeling.55 Important 
pharmacological characteristics, like ADMET, have been 
thoroughly modeled using QSAR techniques. To develop 
novel and safe medications, it is imperative to minimize 
toxicity and optimize pharmacokinetics; inaccurate as-
sessment of these factors may cause unfavorable side ef-
fects and impair in vivo efficacy, which could ultimately 
lead to a drug candidate’s failure.55

Moreover, AI–driven virtual screening, particularly 
through deep learning and ultra-large compound library 
docking, has significantly accelerated early-stage drug dis-
covery. These approaches reduce the number of false posi-
tives and eliminate resource-intensive failures during hit-

to-lead stages.56,57 For instance, deep docking strategies 
can rapidly screen over a billion compounds, drastically 
decreasing both time and experimental cost compared to 
traditional in vitro methods. A landmark example is the 
discovery of Halicin, a novel broad-spectrum antibiotic, 
identified using a deep learning model trained on molecu-
lar structures an achievement that conventional screening 
pipelines had missed.58 This case illustrates the practical 
application of AI in streamlining discovery pipelines and 
alleviating the economic burden of early-stage drug devel-
opment.

2. 1. 3. ADMET Prediction
Drugs that are both safe and effective have precisely 

calibrated pharmacokinetics and pharmacodynamics, 
which include sufficient absorption, distribution, metabo-
lism, excretion, and acceptable toxicity (ADMET), as well 
as high potency, affinity, and selectivity against the molec-
ular target.59 It was observed that the inadequacies in AD-
MET characteristics cause a lot of clinical trials to fail. Al-
though it is ideal to profile ADMET early in the drug 
discovery process, there is a lack of data and a high ex-
pense associated with experimentally evaluating ADMET 
characteristics. Additionally, computational analyses of 
ADMET during the clinical trial phase can be a useful de-
sign approach that enables researchers to focus more on 
the most promising drugs.60 Today, there is a large range of 
tools available for ADMET prediction, including AD-
METlab61, QikProp62, MetaTox, SwissADME, pKCMS63, 
DataWarrior64, MetaSite and StarDrop65 to mention a few. 
By easily excluding inappropriate compounds, ADMET 
prediction tools can cut down on the amount of costly late-

Fig 3. Schematic representation of ADMET evaluation in the drug development pipeline. The diagram outlines how absorption, distribution, me-
tabolism, excretion, and toxicity assessments are used to screen lead compounds before selecting viable drug candidates. These properties collective-
ly determine the pharmacokinetic and safety profile of a compound, significantly influencing its success in preclinical and clinical stages.
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stage failures and synthesis-evaluation cycles.59 Figure 3 
exhibits the ADMET evaluation process, highlighting how 
absorption, distribution, metabolism, excretion, and tox-
icity profiling are employed to refine lead compounds into 
viable drug candidates.

Furthermore, AI-powered predictive toxicology and 
ADMET modeling enable early elimination of compounds 
with poor safety profiles, thus lowering attrition rates in 
later phases and saving substantial R&D resources. Ma-
chine learning techniques have been shown to outperform 
conventional rule-based methods in predicting toxic ef-
fects.66 In addition, Kelleci Çelik and Karaduman67 em-
ployed a one-vs-all QSTR (OvA-QSTR) approach to accu-
rately predict drug-induced hepatotoxicity using structur-

al and molecular descriptors, reinforcing the utility of AI 
in early-stage toxicological assessments.

2. 1. 4. �Incorporated Artificial Intelligence and 
Molecular Dynamics (AI-MD)

AI and MD methods have demonstrated significant 
potential in various scientific fields, particularly drug de-
sign, chemistry, and materials science. The integration of 
AI with MD simulations not only enables the development 
of innovative computational workflows but also under-
scores the significance of combining AI with mechanistic 
insights from MD, a crucial aspect of this integration. 
Elend et al.68 present a computational drug design work-

Table 2A: AI Applications in Drug Discovery Phase

Application	 Description	 AI Techniques Used	 Tools

Target Identification	 Identifying biological targets linked to diseases	 ML, NLP	 IBM Watson, 
			   DeepMind
Lead Compound Identification	 Screening large compound libraries	 VS, Deep Learning	 Atomwise, 
			   Schrödinger, 
			   DeepChem
Lead Optimization	 Improving efficacy and reducing toxicity	 QSAR, Generative Models	 MOE, ChemDraw, 
			   ADMET Predictor
ADMET Predictions	 Early profiling of pharmacokinetics and toxicity	 ML, Predictive Modeling	 ADMET 
			   Predictor, pkCSM
Drug Repurposing	 New uses for existing drugs	 ML, Network Analysis	 IBM Watson
Protein Structure Prediction	 Predict 3D structures for interaction studies	 Deep Learning	 AlphaFold
Genomic Data Analysis	 Disease-related genetic profiling	 ML, Data Mining	 GATK, 
			   DeepVariant
Biomarker Discovery	 Identifying biomarkers that predict response	 ML, Data Mining	 BenevolentAI, 
	 to therapies 		  GNS Healthcare
Virtual Screening and Docking	 Simulating molecular docking to predict how	 VS, Molecular Docking	 AutoDock, 
	 drugs bind to their targets 		  Schrödinger Suite

