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Abstract
In the context of pharmacological intervention for pain, Transient Receptor Potential Vanilloid, member 1 (TRPV1), as 
a non-selective cation channel belonging to the transient receptor potential (TRP) family of ion channels, has emerged 
as a promising target. However, the availability of selective TRPV1 antagonists and their associated pharmacological 
properties remains limited. This research paper explores various QSAR modeling techniques applied to a range of piper-
azinyl-aryl compounds acting as TRPV1 antagonists. The descriptors utilized in the creation of conformation-independ-
ent QSAR models included local molecular graph invariants and the SMILES notation, along with the incorporation of 
the Monte Carlo optimization method as a model development technique. Several statistical methods were employed to 
evaluate the quality, robustness, and predictive capacity of the developed models, yielding positive results. For the best 
developed QSAR model following statistical parameters were obtained for training set R2 = 0.7155, CCC = 0.8134, IIC = 
0.7430, Q2 = 0.6970, RMSE = 0.645, MAE = 0.489 and F = 157; and for test set R2 = 0.9271, CCC = 0.9469, IIC = 0.9635, 
Q2 = 0.9241, RMSE = 0.367, MAE = 0.329 and F = 328. Additionally, molecular fragments derived from SMILES notation 
descriptors, which explain observed changes in the evaluated activity, were identified, leading to the design of four new 
antagonists. The final validation of the QSAR model and the designed antagonists was conducted through molecular 
docking, which demonstrated strong correlation with the QSAR modeling results.
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1. Introduction

TRPV1 (transient receptor potential cation channel, 
subfamilyV, member 1) is a non-selective cation channel 
activated by a variety of exogenous and endogenous stim-
uli. Cloning of TRPV1 and demonstration of its therapeu-
tic value have led to intense research in understanding 
the molecular mechanisms encompassing the responses 
of sensory neurons to stimuli such as heat, protons, some 
endogenous activators such as an and amide and exoge-
nous activators such as capasaicin1–5. TRPV1, also known 
as VR1 (Vanilloid Receptor 1), is primarily expressed on 

unmyelinated pain-sensing nerve fibers (C-fibers) and 
small A fibers in the dorsal root and trigeminal ganglia6.7. 
Activation of the channel leads to an influx of calcium 
and sodium ions into the cell, causing depolarization, and 
that in turn results in the excitation of primary sensory 
neurons and ultimately in the perception of pain, though 
a reduction of the activation thresholds of the channel 
to other stimuli indicate that agonists of the channel can 
cause desensitization with therapeutic application in the 
management of pain. However, such desensitization leads 
to the side effects of burning sensation, irritation, and 
neurotoxicity, resulting from continuous influx of calci-
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um ions into the cells, thus limiting the clinical use of ag-
onists8–10. Blocking the TRPV1- mediated pain signaling 
pathways with receptor antagonists is an alternative prom-
ising strategy for the development of novel analgesic drugs 
with potentially fewer side effects11–14. The chemistry and 
pharmacology of several classes of competitive TRPV1 an-
tagonists, based on chemotypes containing thiourea, urea, 
and amide groups, have been described and reviewed15–18. 
They have been classified into four profiles based on their 
ability to differentially modulate TRPV1 activation by dif-
ferent modes such as capsaicin, pH 5 and heat19.

Over the years, many antagonists that have entered 
and progressed into various clinical phases have failed 
due to the development of hyperthermia as an undesired 
on-target side-effect. With increased structural, mecha-
nistic and biophysical knowledge on TRPV1, there is an 
unrecognized need to find more and diverse chemo types 
for TRPV1 antagonists. New chemo types are needed to 
evolve functionally-selective or modality-selective antago-
nists that can probe and prove if hyperthermia can be dis-
sociated from the other functions of this ion channel21,22. 
The need for new chemotypes is encouraged by the fact 
that there numerous new indications attributed to TRPV1 
for which small molecule chemical probes are required for 
validation23–25. Apart from validation for newer indica-
tions, probes are required to decipher the potential con-
sequences of targeting a single indication. In this regard, 
a generally applicable TRPV1 antagonist pharmacophore 
that can enable discovery of novel chemotypesis critical.

