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Abstract

The drug discovery process, traditionally a lengthy and costly endeavor, is being revolutionized by integrating innovative
approaches. This review delves into how modern techniques accelerate drug discovery and development, significant-
ly reducing costs. We focus on the robust synergy of bioinformatics, artificial intelligence (AI), and high-throughput
screening (HTS). Bioinformatics aids in the identification and validation of drug targets by analyzing vast genomic
and proteomic datasets. Al enhances lead compound identification and optimization through predictive modeling and
machine learning (ML) algorithms, slashing the time required for these stages. HTS facilitates the rapid screening of
vast compound libraries to pinpoint potential drug candidates. Al-based approaches, such as HTS and predictive mod-
eling, enhance early-stage decision-making, minimize trial-and-error experimentation, and contribute to cost-efficiency
across the pipeline. Moreover, advancements in computational chemistry and molecular dynamics simulations provide
deeper insights into drug-target interactions, further accelerating the design of effective and selective drugs. In drug dis-
covery, drug candidates are tested in laboratory and live animal settings to assess their effectiveness, pharmacokinetics,
and safety. By integrating these preclinical methods, the efficiency and success of drug discovery can be significantly
improved, leading to more effective and safer drugs. This review underscores the important role of these technologies in
contemporary drug development and explores their promising implications for future research and clinical applications.
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1. Introduction

Drug development is a complex process encompass-
ing several stages, each essential for ensuring the efficacy
and safety of new therapeutics. These phases, from dis-
ease-related genomic analysis to clinical testing, are the
backbone of the pharmaceutical industry, driving innova-
tion and improving patient outcomes.! The drug develop-
ment process is generally categorized into two primary
stages: discovery and development, which are crucial for
advancing medicine.? Artificial intelligence (AI) has trans-
formed the early phases of drug development, from dis-
ease understanding to compound optimization. Drug dis-

covery refers to the early stages of identifying potential
drug targets and compounds, whereas drug development
includes preclinical and clinical testing phases aimed at
bringing a drug to market. This manuscript adopts this
distinction consistently throughout. Figure 1 illustrates
the integration of Al across key stages of drug develop-
ment, from disease characterization and target identifica-
tion to lead compound optimization, preclinical evalua-
tion, and clinical trials.

Drug screening and target identification are not sim-
ple tasks but pivotal aspects of drug development. They are
aimed at resolving challenges such as insufficient efficacy
and substantial adverse effects, which are common hurdles
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Fig 1. Ilustration of the AI-driven drug development pipeline from disease identification to final product. The schematic outlines key stages, includ-
ing target selection via analysis of complex big data (Step 2), lead compound identification (Step 3), compound optimization (Step 4), preclinical
candidate selection (Step 5), and progression through clinical development phases (Step 6), culminating in an approved therapeutic product (Step
7). This framework highlights how artificial intelligence streamlines the entire pipeline by enhancing data interpretation and decision-making at

each stage.

in the process.’ The drug discovery and development pro-
cess has become increasingly lengthy and costly over the
past decades*, with current estimates suggesting an aver-
age duration of 10-15 years and capitalized R&D costs
ranging from $1 to $4.5 billion per approved drug.>® The
final stage in the drug development process is not a mere
formality but a critical step in product marketing.” To re-
duce the likelihood of failure during drug development,
new methodologies have been developed to evaluate ab-
sorption, distribution, metabolism, excretion, and toxicity
(ADMET) profiles at early stages of the pipeline.® Early
ADMET profiling helps identify pharmacokinetic and tox-
icity issues before clinical testing, thereby improving deci-
sion-making and reducing the risk of costly late-stage fail-
ures.>10

Despite the increasing urgency in minimizing drug
resistance, the drug development pipeline incurs signifi-
cant time and budget costs, with a high failure rate for
most drug candidates during the clinical stages.!! In this
regard, drug design and development aspire to acquire a
drug that effectively modulates the drug targets while
maintaining an optimal balance of physicochemical
properties and minimal toxicity.!? Clinically approved
medications, which have completed multiple phases of
the drug development process, generally contain exten-
sive information regarding dosage, interactions with oth-
er drugs, safety, adverse effects, potential harm, drug

movement within the body, and the effects of the drug on
the body’s functions. The drug discovery and develop-
ment process has become lengthier and costlier over
time, necessitating strategies to reduce attrition rates
during drug discovery and development.' In this con-
cept, efficient computational methods for the identifica-
tion of drug targets can help mitigate the high costs asso-
ciated with experiments, making them crucial for
successful drug development.'4

The swift advancement of computer technologies has
led to a notable increase in the screening of compounds
using high-throughput methods, the application of combi-
natorial chemistry, and the ability to synthesize com-
pounds. Additionally, there is an increasing need for AD-
MET data on lead compounds, and the methods for
assessing ADMET in vitro are steadily expanding. Numer-
ous effective in silico methods have been utilized for the in
vitro prediction of ADMET, and in silico models have been
devised to substitute in vivo models for forecasting phar-
macokinetics, toxicity, and other parameters.!>1°

Likewise, ADMET, various techniques such as QSAR
(Quantitative Structure-Activity Relationship), which
models the relationship between a compound’s chemical
structure and its biological activity using statistical or ma-
chine machine learning (ML), pharmacophore modeling,
which identifies the essential chemical features required
for a molecule to interact with a specific biological target,
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molecular docking, and molecular dynamics simulations
have proven effective at different stages of drug develop-
ment, resulting in significant cost and time savings com-
pared to traditional methods.!” Collaborations and merg-
ers in pharmaceutical research are strategic moves that
enhance research and development initiatives. Further-
more, they have been observed to enhance the availability
of pharmaceutical products in the market, particularly
when these partnerships are forged at the outset of the
drug development process.'®

Integrating innovative approaches is a well-estab-
lished strategy to enhance the efficiency of drug discov-
ery. The success of utilizing organic synthesis methods
compatible with biomacromolecules, machine-assisted
synthesis planning, and artificial intelligence (AI) in ex-
pediting drug discovery is a testament to their effective-
ness.

Computer-aided drug design (CADD) techniques
have been instrumental in expediting drug discovery, re-
ducing costs, minimizing failures, and laying a solid foun-
dation for future endeavors. Moreover, advancements in
computational methodologies, such as generative chemis-
try and deep learning models, are promising and showing
tangible results in hastening drug discovery. Strategies
like repurposing existing therapeutics, leveraging tradi-
tional medicines, and employing large-scale data analyt-
ics and AI can enrich and revolutionize contemporary

drug development. These multidimensional approaches,
encompassing target identification, structure-based virtu-
al screening, and in vitro assays, have proven to be the
drivers of drug discovery, leading to more effective and
successful outcomes. Figure 2 presents a conceptual
framework of drug design, depicting the interplay among
computational and experimental strategies, such as
CADD, bioassays, and AI/ML, in identifying and refining
drug candidates.

2. Identification of Drug Target:

How to Get from DNA to Drug?

The journey from DNA to drugs in the drug discov-
ery process is a complex and multi-stage process that be-
gins with genomic information and culminates in the de-
velopment of effective therapeutic molecules. The initial
and crucial step in this process is identifying the correct
target. In drug discovery, a ‘target’ refers to a specific bio-
molecule, often a protein, that is involved in a disease and
can be modified by a drug to treat the disease. The design
of drugs to target these specific molecules can lead to bet-
ter therapeutic outcomes by directly influencing the func-
tion of the target. This approach can be more effective and
less harmful to other cells or organ systems, potentially
increasing the success rate in clinical trials.!>-20
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Fig 2. Conceptual map illustrating the interconnected components of modern drug design. The diagram illustrates the integration of artificial intel-
ligence (AI), machine learning (ML), and computer-aided drug design (CADD) tools, including structure-based and ligand-based design, molecular
dynamics, and ADMET prediction, to generate drug candidates. Additional elements, such as pharmacophore modeling, QSAR analysis, and bio-
assay validation, are also shown to be essential parts of the iterative drug discovery process.
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In drug discovery, the pivotal role of data mining
through bioinformatics approaches using sources such as
genomic methods like Genome-Wide Association Studies
(GWAS) and gene expression profiling, proteomic analy-
ses, transgenic phenotyping, and compound profiling data
is of paramount importance. This process is integral to the
target identification process, providing crucial information
for further analysis. Conducting mutation and polymor-
phism analysis to examine disease-associated mutations
and genetic changes, as well as functional genomic analysis
to investigate the function of specific genes and their im-
pact on the disease, is a targeted approach in this process.?!