Table 2B. AI Applications in Drug Development Phase

Application	 Description	 AI Techniques Used	 Tools

Preclinical Testing	 Evaluating efficacy & safety pre-clinically	 Image Analysis, ML	 Insilico Medicine, 
			   PathAI
Clinical Trial Design	 Patient recruitment, protocol optimization	 AI Analytics, 	 Medidata, REDCap
		  Predictive Modeling 	
Predictive Toxicology	 Forecasting toxicity and safety issues	 ML, Neural Networks	 DeepTox, Tox21 
			   Challenge
Molecular Dynamics Simulations	 Atomistic simulations of drug-target interactions	 Molecular Dynamics	 GROMACS, NAMD
Chemical Synthesis Optimization	 Improving synthesis yield and routes	 AI-driven Planning	 ChemPlanner, Reaxys
Synthetic Biology	 Designing novel biological systems	 ML, Synthetic Biology	 Benchling
Patient Stratification	 Subgrouping based on genetic/clinical data	 Clustering, ML	 Illumina BaseSpace, 
			   Synthego
Personalized Medicine	 Individualized therapy planning	 ML, Data Analytics	 23andMe, Foundation 
			   Medicine
Image Analysis	 Tissue/pathology image evaluation	 AI Diagnostic Systems	 ImageJ, PathAI
Data Mining	 Identifying patterns from large datasets	 ML, Data Mining	 RapidMiner, Weka

Abbreviations: ML: Machine Learning, NLP: Natural Language Processing, VS: Virtual Screening, QSAR: Quantitative Structure–Activity Relation-
ship, ADMET: Absorption, Distribution, Metabolism, Excretion, and Toxicity, AI: Artificial Intelligence.
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flow that merges AI methods and MD simulations to cre-
ate potential drug candidates, showcasing the effectiveness 
of AI-MD integration in drug discovery. Baum et al.69 dis-
cuss the impact of AI implementations in chemistry, high-
lighting their role in reducing experimental effort and op-
timizing reaction conditions, underscoring the 
transformative potential of AI in scientific research. Tran 
et al.70 utilize MD simulations to gain insights into AI-gen-
erated cell-penetrating peptides, stressing the significance 
of combining AI with mechanistic insights from MD. Ter-
ayama et al.71 underscore the importance of integrating 
ML techniques with simulations and experiments in re-
search. Meuwly72 explores the application of ML tech-
niques in chemical reactions, illustrating the historical use 
of AI in chemistry research. Zhang et al.73 focus on en-
hancing molecular simulations with AI, emphasizing the 
computational intensity of such applications and the ne-
cessity for advanced methodologies. Xu et al.74 combine 
chemical descriptors with AI/ML tools to predict synthesis 
reactions, demonstrating the potential of AI in predicting 
chemical outcomes. Elbaz et al.75 investigate the use of MD 
simulations to study diffusion mechanisms, highlighting 
the importance of detailed simulations in understanding 
molecular processes. In conclusion, the amalgamation of 
AI and MD methods provides a robust tool for expediting 
scientific discovery, streamlining experimental processes, 
and designing innovative materials and drugs. Researchers 
can unlock new frontiers in various scientific disciplines 
by leveraging AI’s strengths in data analysis and prediction 
with detailed insights from MD simulations.

Table 2A summarizes AI-driven tools and methods 
employed in the drug discovery phase, including target 
identification, virtual screening, and biomarker discovery. 
Table 2B, on the other hand, outlines applications in the 
drug development phase, such as preclinical testing, clini-
cal trial design, and predictive toxicology. This separation 
facilitates a clearer understanding of the sequential use of 
AI technologies across the whole drug development pipe-
line.

2. 1. 5. �Key Takeaways in AI-Aided Drug 
Development in CADD

AI has significantly impacted drug development 
processes by offering various benefits. AI plays a crucial 
role in rational drug design, decision-making support, 
personalized therapies, clinical data management, and ex-
pediting drug development.76 AI/ML platforms are instru-
mental in determining the correct dosage form, optimiz-
ing it, and facilitating quick decision-making for efficient 
manufacturing of high-quality products.77 Advances in 
AI-powered Language Models (LMs) have shown the po-
tential to enhance drug discovery and development pro-
cesses.78 CADD techniques are essential for accelerating 
drug discovery, reducing costs, and minimizing failures in 
the final stages of development.44

AI is involved in every drug design and development 
stage, from target identification to trial design and post-mar-
ket product monitoring.79 Pharmaceutical companies have 
utilized AI to speed up drug discovery processes, automate 
target identification, and enhance development speed.80 AI 
assists in developing treatment regimens, prevention strate-
gies, and drug/vaccine development, particularly crucial 
during health crises like the COVID-19 pandemic.