Drug discovery and development are inherently 
time-consuming processes, requiring substantial time, ef-
fort, and financial resources. These challenges arise from 
the need to identify effective and safe therapeutic com-
pounds through extensive experimental screening, op-
timization, and validation. To mitigate these constraints, 
chemoinformatics has emerged as an essential discipline, 
leveraging computational tools and in silico methodolo-
gies to accelerate various stages of the drug development 
pipeline. Chemoinformatic approaches offer a wide range 
of applications, including the identification of novel lead 
compounds, optimization of pharmacological activity, 
and improvement of pharmacokinetic and toxicological 
profiles of compounds with known biological activity26–28. 
Among the numerous chemoinformatic techniques, quan-
titative structure-activity relationship (QSAR) modeling is 
recognized as the most extensively applied and impactful 
approach. QSAR studies aim to establish predictive rela-
tionships between the chemical structure of compounds 
and their biological activity, providing valuable insights 
into molecular interactions and activity mechanisms. 
Contemporary QSAR models are developed using a va-
riety of molecular descriptors, which are computationally 
derived parameters that capture distinct chemical, physi-
cal, and structural features of molecules. These descriptors 
vary widely, encompassing properties such as electronic, 
steric, hydrophobic, and topological characteristics. The 

construction of QSAR models involves a systematic pro-
cess. Initially, molecular descriptors are calculated from 
well-defined molecular structures, each descriptor con-
tributing unique insights into the molecule’s behavior. 
These descriptors are then analyzed to identify their rel-
evance and predictive capacity, enabling the development 
of robust mathematical equations that quantitatively relate 
molecular descriptors to observed biological activities. 
Such models provide a powerful framework for predicting 
the activity of untested compounds, guiding the rational 
design of new drugs, and prioritizing experimental vali-
dation.

Despite their strengths, QSAR models are not with-
out limitations. The accuracy and reliability of a QSAR 
model depend heavily on the quality and diversity of the 
training dataset, the choice of molecular descriptors, and 
the statistical methods employed. Moreover, the interpret-
ability of these models can sometimes be challenging, es-
pecially when complex machine learning algorithms are 
used. Nevertheless, QSAR remains a cornerstone of mod-
ern drug discovery, contributing to significant time and 
cost savings by enabling the prioritization of promising 
candidates for further experimental testing29–33. As com-
putational power and chemoinformatics methodologies 
continue to evolve, the integration of QSAR with other 
in silico approaches, such as molecular docking, phar-
macophore modeling, and machine learning, promises to 
further enhance its predictive capabilities. This integration 
will likely play a pivotal role in addressing the growing de-
mand for efficient, cost-effective, and innovative drug de-
velopment strategies.

This research employed various in silico methods 
to identify novel compounds with potential antagonistic 
effects on the TRPV1 receptor. The study focused on de-
veloping QSAR models using conformation-independent 
molecular descriptors derived from SMILES notation and 
local graph invariants, integrated with the Monte Car-
lo optimization method. A key objective was to identify 
molecular fragments or structural features responsible for 
TRPV1 antagonism and to explore correlations among the 
different computational approaches used. The study suc-
cessfully pinpointed molecular fragments present in small 
molecules that are critical for ligand-receptor interactions. 
These findings provide valuable insights into the structural 
basis of TRPV1 antagonism, offering a foundation for the 
rational design and development of novel analgesic agents. 
The identified fragments could be strategically employed 
to enhance the efficiency and specificity of future drug dis-
covery efforts targeting TRPV1-related pathways.