With the striking progress in computer systems, in-
tegrating AI/ML in genomics has become increasingly es-
sential. This is primarily due to the vast amount of data
generated by advanced technologies in biomedicine. In
clinical genomics, deep learning algorithms process large
and complex genomic datasets, enabling more efficient
analysis and interpretation of genetic information.?? Al/
ML algorithms, such as convolutional neural networks
(CNNs), have been widely employed to interpret complex
genomic data. Tools like DeepVariant utilize deep learning
to accurately call genetic variants,®* while AlphaFold lev-
erages Al to predict protein 3D structures with unprece-
dented accuracy,* significantly aiding in structure-based
target identification and validation. The systematic analy-
sis of genomic data using AI/ML technologies has led to
measurable advancements in precision medicine, particu-
larly in chronic airway diseases such as asthma and
COPD.? For instance, convolutional neural networks and
ensemble models have been successfully applied to predict
asthma exacerbations from electronic health records with
high accuracy (AUC = 0.85),% while Al-driven biomarker
discovery has facilitated the stratification of asthma endo-
types to support individualized treatment strategies.?’

The application of Al in genomics is still in its nascent
stages, but its potential impact is already significant. With
the rapid growth of biomedical data facilitated by advanced
experimental technologies, AI/ML have emerged as indis-
pensable tools for drawing meaningful insights and im-
proving decision-making processes in various areas, in-
cluding drug discovery.? In the context of cancer genomics,
the development of Al-based platforms capable of integrat-
ed analyses of large-scale multiomics data is pivotal for en-
hancing the diagnosis and therapy of cancer patients.?’
Furthermore, the use of AI/ML in cancer genomics is seen
as a key component in integrating genomic analysis for pre-
cision cancer care, underscoring the importance of these
technologies in advancing personalized medicine.*® Yet,
using AI/ML in genomics is not without challenges. Before
AI/ML applications can be widely adopted in clinical care,
rigorous studies are needed to test the safety and effective-
ness of these technologies in real-world settings.>! Efforts
must be made to overcome these challenges, harness the
potential benefits of AI/ML in genomics, and firmly ensure
their successful integration into clinical practice.

The application of AI-powered spatial analysis in mi-
croenvironments, particularly in the context of cancer
drug identification, represents a paradigm shift in re-
search. This innovative study area significantly uses ML
and AI techniques to enhance drug discovery processes.
The tumor microenvironment (TME) is a complex ecosys-
tem comprising various cell types, signaling molecules,
and extracellular matrix components that interact dynam-
ically to influence tumor growth, progression, and re-
sponse to therapy.*?> Understanding the intricate interac-
tions within the TME is crucial for developing effective
cancer treatments. Recent technological advancements,
such as AI-supported spatial analysis and multiplex assays,
have significantly enhanced our ability to dissect the tu-
mor microenvironment (TME) with high precision and
resolution.*® By integrating deep learning techniques with
spatial omics data modeling methods like SOTIP*, re-
searchers can gain insights into spatial heterogeneity and
differential microenvironments within tumors. This ap-
proach provides a comprehensive understanding of the
tumor microenvironment, identifying potential drug tar-
gets and responses to treatment.*®

The advent of multiplexed methodologies has
opened doors for the simultaneous examination of differ-
ent components of the TME, providing insights into the
biological cross-talk occurring at the tumor-host inter-
face.’® By harnessing digital analysis tools, researchers can
scrutinize paraffin tumor tissues at subcellular and cell
population levels, illuminating the complex interactions
within the TME.* These approaches enable identifying bi-
omarker-positive cells and their spatial colocalization
within tumor regions, offering valuable information for
predicting treatment outcomes.’” Furthermore, Al-pow-
ered spatial analysis tools, such as Lunit SCOPE IO, have
been developed to automate the segmentation and quanti-
fication of histologic components in hematoxylin and eo-
sin-stained whole-slide images (WSI).3* These tools en-
hance the characterization of tumor-infiltrating
lymphocytes (TILs) and serve as complementary biomark-
ers for immune checkpoint inhibition in non-small-cell
lung cancer.>*Additionally, ML and Al-driven spatial anal-
ysis techniques applied to pathology slides have facilitated
a deeper understanding of the tumor immune microenvi-
ronment.*

This collaborative effort underscores the importance
of our collective work in characterizing the molecular, cel-
lular, and spatial properties of tumor microenvironments
across different cancer types.’® By combining image analy-
sis algorithms with multiplex staining, researchers can
conduct in-depth quantitative and spatial analyses of the
broader TME, enhancing our comprehension of tu-
mor-immune interactions.*” These advancements under-
score the potential of automated methodologies in charac-
terizing tumor microenvironments’ molecular, cellular,
and spatial properties across different cancer types, ulti-
mately leading to improved patient outcomes.*! These in-
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Table 1: Pharmaceutical companies that are using Al-supported spatial analysis in their drug development processes

Pharmaceutical Al Provider/ Application Description
Company Tool
AstraZeneca DeepMind Drug discovery, Utilizing Al for spatial analysis of tissue samples to understand
tissue analysis disease mechanisms and identify new drug targets.
Pfizer IBM Watson Oncology research Applying Al-supported spatial analysis to study tumor
microenvironments and improve cancer treatment strategies.
Novartis PathAI Pathology, diagnostic Using Al to analyze spatial patterns in tissue samples for better
advancements diagnostics and treatment planning.
Sanofi Insilico Medicine Biomarker discovery Leveraging spatial analysis to identify biomarkers and
understand disease progression.
Roche Genentech Personalized medicine ~ Implementing Al for spatial analysis to tailor treatments based
on individual tissue profiles.
Merck NVIDIA Immunotherapy research Using spatial analysis to study immune cell interactions within
tissues to enhance immunotherapy approaches.
Johnson & Johnson = Atomwise Drug target identification Applying Al-supported spatial analysis to identify and validate
new drug targets.
GlaxoSmithKline BenevolentAI ~ Drug discovery Utilizing spatial analysis to understand disease mechanisms at
the cellular level and identify potential drug candidates.
Eli Lilly Flatiron Health  Clinical trials Using spatial analysis in clinical trial data to improve patient

Bristol-Myers Squibb GNS Healthcare Drug development

stratification and treatment efficacy.
Implementing AI-supported spatial analysis to enhance
understanding of tissue responses to treatments.

novative approaches highlight the importance of advanced
imaging and analysis techniques in unraveling the com-
plexities of the TME. In parallel with these developments,
some pharmaceutical companies (see Table 1) use Al-sup-
ported spatial techniques.

Several pharmaceutical companies listed in Table 1
are actively applying Al-supported spatial analysis to ad-
dress complex biomedical questions. For instance, Astra-
Zeneca collaborates with DeepMind to analyze tissue sam-
ples for elucidating disease mechanisms and identifying
targets. Pfizer uses IBM Watson’s Al to study tumor mi-
croenvironments in oncology research. Novartis, through
PathAl, advances diagnostic accuracy by identifying spa-
tial patterns in tissue. Companies like Roche (via Genen-
tech) and Sanofi (via Insilico Medicine) apply spatial tools
for personalized medicine and biomarker discovery, re-
spectively. These applications demonstrate how Al is ena-
bling a precise, spatially resolved understanding of tissue
pathology, thereby enhancing decision-making in both the
early discovery and clinical phases.