AI algorithms enable the design of advanced drug 
development pipelines, reducing time and costs in the 
drug discovery process.81 AI advancements in radiothera-
py show promise in improving treatment efficiency and 
effectiveness.82 AI has been extensively used in comput-
er-aided drug design, including repurposing existing 
drugs against specific targets like COVID-19 receptor pro-
teins.83 Open data sharing and model development are 
crucial for the progress of drug discovery with AI.84

The application of AI/ML in synthetic drug sub-
stance process development presents significant untapped 
opportunities.85 AI’s role in drug discovery spans from 
compound screening to clinical trial conduct and repur-
posing, enhancing various phases of drug development.86 
AI/ML trends impact clinical pharmacology by aiding tar-
get identification, generative chemistry, and clinical trial 
outcome evaluation.87 Effective multimodal approaches 
integrating big data, chemistry, biology, and medicine with 
AI capabilities optimize drug discovery.87

2. 1. 6. AI/ML in Drug Development
Artificial intelligence (AI) and machine learning 

(ML) have become indispensable tools in drug develop-
ment, offering advanced capabilities across both discovery 
and development stages. Their unique contributions are 
particularly pronounced in clinical trial optimization, 
post-market surveillance, and biomarker-driven drug 
repositioning areas less emphasized in earlier sections of 
this review.

AI algorithms are now extensively used to enhance 
clinical trial design by predicting patient enrollment dy-
namics, optimizing inclusion/exclusion criteria, and esti-
mating dropout risks, thus improving efficiency and re-
ducing costs.88 In the post-marketing phase, AI-powered 
pharmacovigilance systems can detect adverse drug events 
faster and more reliably than traditional methods by ana-
lyzing real-world data from electronic health records and 
patient forums.89

In preclinical development, AI models support com-
pound screening, molecular property prediction, and de 
novo drug design through deep learning techniques that 
handle complex datasets, expediting lead optimization 
and safety profiling.90,91 These tools are especially valuable 
in oncology and rare diseases, where patient stratification 
and precision targeting are essential.

Table 3 summarizes real-world implementations of 
AI/ML by leading pharmaceutical companies. For in-
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stance, AstraZeneca has collaborated with DeepMind to 
enhance tissue analysis in oncology, while Novartis lever-
ages Microsoft AI for patient segmentation and trial effi-
ciency. Similarly, Pfizer, Sanofi, and GlaxoSmithKline em-
ploy AI platforms such as IBM Watson, Exscientia, and 
Insilico Medicine to accelerate drug discovery, biomarker 
development, and clinical trial design. These collabora-
tions reflect AI’s expanding role from preclinical modeling 
to post-marketing applications.

The table has been structured to clearly distinguish 
AI use cases in discovery (e.g., target identification, virtual 
screening) versus development (e.g., trial optimization, 
toxicity prediction), thereby improving reader compre-
hension and aligning with the pharmaceutical R&D work-
flow.

3. Bioassay of Drug Candidate
The integration of in silico, in vitro, and in vivo stud-

ies is essential for effective and efficient drug discovery. In 
silico studies provide a cost-effective and rapid initial 
screening of potential drug candidates, which are then rig-
orously tested through in vitro and in vivo experiments to 
ensure their safety and efficacy before proceeding to clini-
cal trials in humans. This multi-stage approach helps 
streamline the drug discovery process, reducing time and 
costs while increasing the likelihood of success in develop-
ing new treatments.92

Recent advances in biomedical engineering and genet-
ic technologies have introduced innovative in vitro and in 
vivo techniques that significantly enhance the predictive 
power and translational relevance of preclinical drug testing.

CRISPR-based assays represent a transformative in 
vitro approach, enabling precise genome editing to model 

disease-specific mutations and assess gene-drug interac-
tions in human-derived cell lines. These systems would 
allow researchers to dissect target-specific pathways and 
identify synthetic lethal interactions, which are particular-
ly valuable in oncology and for rare genetic disorders.93 
CRISPR screening platforms have also been integrated in-
to drug repurposing pipelines, offering scalable tools for 
high-throughput functional genomics.

In the realm of in vivo models, the development of 
humanized animal models has bridged critical translation-
al gaps by introducing human genes, cells, or tissues into 
immunodeficient animals. These models are beneficial for 
studying immunotherapies, infectious diseases, and drug 
responses related to metabolism.94 Unlike conventional 
rodent models, humanized systems enable the evaluation 
of drug efficacy and toxicity in a context that closely mim-
ics human physiological conditions.

Additionally, organ-on-a-chip technologies, although 
not strictly in vitro or in vivo, offer a hybrid system that 
simulates the dynamic interactions of human tissues and 
fluids. These microfluidic devices recreate the multicellular 
architectures and mechanical forces of organs like the lung, 
liver, and gut, providing valuable insights into drug absorp-
tion, distribution, and organ-specific toxicity.95

Together, these cutting-edge approaches comple-
ment traditional bioassays by enhancing mechanistic un-
derstanding, improving predictive accuracy, and support-
ing the development of safer and more effective drugs.