2. Materials and Method
In this study, a dataset comprising 98 molecules 

known to TRPV1antagonism effect was collected from 
the scientific literature34. The compounds analyzed in 
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this study were evaluated for their ability to inhibit cap-
saicin- (CAP, 500 nM) or acid- (pH 5.0) induced uptake 
of 45Ca2+ in Chinese Hamster Ovary (CHO) cells sta-
bly expressing rat TRPV1 (rTRPV1), as previously de-
scribed35,36. Functional activity was reported as IC₅₀ ± 
SEM (nM), based on experimental measurements. These 
IC₅₀ values were collected from [insert database or lit-
erature reference], and converted to pIC₅₀ values using 
the standard equation: pIC₅₀ = –log₁₀(IC₅₀ × 10–⁹). The 
dataset was curated to remove duplicates, inconsistent 
records, and extreme outliers prior to model develop-
ment. The SMILES notation for all the molecules used in 
the study, along with their corresponding pIC50 values, is 
provided in Table S1 within the Supplementary Material. 
To ensure the robustness of the analysis, the dataset was 
randomly divided into three random splits with two sets: 
a training set consisting of 73 compounds (75%) and a 
test set comprising 25 compounds (25%). The normality 
of the activity distribution for all the dataset splits was 
assessed following the methodology described in a pub-
lished reference37.

2. 1. �QSAR Modeling Utilizing the Monte 
Carlo Optimization Method
The Monte Carlo optimization method was em-

ployed to construct a conformation-independent QSAR 
model using a hybrid approach that combined molecular 
graph-based and SMILES notation-based descriptors. The 
molecular graph-based descriptors included local graph 
invariants derived from fundamental graph theory con-
cepts, such as paths and walks, with detailed mathemat-
ical definitions available in the literature38. The optimal 
descriptors identified from the graph-based approach en-
compassed Morgan extended connectivity indices (EC0), 
valence shell descriptors for ranges 2 and 3 (s2, s3), path 
numbers for lengths 2 and 3 (p2, p3), the number of neigh-
boring carbon atoms (Number of Carbon), and the num-
ber of neighboring non-carbon atoms (Number of Non 
Carbon). In parallel, SMILES notation-based descriptors 
offered mechanistic insights by representing molecular 
fragments. Each descriptor contributes to the molecule's 
Descriptor Correlation Weight (DCW), which is comput-
ed as the sum of the correlation weights (CW) assigned to 
all relevant SMILES descriptors. This relationship is math-
ematically formalized in Equation 1. By combining these 
two descriptor systems, the hybrid approach provides a 
robust framework for characterizing molecular features, 
enabling enhanced predictive accuracy and interpretabili-
ty in identifying key structural determinants of biological 
activity.

DCW(T,Nepoch) = zCW(ATOMPAIR) + 
xCW(NOSP) + yCW(BOND) + tCW(HALO) + (1)
rCW(HARD) + αΣCW(Sk) + βΣCW(SSk) + 
γΣCW(SSSk) 				  

In Equation 1, the variables z, x, y, t, α, β, γ repre-
sent binary values – 1 indicating "yes" and 0 indicating 
"no" – that determine whether the corresponding SMILES 
descriptor is included in the QSAR model development. 
The symbol Sk refers to a SMILES atom represented by a 
single SMILES notation symbol (or a pair of inseparable 
symbols) and is associated with local molecular descrip-
tors. Descriptors constructed as linear combinations of 
two and three SMILES atoms are denoted by SSk and SSSk, 
respectively, to account for interactions between multi-
ple atomic components. The second category of SMILES 
notation-based descriptors used in the study comprises 
global descriptors, which capture the overall properties 
of the studied molecule. These include descriptors such 
as ATOMPAIR, HALO, BOND, NOSP, and HARD, each 
defined according to methodologies outlined in referenc-
es39,40. These global descriptors provide a comprehensive 
overview of molecular structure and complement the 
local descriptors in capturing the nuances of molecular 
behavior. The QSAR model developed in this study inte-
grated both SMILES notation-based descriptors (local and 
global) and local graph invariants. This hybrid approach 
facilitated the calculation of the Descriptor Correlation 
Weight (DCW) for molecules as described in Equation 2, 
providing a robust and versatile framework for accurately 
modeling the relationship between molecular features and 
biological activity.