2. 1. Computer Aided Drug Discovery
(CADD)

CADD is a crucial approach that utilizes computer
models, data analyses, and artificial intelligence (AI) tech-
niques to improve the efficiency and effectiveness of drug
development processes. The integration of ML algorithms,
deep learning technologies, and Al-driven solutions has
transformed various stages of drug discovery and develop-
ment.*>* These technologies are essential for tasks such as
structure- and ligand-based virtual screening, de novo

drug design, physicochemical property prediction, and
drug repurposing.*> Pharmaceutical companies and re-
search groups increasingly rely on computer-aided drug
discovery techniques.**

CADD is recognised as a cutting-edge strategy with
numerous advantages, including cost and time savings,
high efficiency and success rates, better alignment and se-
lectivity to the target, rational drug design, ADMET pre-
diction, environmentally friendly approaches and ethical
benefits, such as reduced reliance on animal testing. Struc-
ture-based drug discovery (SBDD) and ligand-based drug
discovery (LBDD) are the two primary methods used in
CADD.»

2. 1. 1. Structure-based Drug Design (SBDD)

SBDD, a method that comes into play when the
three-dimensional structure of the target molecule is
known or can be predicted, is a testament to precision in
drug design and optimization. It strives to create and en-
hance drug candidates that will bind specifically to the tar-
get, thereby exhibiting biological activity. This is achieved
by leveraging the structural information of the target pro-
tein or nucleic acid.*®

SBDD is the method of choice when the crystal
structure of the target protein has been resolved, a feat ac-
complished through techniques like X-ray crystallography
or Cryo-EM (electron microscopy). These methods pro-
vide high-resolution structural data, offering a clear view
of the binding sites of ligands and the active regions of the
target. Similarly, it is employed when the three-dimen-
sional structure of the target protein in solution is deter-
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mined using NMR spectroscopy, a particularly valuable
tool for small proteins and protein complexes. If the struc-
ture of the target protein is unknown, homology modeling
steps in, creating a predicted structure based on a known
structure. This process involves using the structure of a
closely related protein as a reference.*’ In this regard, re-
searchers access approximately 1 million Computed Struc-
ture Models (CSMs) from AlphaFoldDB and RoseTTA-
Fold (from the Model Archive) and ~200,000 empirically
determined PDB structures at https://www.rcsb.org/.

Docking and virtual screening:

Finding and improving therapeutic compounds re-
quires understanding the binding mechanism between
proteins and small molecules.®® Molecular docking is a
widely used SBDD method. Molecular docking estimates
the optimal position, orientation, and conformation of a
drug candidate (small molecule) when binding to a pro-
tein. Most docking systems currently in use achieve suc-
cess rates between 70% and 80% in terms of accurately re-
producing known ligand binding poses, typically within a
root mean square deviation (RMSD) of 1.5 to 2 A when
compared to crystallographic reference structures.®’ A vir-
tual screening computational technique evaluates a vast
library of compounds to determine if they can bind to spe-
cific locations on target molecules, such as proteins and,
well-compounds examined.™ It focuses on rapidly search-
ing enormous chemical structure libraries using comput-
ers to find those structures most likely to bind to a thera-
peutic target, usually an enzyme or protein receptor.

Structure-based virtual screening (SBVS): SBVS is
a computer-aided drug discovery method that uses the
three-dimensional structure of a target molecule (usually a
protein) to identify potential drug candidates.’! SBVS
screens an extensive library of chemical compounds, pre-
dicting how these compounds might bind to the target
molecule and identifying the most promising candidates.*?
Docking techniques are frequently employed in SBVS on
extensive chemical libraries due to their rapidity in scan-
ning millions of molecules with a simplified scoring func-
tion. Scoring functions are utilized by docking tools like
DOCK, AutoDock, Glide, FRED, GOLD, and Surflex-Dock
to assess protein-ligand binding.*®

Ligand-based virtual screening (LBVS): LBVS is a
computer-aided drug discovery method that uses the
properties of known active ligands to predict the binding
potential of chemical compounds to specific biological tar-
gets. LBVS uses the molecular similarity concept to ana-
lyze the structural details and physicochemical character-
istics of the chemical scaffold of known active and inactive
compounds. Accordingly, similarity measurements utiliz-
ing appropriate chemical descriptors are used to investi-
gate the links between compounds in a particular library
and one or more known actives.”! These measurements

can be carried out using 3D descriptors related to molecu-
lar fields, shape, and volume as well as pharmacophores, as
well as 1D and 2D descriptors that often include informa-
tion on the chemical nature of compounds and their topo-
logical properties. The following circumstances make LB-
VS a better choice: (a) when little is known about the
molecular target’s structure. Additionally, it is used to en-
hance the database for SBVS experiments; (b) LBVS meth-
ods are generally superior to SBVS methods for targets
with a large amount of available experimental data or
where the drug-binding site is not well defined; (c) using
both approaches simultaneously can improve the accuracy
of the VS by removing some false-positive compounds that
the SBVS technique identified as promising, increasing the
likelihood of obtaining positive results.>> When informa-
tion on the structure of ligand-target complexes and simi-
larity relationships to active compounds are available,
combining the methods of SBVS and LBVS may be a viable
approach that can result in a comprehensive framework
that can improve the success of drug discovery efforts.>!

Despite their widespread use, both SBVS and LBVS
come with notable limitations. SBVS often suffers from
high false-positive rates due to inaccuracies in scoring
functions, may fail to rank active compounds over decoys
reliably. Additionally, the quality and resolution of protein
structures especially for flexible or disordered regions can
significantly affect docking results. LBVS, on the other
hand, is inherently limited by its dependence on the avail-
ability of well-characterized ligands with known activity.
This restricts its application to targets with rich ligand da-
tabases, making it unsuitable for novel or poorly studied
targets. Both approaches also entail substantial computa-
tional costs, especially in large-scale screenings, and are
sensitive to the quality of input data, which can impact the
robustness of the outcomes.

2. 1. 2. Ligand-based Drug Design (LBDD)

To anticipate the properties of a novel compound,
LBDD examines current activities using techniques such
as pharmacophore modeling, QSAR models, and 3D shape
matching.*

Pharmacophore modeling: An abstract representa-
tion of the structural characteristics needed by a biological
macromolecule to identify a ligand is called a pharma-
cophore. To develop a pharmacophore model, an initial set
of compounds is chosen with a variety of structural fea-
tures. Compatibility analysis is performed to make a list of
low-energy conformations for each chosen molecule, in-
cluding the likely bioactive conformation. The low-energy
conformations of molecules in every possible combination
are stacked. Functional groups (such as carboxylic acid
groups or phenyl rings) that are common to all the com-
pounds in the collection can be added. It is thought that
the collection of conformations that yields the best fit is
the active conformation. Molecules are stacked and repre-
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tabolism, excretion, and toxicity assessments are used to screen lead compounds before selecting viable drug candidates. These properties collective-
ly determine the pharmacokinetic and safety profile of a compound, significantly influencing its success in preclinical and clinical stages.

sented abstractly. The pharmacological effects of a collec-
tion of substances that bind to the same biological target
are evaluated.”