3. 1. In vitro Studies
In vitro studies provide valuable information on the 

efficacy and safety of drug candidates before in vivo animal 
studies and clinical trials. In vitro studies evaluate the ef-
fects of potential drug candidates on specific biological 

Table 3: Pharmaceutical Companies Using AI For Drug Development

Pharmaceutical	 Collaboration Focus	 AI Provider/Tool	 Year
Company			   Started

Pfizer	 Drug discovery and development using AI-driven data analysis	 IBM Watson, Atomwise	 2016
Novartis	 Drug discovery, personalized medicine, drug discovery, 	 Microsoft, PathAI	 2017
	 and clinical trial design
Sanofi	 Drug discovery and design, biomarker development	 Exscientia, Insilico Medicine	 2019
AstraZeneca	 Discovery of new drug targets and develop therapies	 BenevolentAI, DeepMind	 2018
GlaxoSmithKline	 Drug discovery, clinical trials, and biomarker development	 Insilico Medicine, GNS Healthcare	 2019
Johnson& Johnson	 Pathology, diagnostic advancements	 Atomwise, PathAI	 2016
Merck	 Drug discovery, predictive toxicology	 PathAI, DeepTox	 2017
Roche	 Personalized medicine, drug development	 Genentech, Flatiron Health	 2018
Bristol-Myers Squibb	 Drug discovery, immunotherapy research	 NVIDIA, Flatiron Health	 2019
Eli Lilly	 Drug discovery, lead optimization	 Atomwise, BioSymetrics	 2017
Takeda	 Drug discovery, clinical trials	 Atomwise, BioSymetrics	 2018
AbbVie	 Drug discovery, target validation	 IBM Watson, BioSymetrics	 2019
Amgen	 Drug discovery, biologics development	 GNS Healthcare, Atomwise	 2017
Bayer	 Drug discovery, patient stratification	 GNS Healthcare, BenevolentAI	 2018
Biogen	 Drug discovery, neurodegenerative diseases	 IBM Watson, Atomwise	 2019
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targets in an in vitro setting. During this phase, cell culture 
studies are conducted to assess the impact of the candidate 
drug on cell viability, its apoptotic and necrotic effects, and 
its genotoxicity as part of toxicity and safety tests to under-
stand the mechanism of action of the drug candidate, its 
effects on cellular signaling pathways, receptor interac-
tions, and biomolecular processes are examined in de-
tail.96–99 Pharmacokinetic studies are conducted to investi-
gate how the drug candidate is absorbed, distributed, 
metabolized, and excreted by the cells.100 Additionally, 
pharmacodynamic studies are performed to determine the 
biological effects and efficacy of the drug on the cells. In 
vitro studies utilizing three-dimensional (3D) cell cultures 
and organoid models provide more complex and realistic 
cellular environments, helping to achieve more reliable re-
sults.101,102

3D cell cultures and organoid systems offer signifi-
cant advantages over traditional two-dimensional (2D) 
cultures, as they more accurately mimic the structural and 
functional complexity of human tissues. They replicate 
cell–cell and cell–matrix interactions, nutrient and oxygen 
gradients, and tissue-specific architecture more effectively, 
enhancing their predictive value for in vivo outcomes. 
However, these models are not without limitations. They 
can be expensive to establish and maintain, often require 
specialized scaffolds or materials, and exhibit variability in 
reproducibility and scalability for high-throughput appli-
cations. Furthermore, while in vitro systems whether 2D 
or 3D are invaluable for mechanistic insights, they lack bi-
okinetic context, which may lead to misinterpretation of 
toxicity or efficacy profiles when extrapolating results to 
human physiology.103

3. 2. In vivo Studies
In vivo studies involve testing drug candidates in an-

imal models to evaluate their efficacy, pharmacokinetics, 
and safety within a living organism.104 These studies are a 
critical step to verify the findings from in vitro experi-
ments and to evaluate the efficacy and safety of the drug in 
more complex biological systems.105 At this stage, ADME 
studies are conducted to determine the bioavailability and 
half-life of the drug as part of pharmacokinetic studies. 
Pharmacodynamic studies are performed to establish 
dose-response relationships and the degree of efficacy. 
Acute, subacute, and chronic toxicity tests are conducted 
as part of toxicity and safety studies. Potential side effects, 
organ damage, and mortality rates are examined.106–108 In 
vivo models are crucial for studying the progression of the 
disease and the effects of the drug on this process. Addi-
tionally, they play an important role in observing the re-
sponse to treatment and in identifying and validating bio-
markers to monitor disease progression.105 Compared to 
in vitro experiments, animal models are more dependable, 
despite certain limitations such as variations in biokinetics 
parameters and the inability to extrapolate results to hu-

mans.103 Nonetheless, significant physiological and meta-
bolic differences between animal models and humans can 
limit the translatability of preclinical findings, necessitat-
ing cautious interpretation and validation in human-rele-
vant systems.

4. Discussion
4. 1. �What are the Gaps in Drug 

Development?

The landscape of drug development is characterized 
by challenges that impede the efficient translation of scien-
tific discoveries into safe and effective therapies. For in-
stance, one of the significant issues in the pharmaceutical 
industry is the innovation gap, where drug development 
costs are escalating. In contrast, the number of new drugs 
approved remains relatively stable.109 This discrepancy un-
derscores a fundamental challenge in the field, where the 
increasing financial burden of bringing a new drug to mar-
ket is not met with a proportional increase in successful 
outcomes. The high attrition rate in clinical development 
significantly contributes to the rising drug development 
costs.110 This attrition emphasizes the urgent need for 
more efficient and reliable methods to identify viable drug 
candidates early in development to alleviate the financial 
strain on pharmaceutical companies.