�DCW(T,Nepoch) = ΣCW(Sk) + ΣCW(SSk) + 
ΣCW(SSSk) + ΣCW(EC0k) + ΣCW(PT2k) + � (2)
�ΣCW(PT3k) + ΣCW(VS2k) + ΣCW(VS3k) + 
ΣCW(NNCk)

In addition to the previously defined symbols Sk, SSk 
and SSSk, Equation 2 incorporates the following symbols: 
The Morgan connectivity index of zero order (the hydro-
gen-suppressed graph was used in this research) – EC0k, 
paths of length of 2 and 3 – PT2k and PT3k, valence shell 2 
and 3 – VS2k, and VS3k, and Nearest Neighbors – NNCk

38. 
The linear regression approach is used to compute the 
QSAR model (utilizing the training set) as indicated in 
Equation 3. This is achieved when the numerical data re-
garding the correlation weights are derived from the mod-
el, leading to favorable statistical results for the test set. In 
this specific study, the search for the optimal combination 
of T and Nepoch was carried out within the ranges of 1–5 for 
T and 0–50 for Nepoch.

Ac = C0 + C1 × DCW(T,Nepoch)� (3)

To thoroughly evaluate the quality, robustness, and 
predictive reliability of the developed conformation-inde-
pendent QSAR models, a comprehensive set of validation 
metrics was employed. These included widely used statis-
tical parameters such as the squared correlation coefficient 
(R2), which measures the proportion of variance explained 
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by the model, and the root-mean-squared error (RMSE), 
a standard indicator of prediction error magnitude. 
Cross-validation coefficients (Q2) were calculated to assess 
the model's performance in predicting data excluded from 
the training set, while the F-value was used to determine 
the statistical significance of the regression. Additionally, 
the mean absolute error (MAE) was included as a measure 
of the average deviation between observed and predict-
ed values, providing further insights into model accura-
cy41–44. To strengthen the reliability of the QSAR models, 
advanced validation metrics were also applied. These in-
cluded Rm

2 and MAE-based metrics, which emphasize the 
model’s predictive power for new datasets. The concord-
ance correlation coefficient (CCC) was used to evaluate 
the agreement between predicted and observed values, 
while the index of ideality of correlation (IIC) offered in-
sights into the degree to which the correlation between the 
predicted and observed values aligned with an ideal rela-
tionship45. The inclusion of these metrics ensured a thor-
ough validation process and a holistic assessment of model 
performance. A pivotal component of any QSAR model is 
the establishment of its applicability domain (AD), which 
defines the chemical space within which the model can 
make reliable predictions. The AD ensures that predictions 
are made for compounds structurally and chemically sim-
ilar to those in the training set, preventing extrapolation 
into areas of chemical space where the model may be un-
reliable. In this study, a literature-derived method was em-
ployed to determine the AD, as recommended in referenc-
es46–48. This involved systematic evaluation of the chemical 
structures and descriptors used in the model, ensuring 
that predictions adhered to the established AD criteria. 
A key aspect of this study was the analysis of "statistical 
defects" in conformation-independent molecular descrip-
tors, particularly d(A), to define the AD. These descriptors, 
previously utilized in QSAR model construction39–40, were 
scrutinized to identify potential outliers or anomalies that 
could affect model reliability. The calculations for AD de-
termination were performed using the CORAL software, 
which allowed for precise evaluation and correction of 
these statistical defects. Equation 4 formalized the meth-
odology for this process, ensuring consistency and rigor.