Quantitative  structure-activity  relationships
(QSAR): One of the traditional uses of ML techniques in
drug discovery is QSAR.> Building prediction models of
biological activities based on the structural and molecular
details of a compound library is known as quantitative
structure-activity relationship, or QSAR, modeling. The
idea of quantitative structure-property relationship, or
QSAR, was first applied in drug discovery and develop-
ment. Since then, it has found widespread use in the corre-
lation of molecular data with various physicochemical
properties as well as biological activities.’® In QSAR, the
selection of molecular descriptors and the evaluation of
molecular similarity are crucial. It is important to note
that, regardless of the field of study, comparing object rep-
resentations, similarity metrics, and the interactions be-
tween related attributes and relationships among objects
are generally relevant for data modeling.>> Important
pharmacological characteristics, like ADMET, have been
thoroughly modeled using QSAR techniques. To develop
novel and safe medications, it is imperative to minimize
toxicity and optimize pharmacokinetics; inaccurate as-
sessment of these factors may cause unfavorable side ef-
fects and impair in vivo efficacy, which could ultimately
lead to a drug candidate’s failure.>

Moreover, Al-driven virtual screening, particularly
through deep learning and ultra-large compound library
docking, has significantly accelerated early-stage drug dis-
covery. These approaches reduce the number of false posi-
tives and eliminate resource-intensive failures during hit-

to-lead stages.”>” For instance, deep docking strategies
can rapidly screen over a billion compounds, drastically
decreasing both time and experimental cost compared to
traditional in vitro methods. A landmark example is the
discovery of Halicin, a novel broad-spectrum antibiotic,
identified using a deep learning model trained on molecu-
lar structures an achievement that conventional screening
pipelines had missed.”® This case illustrates the practical
application of Al in streamlining discovery pipelines and
alleviating the economic burden of early-stage drug devel-
opment.

2.1.3. ADMET Prediction

Drugs that are both safe and effective have precisely
calibrated pharmacokinetics and pharmacodynamics,
which include sufficient absorption, distribution, metabo-
lism, excretion, and acceptable toxicity (ADMET), as well
as high potency, affinity, and selectivity against the molec-
ular target.>® It was observed that the inadequacies in AD-
MET characteristics cause a lot of clinical trials to fail. Al-
though it is ideal to profile ADMET early in the drug
discovery process, there is a lack of data and a high ex-
pense associated with experimentally evaluating ADMET
characteristics. Additionally, computational analyses of
ADMET during the clinical trial phase can be a useful de-
sign approach that enables researchers to focus more on
the most promising drugs.®® Today, there is a large range of
tools available for ADMET prediction, including AD-
METlab®, QikProp®?, MetaTox, SwissADME, pKCMS®?,
DataWarrior®, MetaSite and StarDrop®® to mention a few.
By easily excluding inappropriate compounds, ADMET
prediction tools can cut down on the amount of costly late-
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stage failures and synthesis-evaluation cycles.”® Figure 3
exhibits the ADMET evaluation process, highlighting how
absorption, distribution, metabolism, excretion, and tox-
icity profiling are employed to refine lead compounds into
viable drug candidates.

Furthermore, Al-powered predictive toxicology and
ADMET modeling enable early elimination of compounds
with poor safety profiles, thus lowering attrition rates in
later phases and saving substantial R&D resources. Ma-
chine learning techniques have been shown to outperform
conventional rule-based methods in predicting toxic ef-
fects.%® In addition, Kelleci Celik and Karaduman®” em-
ployed a one-vs-all QSTR (OvA-QSTR) approach to accu-
rately predict drug-induced hepatotoxicity using structur-

Table 2A: Al Applications in Drug Discovery Phase

al and molecular descriptors, reinforcing the utility of Al
in early-stage toxicological assessments.

2. 1. 4. Incorporated Artificial Intelligence and
Molecular Dynamics (AI-MD)

AT and MD methods have demonstrated significant
potential in various scientific fields, particularly drug de-
sign, chemistry, and materials science. The integration of
AT with MD simulations not only enables the development
of innovative computational workflows but also under-
scores the significance of combining AI with mechanistic
insights from MD, a crucial aspect of this integration.
Elend et al.®® present a computational drug design work-

Application Description Al Techniques Used Tools

Target Identification Identifying biological targets linked to diseases =~ ML, NLP IBM Watson,
DeepMind

Lead Compound Identification Screening large compound libraries VS, Deep Learning Atomwise,
Schrédinger,
DeepChem

Lead Optimization Improving efficacy and reducing toxicity QSAR, Generative Models ~ MOE, ChemDraw,
ADMET Predictor

ADMET Predictions Early profiling of pharmacokinetics and toxicity =~ ML, Predictive Modeling =~ ADMET
Predictor, pkCSM

Drug Repurposing New uses for existing drugs ML, Network Analysis IBM Watson

Protein Structure Prediction Predict 3D structures for interaction studies Deep Learning AlphaFold

Genomic Data Analysis Disease-related genetic profiling ML, Data Mining GATK,
DeepVariant

Biomarker Discovery Identifying biomarkers that predict response ML, Data Mining BenevolentAl,

to therapies GNS Healthcare
Virtual Screening and Docking  Simulating molecular docking to predict how VS, Molecular Docking AutoDock,
drugs bind to their targets Schrédinger Suite
Table 2B. AI Applications in Drug Development Phase
Application Description Al Techniques Used Tools
Preclinical Testing Evaluating efficacy & safety pre-clinically Image Analysis, ML Insilico Medicine,
PathAI
Clinical Trial Design Patient recruitment, protocol optimization AT Analytics, Medidata, REDCap
Predictive Modeling

Predictive Toxicology

Molecular Dynamics Simulations Atomistic simulations of drug-target interactions Molecular Dynamics
Chemical Synthesis Optimization Improving synthesis yield and routes

Forecasting toxicity and safety issues

ML, Neural Networks DeepTox, Tox21
Challenge
GROMACS, NAMD

Al-driven Planning ChemPlanner, Reaxys

Synthetic Biology Designing novel biological systems ML, Synthetic Biology =~ Benchling

Patient Stratification Subgrouping based on genetic/clinical data Clustering, ML Ilumina BaseSpace,
Synthego

Personalized Medicine Individualized therapy planning ML, Data Analytics 23andMe, Foundation
Medicine

Image Analysis Tissue/pathology image evaluation Al Diagnostic Systems ~ Image], PathAl

Data Mining Identifying patterns from large datasets ML, Data Mining RapidMiner, Weka

Abbreviations: ML: Machine Learning, NLP: Natural Language Processing, VS: Virtual Screening, QSAR: Quantitative Structure—Activity Relation-
ship, ADMET: Absorption, Distribution, Metabolism, Excretion, and Toxicity, Al: Artificial Intelligence.
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flow that merges AI methods and MD simulations to cre-
ate potential drug candidates, showcasing the effectiveness
of AI-MD integration in drug discovery. Baum et al.*® dis-
cuss the impact of Al implementations in chemistry, high-
lighting their role in reducing experimental effort and op-
timizing reaction conditions, underscoring the
transformative potential of Al in scientific research. Tran
etal.”? utilize MD simulations to gain insights into AI-gen-
erated cell-penetrating peptides, stressing the significance
of combining AI with mechanistic insights from MD. Ter-
ayama et al.”! underscore the importance of integrating
ML techniques with simulations and experiments in re-
search. Meuwly’? explores the application of ML tech-
niques in chemical reactions, illustrating the historical use
of Al in chemistry research. Zhang et al.”* focus on en-
hancing molecular simulations with Al, emphasizing the
computational intensity of such applications and the ne-
cessity for advanced methodologies. Xu et al.”* combine
chemical descriptors with AI/ML tools to predict synthesis
reactions, demonstrating the potential of Al in predicting
chemical outcomes. Elbaz et al.”® investigate the use of MD
simulations to study diffusion mechanisms, highlighting
the importance of detailed simulations in understanding
molecular processes. In conclusion, the amalgamation of
AT and MD methods provides a robust tool for expediting
scientific discovery, streamlining experimental processes,
and designing innovative materials and drugs. Researchers
can unlock new frontiers in various scientific disciplines
by leveraging AT’s strengths in data analysis and prediction
with detailed insights from MD simulations.

Table 2A summarizes Al-driven tools and methods
employed in the drug discovery phase, including target
identification, virtual screening, and biomarker discovery.
Table 2B, on the other hand, outlines applications in the
drug development phase, such as preclinical testing, clini-
cal trial design, and predictive toxicology. This separation
facilitates a clearer understanding of the sequential use of
AT technologies across the whole drug development pipe-
line.