The funding landscape is a critical aspect that exac-
erbates the gaps in drug development. While a significant 
portion of foundational research for drug discovery re-
ceives public funding, there often needs to be more in 
transitioning these discoveries into viable drug candidates 
due to funding limitations.111 This gap between early-stage 
research and late-stage development highlights the neces-
sity for bridging mechanisms to ensure that promising 
leads are not abandoned due to financial constraints. 
Moreover, challenges in developing new drugs are further 
compounded by the need for more effective therapies de-
spite significant advancements in preclinical research.112 
This gap between preclinical data and clinical success is 
attributed to suboptimal drug development strategies, par-
ticularly in addressing critical genetic alterations in diseas-
es like cancer.

Another crucial gap in drug development lies in 
pediatric drug therapy, historically lacking a focus on de-
veloping medications specifically tailored for children.113 
Pediatric drug development continues to lag behind adult 
therapeutics due to several scientific, ethical, and regulato-
ry challenges. Children are often excluded from clinical 
trials, leading to widespread off-label drug use without ro-
bust evidence of safety or efficacy in pediatric populations. 
Ethical concerns such as obtaining informed consent and 
minimizing risk further complicate trial design. Regulato-
ry agencies have implemented specific frameworks to 
bridge this gap. In the United States, the Pediatric Research 
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Equity Act (PREA) mandates pediatric assessments for 
certain new drugs, and the Best Pharmaceuticals for Chil-
dren Act (BPCA) provides incentives such as extended 
market exclusivity for conducting pediatric studies.114,115 
The European Union’s Paediatric Regulation (EC 
No 1901/2006) requires Pediatric Investigation Plans 
(PIPs) for new medicines. Despite these advances, barriers 
persist, including limited pediatric patient numbers, 
age-dependent pharmacokinetics, and formulation chal-
lenges. Addressing these obstacles is essential to ensure the 
development of safe and effective therapeutics for chil-
dren.

Additionally, gaps in predicting drug metabolism 
and toxicity—particularly in the liver—pose significant 
challenges in drug development.116 The underperformance 
in this area is largely attributed to limited understanding of 
the mechanisms driving hepatic injury, highlighting the 
urgent need for more comprehensive and physiologically 
relevant approaches to assess drug safety.

Another challenge is that the interval between bio-
marker discovery and clinical utility hinders drug devel-
opment progress.117 While there is a focus on identifying 
biomarkers for various conditions, there often needs to be 
more clarity in translating these findings into clinically 
meaningful applications. This highlights the importance of 
streamlining the drug approval process and enhancing the 
translational impact of biomarker research to bridge this 
gap effectively. Furthermore, the gap in predicting drug-
drug interactions (DDIs) poses a substantial complexity in 
drug development, emphasizing the need for robust pre-
dictive models to assess the potential interactions of new 
drug entities.118 Improving our ability to predict and man-
age DDIs is crucial for ensuring the safety and efficacy of 
drug therapies.

The lack of proactive drug development is evident in 
infectious diseases, particularly in addressing emerging 
viral diseases such as COVID-19.119 The reactive nature of 
drug development in response to emerging infectious dis-
eases underscores the need for a more proactive approach 
to shorten the gap between identifying new diseases and 
developing effective treatments. Additionally, gaps in un-
derstanding the ontogeny of drug metabolism and trans-
port present challenges in predicting drug disposition, es-
pecially in vulnerable populations like children and the 
elderly.120 The reactive nature of drug development in re-
sponse to emerging infectious diseases underscores the 
need for a more proactive approach to shorten the gap be-
tween identifying new diseases and developing effective 
treatments. Additionally, gaps in understanding the ontog-
eny of drug metabolism and transport present challenges 
in predicting drug disposition, especially in vulnerable 
populations like children and the elderly.121 This gap ac-
centuates the importance of addressing fundamental gaps 
in disease pathophysiology to drive practical drug discov-
ery efforts. Moreover, gaps in drug design and discovery 
for diseases like the Ebola virus showcase the potential of 

computational tools in advancing target-based drug de-
sign.122

In conclusion, the gaps in drug development are 
multifaceted and span various stages of the drug discovery 
and development process. They are not challenges that we 
can afford to ignore. Addressing these gaps requires a con-
certed and immediate effort from researchers, industry 
stakeholders, regulatory bodies, and funding agencies. By 
implementing innovative strategies, leveraging emerging 
technologies, and enhancing collaboration, we can drive 
impactful and efficient drug development efforts, under-
lining the urgency and importance of the issue.

To bridge the innovation gap and overcome fund-
ing limitations in drug development, actionable strate-
gies are needed. Public–private partnerships (PPPs) 
have proven effective. For example, the Innovative 
Health Initiative (IHI) a €2.4 billion joint undertaking 
by the European Union and pharmaceutical industry 
brings together stakeholders from academia, industry, 
regulators, and patient organizations to accelerate health 
innovation.123 In the United States, the Accelerating 
Medicines Partnership (AMP) supports cross-sector 
collaboration in fields such as Alzheimer’s disease, type 
2 diabetes, ALS, and schizophrenia, facilitating the dis-
covery and validation of biomarkers.124 These partner-
ships offer standardized frameworks, pooled resources, 
and data-sharing mechanisms that enhance translation-
al efficiency. Additionally, open-access datasets like 
AMP-PD democratize research participation and sup-
port reproducibility. Regulatory tools such as the FDA’s 
Biomarker Qualification Program (BQP) provide struc-
tured processes for developing biomarkers as validated 
drug development tools.