2. 1. 5. Key Takeaways in AI-Aided Drug
Development in CADD

Al has significantly impacted drug development
processes by offering various benefits. Al plays a crucial
role in rational drug design, decision-making support,
personalized therapies, clinical data management, and ex-
pediting drug development.”® AI/ML platforms are instru-
mental in determining the correct dosage form, optimiz-
ing it, and facilitating quick decision-making for efficient
manufacturing of high-quality products.”” Advances in
Al-powered Language Models (LMs) have shown the po-
tential to enhance drug discovery and development pro-
cesses.”8 CADD techniques are essential for accelerating
drug discovery, reducing costs, and minimizing failures in
the final stages of development.**

Al is involved in every drug design and development
stage, from target identification to trial design and post-mar-
ket product monitoring.”® Pharmaceutical companies have
utilized AT to speed up drug discovery processes, automate
target identification, and enhance development speed.?® Al
assists in developing treatment regimens, prevention strate-
gies, and drug/vaccine development, particularly crucial
during health crises like the COVID-19 pandemic.

AT algorithms enable the design of advanced drug
development pipelines, reducing time and costs in the
drug discovery process.3! Al advancements in radiothera-
py show promise in improving treatment efficiency and
effectiveness.®? Al has been extensively used in comput-
er-aided drug design, including repurposing existing
drugs against specific targets like COVID-19 receptor pro-
teins.®® Open data sharing and model development are
crucial for the progress of drug discovery with AL.34

The application of AI/ML in synthetic drug sub-
stance process development presents significant untapped
opportunities.®> ATls role in drug discovery spans from
compound screening to clinical trial conduct and repur-
posing, enhancing various phases of drug development.®
AI/ML trends impact clinical pharmacology by aiding tar-
get identification, generative chemistry, and clinical trial
outcome evaluation.?” Effective multimodal approaches
integrating big data, chemistry, biology, and medicine with
Al capabilities optimize drug discovery.®”

2.1.6. AI/ML in Drug Development

Artificial intelligence (AI) and machine learning
(ML) have become indispensable tools in drug develop-
ment, offering advanced capabilities across both discovery
and development stages. Their unique contributions are
particularly pronounced in clinical trial optimization,
post-market surveillance, and biomarker-driven drug
repositioning areas less emphasized in earlier sections of
this review.

AT algorithms are now extensively used to enhance
clinical trial design by predicting patient enrollment dy-
namics, optimizing inclusion/exclusion criteria, and esti-
mating dropout risks, thus improving efficiency and re-
ducing costs.3® In the post-marketing phase, AI-powered
pharmacovigilance systems can detect adverse drug events
faster and more reliably than traditional methods by ana-
lyzing real-world data from electronic health records and
patient forums.

In preclinical development, AI models support com-
pound screening, molecular property prediction, and de
novo drug design through deep learning techniques that
handle complex datasets, expediting lead optimization
and safety profiling.”®*! These tools are especially valuable
in oncology and rare diseases, where patient stratification
and precision targeting are essential.

Table 3 summarizes real-world implementations of
AI/ML by leading pharmaceutical companies. For in-
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Table 3: Pharmaceutical Companies Using Al For Drug Development

Pharmaceutical Collaboration Focus Al Provider/Tool Year
Company Started
Pfizer Drug discovery and development using Al-driven data analysis IBM Watson, Atomwise 2016
Novartis Drug discovery, personalized medicine, drug discovery, Microsoft, PathAl 2017
and clinical trial design
Sanofi Drug discovery and design, biomarker development Exscientia, Insilico Medicine 2019
AstraZeneca Discovery of new drug targets and develop therapies BenevolentAl, DeepMind 2018
GlaxoSmithKline Drug discovery, clinical trials, and biomarker development Insilico Medicine, GNS Healthcare 2019
Johnson& Johnson  Pathology, diagnostic advancements Atomwise, PathAI 2016
Merck Drug discovery, predictive toxicology PathAlL DeepTox 2017
Roche Personalized medicine, drug development Genentech, Flatiron Health 2018
Bristol-Myers Squibb Drug discovery, immunotherapy research NVIDIA, Flatiron Health 2019
Eli Lilly Drug discovery, lead optimization Atomwise, BioSymetrics 2017
Takeda Drug discovery, clinical trials Atomwise, BioSymetrics 2018
AbbVie Drug discovery, target validation IBM Watson, BioSymetrics 2019
Amgen Drug discovery, biologics development GNS Healthcare, Atomwise 2017
Bayer Drug discovery, patient stratification GNS Healthcare, BenevolentAl 2018
Biogen Drug discovery, neurodegenerative diseases IBM Watson, Atomwise 2019

stance, AstraZeneca has collaborated with DeepMind to
enhance tissue analysis in oncology, while Novartis lever-
ages Microsoft Al for patient segmentation and trial effi-
ciency. Similarly, Pfizer, Sanofi, and GlaxoSmithKline em-
ploy AI platforms such as IBM Watson, Exscientia, and
Insilico Medicine to accelerate drug discovery, biomarker
development, and clinical trial design. These collabora-
tions reflect AT's expanding role from preclinical modeling
to post-marketing applications.

The table has been structured to clearly distinguish
AT use cases in discovery (e.g., target identification, virtual
screening) versus development (e.g., trial optimization,
toxicity prediction), thereby improving reader compre-
hension and aligning with the pharmaceutical R&D work-
flow.

3. Bioassay of Drug Candidate

The integration of in silico, in vitro, and in vivo stud-
ies is essential for effective and efficient drug discovery. In
silico studies provide a cost-effective and rapid initial
screening of potential drug candidates, which are then rig-
orously tested through in vitro and in vivo experiments to
ensure their safety and efficacy before proceeding to clini-
cal trials in humans. This multi-stage approach helps
streamline the drug discovery process, reducing time and
costs while increasing the likelihood of success in develop-
ing new treatments.”?

Recent advances in biomedical engineering and genet-
ic technologies have introduced innovative in vitro and in
vivo techniques that significantly enhance the predictive
power and translational relevance of preclinical drug testing.

CRISPR-based assays represent a transformative in
vitro approach, enabling precise genome editing to model

disease-specific mutations and assess gene-drug interac-
tions in human-derived cell lines. These systems would
allow researchers to dissect target-specific pathways and
identify synthetic lethal interactions, which are particular-
ly valuable in oncology and for rare genetic disorders.*?
CRISPR screening platforms have also been integrated in-
to drug repurposing pipelines, offering scalable tools for
high-throughput functional genomics.

In the realm of in vivo models, the development of
humanized animal models has bridged critical translation-
al gaps by introducing human genes, cells, or tissues into
immunodeficient animals. These models are beneficial for
studying immunotherapies, infectious diseases, and drug
responses related to metabolism.** Unlike conventional
rodent models, humanized systems enable the evaluation
of drug efficacy and toxicity in a context that closely mim-
ics human physiological conditions.

Additionally, organ-on-a-chip technologies, although
not strictly in vitro or in vivo, offer a hybrid system that
simulates the dynamic interactions of human tissues and
fluids. These microfluidic devices recreate the multicellular
architectures and mechanical forces of organs like the lung,
liver, and gut, providing valuable insights into drug absorp-
tion, distribution, and organ-specific toxicity.*>

Together, these cutting-edge approaches comple-
ment traditional bioassays by enhancing mechanistic un-
derstanding, improving predictive accuracy, and support-
ing the development of safer and more effective drugs.

3. 1. In vitro Studies

In vitro studies provide valuable information on the
efficacy and safety of drug candidates before in vivo animal
studies and clinical trials. In vitro studies evaluate the ef-
fects of potential drug candidates on specific biological

Besli et al.: How to Expedite Drug Discovery: Integrating Innovative ...



Acta Chim. Slov. 2025, 72, 581-600

targets in an in vitro setting. During this phase, cell culture
studies are conducted to assess the impact of the candidate
drug on cell viability, its apoptotic and necrotic effects, and
its genotoxicity as part of toxicity and safety tests to under-
stand the mechanism of action of the drug candidate, its
effects on cellular signaling pathways, receptor interac-
tions, and biomolecular processes are examined in de-
tail.”6-% Pharmacokinetic studies are conducted to investi-
gate how the drug candidate is absorbed, distributed,
metabolized, and excreted by the cells.!'® Additionally,
pharmacodynamic studies are performed to determine the
biological effects and efficacy of the drug on the cells. In
vitro studies utilizing three-dimensional (3D) cell cultures
and organoid models provide more complex and realistic
cellular environments, helping to achieve more reliable re-
sults. 101,102

3D cell cultures and organoid systems offer signifi-
cant advantages over traditional two-dimensional (2D)
cultures, as they more accurately mimic the structural and
functional complexity of human tissues. They replicate
cell-cell and cell-matrix interactions, nutrient and oxygen
gradients, and tissue-specific architecture more effectively,
enhancing their predictive value for in vivo outcomes.
However, these models are not without limitations. They
can be expensive to establish and maintain, often require
specialized scaffolds or materials, and exhibit variability in
reproducibility and scalability for high-throughput appli-
cations. Furthermore, while in vitro systems whether 2D
or 3D are invaluable for mechanistic insights, they lack bi-
okinetic context, which may lead to misinterpretation of
toxicity or efficacy profiles when extrapolating results to
human physiology.1%®

3. 2. In vivo Studies

In vivo studies involve testing drug candidates in an-
imal models to evaluate their efficacy, pharmacokinetics,
and safety within a living organism.!% These studies are a
critical step to verify the findings from in vitro experi-
ments and to evaluate the efficacy and safety of the drug in
more complex biological systems.!% At this stage, ADME
studies are conducted to determine the bioavailability and
half-life of the drug as part of pharmacokinetic studies.
Pharmacodynamic studies are performed to establish
dose-response relationships and the degree of efficacy.
Acute, subacute, and chronic toxicity tests are conducted
as part of toxicity and safety studies. Potential side effects,
organ damage, and mortality rates are examined.!%-198
vivo models are crucial for studying the progression of the
disease and the effects of the drug on this process. Addi-
tionally, they play an important role in observing the re-
sponse to treatment and in identifying and validating bio-
markers to monitor disease progression.!®> Compared to
in vitro experiments, animal models are more dependable,
despite certain limitations such as variations in biokinetics
parameters and the inability to extrapolate results to hu-

mans.'% Nonetheless, significant physiological and meta-
bolic differences between animal models and humans can
limit the translatability of preclinical findings, necessitat-
ing cautious interpretation and validation in human-rele-
vant systems.

4, Discussion

4. 1. What are the Gaps in Drug
Development?

The landscape of drug development is characterized
by challenges that impede the efficient translation of scien-
tific discoveries into safe and effective therapies. For in-
stance, one of the significant issues in the pharmaceutical
industry is the innovation gap, where drug development
costs are escalating. In contrast, the number of new drugs
approved remains relatively stable.!% This discrepancy un-
derscores a fundamental challenge in the field, where the
increasing financial burden of bringing a new drug to mar-
ket is not met with a proportional increase in successful
outcomes. The high attrition rate in clinical development
significantly contributes to the rising drug development
costs.!'® This attrition emphasizes the urgent need for
more efficient and reliable methods to identify viable drug
candidates early in development to alleviate the financial
strain on pharmaceutical companies.

The funding landscape is a critical aspect that exac-
erbates the gaps in drug development. While a significant
portion of foundational research for drug discovery re-
ceives public funding, there often needs to be more in
transitioning these discoveries into viable drug candidates
due to funding limitations.!!! This gap between early-stage
research and late-stage development highlights the neces-
sity for bridging mechanisms to ensure that promising
leads are not abandoned due to financial constraints.
Moreover, challenges in developing new drugs are further
compounded by the need for more effective therapies de-
spite significant advancements in preclinical research.!!?
This gap between preclinical data and clinical success is
attributed to suboptimal drug development strategies, par-
ticularly in addressing critical genetic alterations in diseas-
es like cancer.

Another crucial gap in drug development lies in
pediatric drug therapy, historically lacking a focus on de-
veloping medications specifically tailored for children.!!3
Pediatric drug development continues to lag behind adult
therapeutics due to several scientific, ethical, and regulato-
ry challenges. Children are often excluded from clinical
trials, leading to widespread oft-label drug use without ro-
bust evidence of safety or efficacy in pediatric populations.
Ethical concerns such as obtaining informed consent and
minimizing risk further complicate trial design. Regulato-
ry agencies have implemented specific frameworks to
bridge this gap. In the United States, the Pediatric Research
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Equity Act (PREA) mandates pediatric assessments for
certain new drugs, and the Best Pharmaceuticals for Chil-
dren Act (BPCA) provides incentives such as extended
market exclusivity for conducting pediatric studies.!!*!1°
The European Unions Paediatric Regulation (EC
No 1901/2006) requires Pediatric Investigation Plans
(PIPs) for new medicines. Despite these advances, barriers
persist, including limited pediatric patient numbers,
age-dependent pharmacokinetics, and formulation chal-
lenges. Addressing these obstacles is essential to ensure the
development of safe and effective therapeutics for chil-
dren.

Additionally, gaps in predicting drug metabolism
and toxicity—particularly in the liver—pose significant
challenges in drug development.!'® The underperformance
in this area is largely attributed to limited understanding of
the mechanisms driving hepatic injury, highlighting the
urgent need for more comprehensive and physiologically
relevant approaches to assess drug safety.

Another challenge is that the interval between bio-
marker discovery and clinical utility hinders drug devel-
opment progress.''”” While there is a focus on identifying
biomarkers for various conditions, there often needs to be
more clarity in translating these findings into clinically
meaningful applications. This highlights the importance of
streamlining the drug approval process and enhancing the
translational impact of biomarker research to bridge this
gap effectively. Furthermore, the gap in predicting drug-
drug interactions (DDIs) poses a substantial complexity in
drug development, emphasizing the need for robust pre-
dictive models to assess the potential interactions of new
drug entities.!'® Improving our ability to predict and man-
age DDIs is crucial for ensuring the safety and efficacy of
drug therapies.

The lack of proactive drug development is evident in
infectious diseases, particularly in addressing emerging
viral diseases such as COVID-19.!!° The reactive nature of
drug development in response to emerging infectious dis-
eases underscores the need for a more proactive approach
to shorten the gap between identifying new diseases and
developing effective treatments. Additionally, gaps in un-
derstanding the ontogeny of drug metabolism and trans-
port present challenges in predicting drug disposition, es-
pecially in vulnerable populations like children and the
elderly.!?° The reactive nature of drug development in re-
sponse to emerging infectious diseases underscores the
need for a more proactive approach to shorten the gap be-
tween identifying new diseases and developing effective
treatments. Additionally, gaps in understanding the ontog-
eny of drug metabolism and transport present challenges
in predicting drug disposition, especially in vulnerable
populations like children and the elderly.'?! This gap ac-
centuates the importance of addressing fundamental gaps
in disease pathophysiology to drive practical drug discov-
ery efforts. Moreover, gaps in drug design and discovery
for diseases like the Ebola virus showcase the potential of

computational tools in advancing target-based drug de-
sign.1??

In conclusion, the gaps in drug development are
multifaceted and span various stages of the drug discovery
and development process. They are not challenges that we
can afford to ignore. Addressing these gaps requires a con-
certed and immediate effort from researchers, industry
stakeholders, regulatory bodies, and funding agencies. By
implementing innovative strategies, leveraging emerging
technologies, and enhancing collaboration, we can drive
impactful and efficient drug development efforts, under-
lining the urgency and importance of the issue.