4. 2. �Unlocking the Potential: How AI/ML are 
Revolutionizing Drug Development
The 20th anniversary of the completion of the draft 

human genome sequence was observed in 2021, exempli-
fying a significant milestone that has revolutionized 
genomics research and generated a substantial amount of 
genomic data. Genomics research is projected to produce 
between 2 and 40 exabytes of data in the next decade.125 
With this giant data, AI/ML have emerged as powerful 
tools in bridging the gaps in genomics by facilitating the 
integration of complex data sets, enabling more accurate 
predictions, and enhancing decision-making processes in 
various fields such as clinical diagnostics, agriculture, on-
cology, and personalized medicine. The application of AI 
in genomics has been highlighted in several studies, show-
casing its potential to revolutionize the way genetic infor-
mation is analyzed and utilized.22,126–128 By leveraging AI 
technologies, researchers can overcome challenges in un-
derstanding genome evolution, function, and disease 
mechanisms, ultimately leading to groundbreaking dis-
coveries.129
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In clinical and genomic diagnostics, AI has been in-
strumental in linking image-derived phenotypes to their 
genetic origins, offering insights into disease mechanisms 
and potential treatments.22 This imaging and genomic da-
ta integration can potentially enhance diagnostic accuracy 
and personalized treatment strategies. Moreover, in the 
context of precision medicine, AI plays a crucial role in 
analyzing genomic determinants along with patient symp-
toms and clinical history to enable personalized diagnosis 
and prognostication.130 Moreover, AI applications to med-
ical images, such as MRI classification tasks for neurologi-
cal and psychiatric diseases131, have demonstrated the po-
tential of AI-based algorithms in clinical diagnosis with 
high quality and efficiency. These advancements spotlight 
the transformative impact of AI/ML in enhancing diag-
nostic capabilities and treatment outcomes across various 
medical disciplines. Regarding this, by combining genom-
ic data with AI/ML analyses, researchers can identify nov-
el biomarkers, optimize treatment approaches, and im-
prove patient outcomes.

AI is not just a theoretical concept in oncology, but a 
practical tool that is already delivering tangible benefits. It 
simplifies the analysis of imaging-genomics data in diseas-
es like glioblastoma132, thanks to deep learning algorithms 
that have made significant strides in image recognition 
and genome analysis. The integration of molecular and 
imaging signatures through AI technologies offers practi-
cal advantages for early cancer detection, diagnosis, and 
treatment planning. In the cancer immunity, AI-driven 
approaches have not only opened up new avenues for 
comprehensive analyses of tumor immunity using genom-
ics, transcriptomics, proteomics, and cytomics, but also 
led to the emergence of tumor immunomics as a novel dis-
cipline.133 This is a clear example of how AI is shaping the 
future of oncology. In addition, the application of AI in 
bridging the gap between genomes and chromosomes, as 
demonstrated through single-chromosome sequencing 
(ChromSeq), has provided valuable insights into genome 
organization and function.129,134 By overcoming challeng-
es related to genome and chromosome analysis, research-
ers can advance our understanding of genetic mechanisms 
and their implications for various biological processes.

The integration of AI in genomics has extended to 
fields such as cardiology135 and kidney cancer136 manage-
ment, bringing with it a host of practical benefits. AI tech-
nologies, such as machine and deep learning algorithms, 
can model complex interactions, identify new phenotype 
clusters, and enhance prognostic capabilities, thereby sig-
nificantly improving patient care and outcomes. In kidney 
cancer management, AI can analyze radiographic, histo-
pathologic, and genomic data to tailor personalized treat-
ment strategies.136

AI/ML are not just reshaping the landscape of drug 
development but also effectively addressing critical gaps 
and challenges, providing a reassuring solution to complex 
problems. Their impact is particularly evident in drug 

repurposing, where these technologies enable researchers 
to systematically identify potential leads, thereby acceler-
ating the drug development process and reducing associat-
ed risks through computational means.137 In this manner, 
AI/ML have been instrumental in rapidly identifying 
drugs effective against the coronavirus, bridging the gap 
between repurposed drugs, laboratory testing, and final 
authorization.138 The rapid growth of biomedical data, fa-
cilitated by advanced experimental technologies, has made 
AI/ML indispensable tools for drawing meaningful in-
sights and improving decision-making in drug discovery, 
particularly in central nervous system diseases.28 Again, 
during the COVID-19 pandemic, AI algorithms have 
played a crucial role in surveillance, diagnosis, drug dis-
covery, and vaccine development, enabling the design of 
sophisticated drug development pipelines that reduce the 
time and costs associated with traditional methods.81 
However, it is essential to address biases in ML-based algo-
rithms to ensure their robustness and reproducibility for 
integration into clinical practice.139 AI has also been in-
strumental in developing treatment regimens and preven-
tion strategies and advancing drug and vaccine develop-
ment for COVID-19 and other infectious diseases.140 In 
orthodontics and chronic airway diseases like asthma and 
chronic obstructive pulmonary disease (COPD), AI/ML 
have demonstrated effectiveness in mining and integrating 
large-scale medical data for clinical practice, showcasing 
their potential in improving patient care and treatment 
outcomes.25,141