To bridge the innovation gap and overcome fund-
ing limitations in drug development, actionable strate-
gies are needed. Public-private partnerships (PPPs)
have proven effective. For example, the Innovative
Health Initiative (IHI) a €2.4 billion joint undertaking
by the European Union and pharmaceutical industry
brings together stakeholders from academia, industry,
regulators, and patient organizations to accelerate health
innovation.!?® In the United States, the Accelerating
Medicines Partnership (AMP) supports cross-sector
collaboration in fields such as Alzheimer’s disease, type
2 diabetes, ALS, and schizophrenia, facilitating the dis-
covery and validation of biomarkers.!?* These partner-
ships offer standardized frameworks, pooled resources,
and data-sharing mechanisms that enhance translation-
al efficiency. Additionally, open-access datasets like
AMP-PD democratize research participation and sup-
port reproducibility. Regulatory tools such as the FDA’s
Biomarker Qualification Program (BQP) provide struc-
tured processes for developing biomarkers as validated
drug development tools.

4. 2. Unlocking the Potential: How AI/ML are
Revolutionizing Drug Development

The 20th anniversary of the completion of the draft
human genome sequence was observed in 2021, exempli-
fying a significant milestone that has revolutionized
genomics research and generated a substantial amount of
genomic data. Genomics research is projected to produce
between 2 and 40 exabytes of data in the next decade.!?
With this giant data, AI/ML have emerged as powerful
tools in bridging the gaps in genomics by facilitating the
integration of complex data sets, enabling more accurate
predictions, and enhancing decision-making processes in
various fields such as clinical diagnostics, agriculture, on-
cology, and personalized medicine. The application of Al
in genomics has been highlighted in several studies, show-
casing its potential to revolutionize the way genetic infor-
mation is analyzed and utilized.?>'26-128 By leveraging Al
technologies, researchers can overcome challenges in un-
derstanding genome evolution, function, and disease
mechanisms, ultimately leading to groundbreaking dis-
coveries.!?’
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In clinical and genomic diagnostics, AI has been in-
strumental in linking image-derived phenotypes to their
genetic origins, offering insights into disease mechanisms
and potential treatments.?? This imaging and genomic da-
ta integration can potentially enhance diagnostic accuracy
and personalized treatment strategies. Moreover, in the
context of precision medicine, Al plays a crucial role in
analyzing genomic determinants along with patient symp-
toms and clinical history to enable personalized diagnosis
and prognostication.!** Moreover, Al applications to med-
ical images, such as MRI classification tasks for neurologi-
cal and psychiatric diseases!'®!, have demonstrated the po-
tential of Al-based algorithms in clinical diagnosis with
high quality and efficiency. These advancements spotlight
the transformative impact of AI/ML in enhancing diag-
nostic capabilities and treatment outcomes across various
medical disciplines. Regarding this, by combining genom-
ic data with AI/ML analyses, researchers can identify nov-
el biomarkers, optimize treatment approaches, and im-
prove patient outcomes.

Al is not just a theoretical concept in oncology, but a
practical tool that is already delivering tangible benefits. It
simplifies the analysis of imaging-genomics data in diseas-
es like glioblastoma!?®?, thanks to deep learning algorithms
that have made significant strides in image recognition
and genome analysis. The integration of molecular and
imaging signatures through AI technologies offers practi-
cal advantages for early cancer detection, diagnosis, and
treatment planning. In the cancer immunity, Al-driven
approaches have not only opened up new avenues for
comprehensive analyses of tumor immunity using genom-
ics, transcriptomics, proteomics, and cytomics, but also
led to the emergence of tumor immunomics as a novel dis-
cipline.!®® This is a clear example of how Al is shaping the
future of oncology. In addition, the application of Al in
bridging the gap between genomes and chromosomes, as
demonstrated through single-chromosome sequencing
(ChromSeq), has provided valuable insights into genome
organization and function.!?!** By overcoming challeng-
es related to genome and chromosome analysis, research-
ers can advance our understanding of genetic mechanisms
and their implications for various biological processes.

The integration of Al in genomics has extended to
fields such as cardiology'®® and kidney cancer!'3® manage-
ment, bringing with it a host of practical benefits. Al tech-
nologies, such as machine and deep learning algorithms,
can model complex interactions, identify new phenotype
clusters, and enhance prognostic capabilities, thereby sig-
nificantly improving patient care and outcomes. In kidney
cancer management, Al can analyze radiographic, histo-
pathologic, and genomic data to tailor personalized treat-
ment strategies.!3

AI/ML are not just reshaping the landscape of drug
development but also effectively addressing critical gaps
and challenges, providing a reassuring solution to complex
problems. Their impact is particularly evident in drug

repurposing, where these technologies enable researchers
to systematically identify potential leads, thereby acceler-
ating the drug development process and reducing associat-
ed risks through computational means.!*” In this manner,
AI/ML have been instrumental in rapidly identifying
drugs effective against the coronavirus, bridging the gap
between repurposed drugs, laboratory testing, and final
authorization.!* The rapid growth of biomedical data, fa-
cilitated by advanced experimental technologies, has made
AI/ML indispensable tools for drawing meaningful in-
sights and improving decision-making in drug discovery,
particularly in central nervous system diseases.?® Again,
during the COVID-19 pandemic, Al algorithms have
played a crucial role in surveillance, diagnosis, drug dis-
covery, and vaccine development, enabling the design of
sophisticated drug development pipelines that reduce the
time and costs associated with traditional methods.?!
However, it is essential to address biases in ML-based algo-
rithms to ensure their robustness and reproducibility for
integration into clinical practice.!® AT has also been in-
strumental in developing treatment regimens and preven-
tion strategies and advancing drug and vaccine develop-
ment for COVID-19 and other infectious diseases.!*” In
orthodontics and chronic airway diseases like asthma and
chronic obstructive pulmonary disease (COPD), AI/ML
have demonstrated effectiveness in mining and integrating
large-scale medical data for clinical practice, showcasing
their potential in improving patient care and treatment
outcomes.?>!4!

The application of Al, particularly deep learning, of-
fers opportunities to discover and develop innovative
drugs by analyzing vast datasets and predicting potential
drug candidates.*? Internationally renowned experts have
identified key challenges in small-molecule drug discovery
using Al and have put forward strategies to address them,
emphasizing the groundbreaking potential of Al in this
critical area.'*? Importantly, regulatory bodies like the
FDA have not only recognized, but also strongly endorsed
the importance of AI/ML in medical devices. They have
defined ML as a system capable of learning from specific
tasks through performance tracking!*?, providing a solid
framework for the integration of Al in healthcare. This ro-
bust endorsement from the FDA has led to an increase in
the approval of AI/ML-based medical devices in the USA
and Europe. The FDA, for instance, has actively participat-
ed in the approval process of over 60 Al-equipped medical
devices!*, indicating a growing trend toward incorporat-
ing AI technology into the future of medicine.

ML contributes to the automation of various stages
in the traditional drug development pipeline. This is evi-
dent in studies such as that of Li et al.1** and Vatansever et
al.2 As for antibiotic discovery, Al has emerged as a pow-
erful ally, accelerating the identification of novel antimi-
crobial agents, as highlighted in studies like that of Melo et
al.16 By applying Al to computer-aided drug design, we
can expedite the discovery of antibiotics and antimicrobial
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peptides, addressing the global challenge of antibiotic re-
sistance. This is a crucial task that our collective ML re-
search has significantly advanced. By integrating natural
language processing (NLP) in A, we can scan vastamounts
of literature to identify potential drug targets. At the same
time, AI-driven synthesis robots, a testament to our shared
vision, enable the exploration of new reaction spaces to
discover novel drug candidates. This automation, a result
of our combined expertise, accelerates the drug discovery
process and enhances the reproducibility of chemical reac-
tions, leading to the discovery of new compounds with
therapeutic potential.

Furthermore, the advancements in Al-driven drug
discovery, as discussed in studies like those of Zhavoronk-
ov et al.¥’, have not only paved the way for innovative ap-
proaches to target identification and generative chemistry
but also hold the promise of a brighter future for clinical
pharmacology. By leveraging AI/ML trends, researchers
can enhance target identification processes, optimize
small-molecule drug discovery, and evaluate clinical trial
outcomes with greater accuracy and efficiency. These de-
velopments can potentially transform the field of clinical
pharmacology, offering new avenues for enhancing drug
development and therapeutic interventions and instilling a
sense of optimism for the future.

Concisely, when harnessed collaboratively, AI/ML
can usher in a new era in the pharmaceutical industry.
They have the potential to address key gaps in the process,
such as expediting drug discovery, optimizing lead com-
pounds, and enhancing clinical outcomes, offering inno-
vative solutions to longstanding challenges. By utilizing
these technologies, researchers can significantly improve
the efficiency and effectiveness of drug development, ulti-
mately discovering novel treatments for various diseases.
However, further research and collaboration, in which
each stakeholder plays a crucial role, are imperative to ful-
ly realize this potential. As Al continues to evolve, its im-
pact on drug development is poised to revolutionize the
field and pave the way for more effective and personalized
therapeutic interventions.

4. 3. Overpowering Restraints in AI-Aided
Drug Development

The transformative potential of Al in revolutionizing
the discovery of new materials is not just tremendous but
also holds the promise of developing materials with tai-
lored properties for diverse applications, sparking opti-
mism for the future of pharmaceutical research. However,
it’s crucial to recognize and address the challenges and
limitations to ensure its practical application.!4’

One significant challenge is the necessity for
high-quality data, as Al algorithms heavily depend on data
for accurate predictions.!*8 The interpretability of AI-driv-
en drug discovery processes is another critical limitation,
as researchers often need help comprehending how AI al-

gorithms reach conclusions and recommendations.!*’

Moreover, the sustainability of resources is a growing con-
cern due to the significant computational resources and
data required for Al techniques.!>® Additionally, the cur-
rent methods and tools may only partially exploit the po-
tential of Al in drug discovery.!>! Overcoming challenges
related to data quality, interpretability, resource sustaina-
bility, and tool development is not just important, but es-
sential for maximizing the benefits of Al in revolutionizing
the drug discovery process. Moreover, one of the other is-
sues is Ethics. Regarding ethical issues in IA regulation, the
EU Council recently proclaimed that member states have
acknowledged the “Artificial Intelligence Law;” which will
establish the world’s first comprehensive rules for artificial
intelligence.!2

It is crucial to emphasize the importance of address-
ing challenges in Al-aided drug development. By imple-
menting strategies based on insights from reputable sourc-
es, we can overcome these challenges and maximize the
benefits of Al in revolutionizing the drug discovery pro-
cess. The use of specific AI models, such as deep learning
and natural language processing, has become crucial for
expediting the drug development process and reducing
failures.** These Al-powered language models have
demonstrated potential in assisting drug discovery and de-
velopment by summarizing advancements and providing
computational tools for efficiently identifying new com-
pounds.”® Additionally, AI/ML, including neural networks
and decision trees, have proven to be essential tools for
deriving meaningful insights and enhancing deci-
sion-making in drug discovery, particularly in diseases
such as central nervous system disorders.??

Moreover, Al in collaboration with human exper-
tise, plays a crucial role in facilitating rational drug design,
aiding decision-making processes, personalizing thera-
pies, and effectively managing clinical data for future drug
development.”® By incorporating advancements in com-
puter-aided drug design, automated synthetic chemistry,
and high-throughput biological screening, initiatives like
the NCATS ASPIRE program aim to explore novel chemi-
cal spaces more efficiently and cost-effectively. This under-
scores the importance of human-AlI collaboration in max-
imizing the potential of Al in drug development.'>® Figure
4 summarizes critical applications of Al in both genomics
and clinical domains, such as data integration, variant de-
tection, biomarker discovery, and drug repurposing, un-
derscoring its broad utility in precision medicine.

Overall, while AI offers significant potential in drug
development, it’s important to acknowledge and address
potential risks and limitations. These include the need for
large, diverse, and high-quality datasets, to avoid ancestral
bias, which can result in reduced predictive accuracy for
underrepresented populations.!®* Another challenge is
model interpretability: many deep-learning systems re-
main “black boxes,” limiting clinical adoption. For exam-
ple, recent explainable Al techniques such as concept-whit-
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5. Drug discovery
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Fig 4. Summary of artificial intelligence applications in drug development, highlighting key contributions in genomics (e.g., data integration, variant
analysis) and clinical contexts (e.g., biomarker discovery, disease diagnosis, and drug repurposing).

ening applied in graph neural networks reveal which
molecular features drive predictions, thereby enhancing
transparency.'®> Additionally, generalizability between
datasets remains imperfect: models validated on public
benchmarks often perform poorly when applied to propri-
etary or real-world datasets, underscoring the need for rig-
orous cross-platform validation.!>%157

By proactively addressing these challenges through
explainable frameworks, ancestry-aware model training,
and broad validation pharmaceutical researchers can fully
leverage AD’s promise while maintaining safety, fairness,
and confidence in the drug development process.

5. Conclusion

The integration of advanced Technologies particu-
larly AT and ML, computational modeling, and HTS has
significantly reshaped the landscape of modern drug de-
velopment. These tools have demonstrated concrete pro-
gress in Al-driven target identification, lead compound
optimization, and early-stage ADMET profiling. Together,
they contribute to reduced development timelines, im-
proved cost efficiency, and lower failure rates in clinical
phases.

Furthermore, emerging in vitro 3D models, orga-
noids, and improved in vivo models have enhanced trans-
lational relevance, thereby bridging the gap between pre-
clinical findings and clinical outcomes. Despite these

advancements, challenges remain particularly in areas
such as pediatric drug development, biomarker validation,
and the development of ethical and regulatory frameworks
for the integration of Al

Future research directions should focus on enhanc-
ing the interpretability of Al algorithms, integrating mul-
ti-omics datasets for comprehensive decision-making, and
developing standardized, reproducible workflows for ear-
ly-stage evaluation. These efforts will further solidify the
role of computational and Al-based systems in delivering
safe, effective, and patient-centered therapeutics.
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Povzetek

Postopek odkrivanja zdravil tradicionalno dolgotrajen in drag proces, vendar dozivlja revolucijo z vklju¢evanjem ino-
vativnih pristopov. V tem ¢lnaku smo povzeli, kako sodobne tehnike pospesujejo odkrivanje in razvoj zdravil ter hkrati
znatno zmanjsujejo stroske. Osredoto¢amo se na mocno sinergijo bioinformatike, umetne inteligence (UT) in visokoz-
mogljivega testiranja (HTS). Bioinformatika pomaga pri identifikaciji in potrjevanju tar¢ zdravil z analizo obseznih
genomskih in proteomskih podatkovnih zbirk. UI izboljsuje identifikacijo in optimizacijo spojin vodnic s pomocjo
napovednega modeliranja in algoritmov strojnega ucenja, kar moc¢no skrajsa cas, potreben za te faze. HTS omogoca
hitro pregledovanje obseznih knjiznic spojin za odkrivanje potencialnih kandidatov za zdravila. Pristopi, ki temeljijo
na UL kot sta HTS in napovedno modeliranje, izboljujejo odlo¢anje v zgodnjih fazah, zmanj$ujejo poskuse in napake
ter prispevajo k stroskovni u¢inkovitosti skozi celoten proces. Poleg tega napredek v ra¢unalniski kemiji in simulacijah
molekulske dinamike omogoca globlji vpogled v interakcije med zdravilom in tar¢o, kar dodatno pospesuje nacrtovanje
ucinkovitih in selektivnih spojin. Pri odkrivanju zdravil kandidate testirajo v laboratorijskih in Zivalskih modelih, da se
oceni njihova u¢inkovitost, farmakokinetika in varnost. Z vklju¢evanjem predklini¢nih metod se lahko u¢inkovitost in
uspesnost odkrivanja zdravil bistveno izbolj$ata, kar vodi do ucinkovitej$ih in varnejsih zdravil. Ta pregled poudarja
pomembno vlogo ra¢unalniskih tehnologij v sodobnem razvoju zdravil ter raziskuje njihove obetavne implikacije za
prihodnje raziskave in klini¢no uporabo.
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