The application of AI, particularly deep learning, of-
fers opportunities to discover and develop innovative 
drugs by analyzing vast datasets and predicting potential 
drug candidates.42 Internationally renowned experts have 
identified key challenges in small-molecule drug discovery 
using AI and have put forward strategies to address them, 
emphasizing the groundbreaking potential of AI in this 
critical area.142 Importantly, regulatory bodies like the 
FDA have not only recognized, but also strongly endorsed 
the importance of AI/ML in medical devices. They have 
defined ML as a system capable of learning from specific 
tasks through performance tracking143, providing a solid 
framework for the integration of AI in healthcare. This ro-
bust endorsement from the FDA has led to an increase in 
the approval of AI/ML-based medical devices in the USA 
and Europe. The FDA, for instance, has actively participat-
ed in the approval process of over 60 AI-equipped medical 
devices144, indicating a growing trend toward incorporat-
ing AI technology into the future of medicine.

ML contributes to the automation of various stages 
in the traditional drug development pipeline. This is evi-
dent in studies such as that of Li et al.145 and Vatansever et 
al.28 As for antibiotic discovery, AI has emerged as a pow-
erful ally, accelerating the identification of novel antimi-
crobial agents, as highlighted in studies like that of Melo et 
al.146 By applying AI to computer-aided drug design, we 
can expedite the discovery of antibiotics and antimicrobial 
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peptides, addressing the global challenge of antibiotic re-
sistance. This is a crucial task that our collective ML re-
search has significantly advanced. By integrating natural 
language processing (NLP) in AI, we can scan vast amounts 
of literature to identify potential drug targets. At the same 
time, AI-driven synthesis robots, a testament to our shared 
vision, enable the exploration of new reaction spaces to 
discover novel drug candidates. This automation, a result 
of our combined expertise, accelerates the drug discovery 
process and enhances the reproducibility of chemical reac-
tions, leading to the discovery of new compounds with 
therapeutic potential.

Furthermore, the advancements in AI-driven drug 
discovery, as discussed in studies like those of Zhavoronk-
ov et al.87, have not only paved the way for innovative ap-
proaches to target identification and generative chemistry 
but also hold the promise of a brighter future for clinical 
pharmacology. By leveraging AI/ML trends, researchers 
can enhance target identification processes, optimize 
small-molecule drug discovery, and evaluate clinical trial 
outcomes with greater accuracy and efficiency. These de-
velopments can potentially transform the field of clinical 
pharmacology, offering new avenues for enhancing drug 
development and therapeutic interventions and instilling a 
sense of optimism for the future.

Concisely, when harnessed collaboratively, AI/ML 
can usher in a new era in the pharmaceutical industry. 
They have the potential to address key gaps in the process, 
such as expediting drug discovery, optimizing lead com-
pounds, and enhancing clinical outcomes, offering inno-
vative solutions to longstanding challenges. By utilizing 
these technologies, researchers can significantly improve 
the efficiency and effectiveness of drug development, ulti-
mately discovering novel treatments for various diseases. 
However, further research and collaboration, in which 
each stakeholder plays a crucial role, are imperative to ful-
ly realize this potential. As AI continues to evolve, its im-
pact on drug development is poised to revolutionize the 
field and pave the way for more effective and personalized 
therapeutic interventions.

4. 3. �Overpowering Restraints in AI-Aided 
Drug Development
The transformative potential of AI in revolutionizing 

the discovery of new materials is not just tremendous but 
also holds the promise of developing materials with tai-
lored properties for diverse applications, sparking opti-
mism for the future of pharmaceutical research. However, 
it’s crucial to recognize and address the challenges and 
limitations to ensure its practical application.147

One significant challenge is the necessity for 
high-quality data, as AI algorithms heavily depend on data 
for accurate predictions.148 The interpretability of AI-driv-
en drug discovery processes is another critical limitation, 
as researchers often need help comprehending how AI al-

gorithms reach conclusions and recommendations.149 
Moreover, the sustainability of resources is a growing con-
cern due to the significant computational resources and 
data required for AI techniques.150 Additionally, the cur-
rent methods and tools may only partially exploit the po-
tential of AI in drug discovery.151 Overcoming challenges 
related to data quality, interpretability, resource sustaina-
bility, and tool development is not just important, but es-
sential for maximizing the benefits of AI in revolutionizing 
the drug discovery process. Moreover, one of the other is-
sues is Ethics. Regarding ethical issues in IA regulation, the 
EU Council recently proclaimed that member states have 
acknowledged the “Artificial Intelligence Law,” which will 
establish the world’s first comprehensive rules for artificial 
intelligence.152

It is crucial to emphasize the importance of address-
ing challenges in AI-aided drug development. By imple-
menting strategies based on insights from reputable sourc-
es, we can overcome these challenges and maximize the 
benefits of AI in revolutionizing the drug discovery pro-
cess. The use of specific AI models, such as deep learning 
and natural language processing, has become crucial for 
expediting the drug development process and reducing 
failures.44 These AI-powered language models have 
demonstrated potential in assisting drug discovery and de-
velopment by summarizing advancements and providing 
computational tools for efficiently identifying new com-
pounds.78 Additionally, AI/ML, including neural networks 
and decision trees, have proven to be essential tools for 
deriving meaningful insights and enhancing deci-
sion-making in drug discovery, particularly in diseases 
such as central nervous system disorders.28

Moreover, AI, in collaboration with human exper-
tise, plays a crucial role in facilitating rational drug design, 
aiding decision-making processes, personalizing thera-
pies, and effectively managing clinical data for future drug 
development.76 By incorporating advancements in com-
puter-aided drug design, automated synthetic chemistry, 
and high-throughput biological screening, initiatives like 
the NCATS ASPIRE program aim to explore novel chemi-
cal spaces more efficiently and cost-effectively. This under-
scores the importance of human-AI collaboration in max-
imizing the potential of AI in drug development.153 Figure 
4 summarizes critical applications of AI in both genomics 
and clinical domains, such as data integration, variant de-
tection, biomarker discovery, and drug repurposing, un-
derscoring its broad utility in precision medicine.

Overall, while AI offers significant potential in drug 
development, it’s important to acknowledge and address 
potential risks and limitations. These include the need for 
large, diverse, and high-quality datasets, to avoid ancestral 
bias, which can result in reduced predictive accuracy for 
underrepresented populations.154 Another challenge is 
model interpretability: many deep-learning systems re-
main “black boxes,” limiting clinical adoption. For exam-
ple, recent explainable AI techniques such as concept-whit-
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ening applied in graph neural networks reveal which 
molecular features drive predictions, thereby enhancing 
transparency.155 Additionally, generalizability between 
datasets remains imperfect: models validated on public 
benchmarks often perform poorly when applied to propri-
etary or real-world datasets, underscoring the need for rig-
orous cross-platform validation.156,157

By proactively addressing these challenges through 
explainable frameworks, ancestry-aware model training, 
and broad validation pharmaceutical researchers can fully 
leverage AI’s promise while maintaining safety, fairness, 
and confidence in the drug development process.

5. Conclusion
The integration of advanced Technologies particu-

larly AI and ML, computational modeling, and HTS has 
significantly reshaped the landscape of modern drug de-
velopment. These tools have demonstrated concrete pro-
gress in AI-driven target identification, lead compound 
optimization, and early-stage ADMET profiling. Together, 
they contribute to reduced development timelines, im-
proved cost efficiency, and lower failure rates in clinical 
phases.

Furthermore, emerging in vitro 3D models, orga-
noids, and improved in vivo models have enhanced trans-
lational relevance, thereby bridging the gap between pre-
clinical findings and clinical outcomes. Despite these 

advancements, challenges remain particularly in areas 
such as pediatric drug development, biomarker validation, 
and the development of ethical and regulatory frameworks 
for the integration of AI.

Future research directions should focus on enhanc-
ing the interpretability of AI algorithms, integrating mul-
ti-omics datasets for comprehensive decision-making, and 
developing standardized, reproducible workflows for ear-
ly-stage evaluation. These efforts will further solidify the 
role of computational and AI-based systems in delivering 
safe, effective, and patient-centered therapeutics.
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Povzetek
Postopek odkrivanja zdravil tradicionalno dolgotrajen in drag proces, vendar doživlja revolucijo z vključevanjem ino-
vativnih pristopov. V tem člnaku smo povzeli, kako sodobne tehnike pospešujejo odkrivanje in razvoj zdravil ter hkrati 
znatno zmanjšujejo stroške. Osredotočamo se na močno sinergijo bioinformatike, umetne inteligence (UI) in visokoz-
mogljivega testiranja (HTS). Bioinformatika pomaga pri identifikaciji in potrjevanju tarč zdravil z analizo obsežnih 
genomskih in proteomskih podatkovnih zbirk. UI izboljšuje identifikacijo in optimizacijo spojin vodnic s pomočjo 
napovednega modeliranja in algoritmov strojnega učenja, kar močno skrajša čas, potreben za te faze. HTS omogoča 
hitro pregledovanje obsežnih knjižnic spojin za odkrivanje potencialnih kandidatov za zdravila. Pristopi, ki temeljijo 
na UI, kot sta HTS in napovedno modeliranje, izboljšujejo odločanje v zgodnjih fazah, zmanjšujejo poskuse in napake 
ter prispevajo k stroškovni učinkovitosti skozi celoten proces. Poleg tega napredek v računalniški kemiji in simulacijah 
molekulske dinamike omogoča globlji vpogled v interakcije med zdravilom in tarčo, kar dodatno pospešuje načrtovanje 
učinkovitih in selektivnih spojin. Pri odkrivanju zdravil kandidate testirajo v laboratorijskih in živalskih modelih, da se 
oceni njihova učinkovitost, farmakokinetika in varnost. Z vključevanjem predkliničnih metod se lahko učinkovitost in 
uspešnost odkrivanja zdravil bistveno izboljšata, kar vodi do učinkovitejših in varnejših zdravil. Ta pregled poudarja 
pomembno vlogo računalniških tehnologij v sodobnem razvoju zdravil ter raziskuje njihove obetavne implikacije za 
prihodnje raziskave in klinično uporabo.
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