� (4)

In the equation above, P(A)train and P(A)calib denote 
the probabilities of a conformation-independent attribute 
or descriptor (A) in the training and test sets, respectively. 
Meanwhile, NA(train) and NA(calib) represent the frequency 
of occurrence of a conformation-independent attribute or 
descriptor (A) in the training set and the test set, respec-
tively. The statistical SMILES defect (D) is the cumulative 
sum of the defects, d(A), of all the attributes found in the 
SMILES notation of the molecules. It is computed accord-
ing to Equation 5.

� (5)

A molecule is labeled as an outlier if it falls outside 
the defined applicability domain (AD), which happens 
when its D exceeds 2 times Dav, where Dav represents the 
average D calculated for the relevant set (whether it's the 
training or test set) in which the molecule is located.

2. 2. �Molecular Docking
Docking studies were carried out using the Molegro 

Virtual Docker (MVD) software to evaluate the interac-
tions between potential ligands and the TRPV1 receptor. 
Ligands were geometrically optimized prior to docking 
using the MMFF94 force field to ensure accurate struc-
tural representations. The three-dimensional structure of 
the TRPV1 receptor used for docking studies was obtained 
from the Protein Data Bank (PDB ID: 5IRX), represent-
ing the rat TRPV1 channel in complex with the antagonist 
capsazepine, resolved at 3.27 Å resolution41. This structure 
was selected based on its biological relevance and com-
patibility with the experimental system used in the QSAR 
dataset. The binding site was defined based on the position 
of the co-crystallized antagonist and included amino acid 
residues known to participate in ligand interactions, such 
as Tyr511, Ser512, Met547, Thr550, and Glu57042. These 
residues form the hydrophobic pocket and polar environ-
ment critical for antagonist binding. Protein preparation 
included removal of crystallographic water molecules, as-
signment of charges, and optimization of hydrogen bond-
ing network using default MVD settings. The docking grid 
was centered on the native ligand position, with a radius of 
15 Å to ensure full coverage of the binding cavity. Standard 
MolDock scoring function and search algorithm parame-
ters were applied (maximum iterations = 1500; population 
size = 50; number of poses = 10 per ligand). MVD employs 
a hybrid approach in which the receptor structure is treat-
ed as rigid, while the ligand structures are allowed flexibil-
ity. This approach balances computational efficiency with 
the ability to account for conformational adaptability of li-
gands during docking. MVD identifies and quantifies both 
hydrophobic and hydrophilic interactions between the re-
ceptor and the ligands. Hydrophobic interactions primari-
ly encompass Van der Waals forces and steric effects, while 
hydrophilic interactions involve hydrogen bond formation 
between ligand atoms and specific amino acid residues in 
the active site. These interactions are quantified through 
the use of "scoring" functions, which calculate numerical 
values corresponding to binding energies51,52. In molecu-
lar docking studies, the strength and nature of ligand-re-
ceptor interactions are critical indicators of potential in-
hibitory activity. A general principle applies to enzyme and 
receptor studies: stronger and more favorable interactions 
typically correlate with enhanced inhibition potential. For 
this reason, the "scoring" functions calculated by MVD 
provide valuable insights into the binding affinity and po-
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tential efficacy of the studied ligands40. In this research, two 
primary scoring functions were calculated and utilized for 
the evaluation of inhibitory potential: MolDock Score and 
Rerank Score. The MolDockScore represents the primary 
binding energy calculated during docking, encompass-
ing contributions from steric, electrostatic, and hydrogen 
bonding interactions. The Rerank Score is a secondary 
evaluation that re-assesses the binding interactions using 
additional weighting for certain interaction types, pro-
viding a more refined prediction of binding affinity. The 
docking protocol employed in this study was meticulously 
validated to ensure its reliability and accuracy. The valida-
tion was performed in accordance with established meth-
odologies from the literature53, which involve comparing 
docking results with experimentally determined binding 
modes or known inhibitors. This validation step is crucial 
for confirming that the docking simulations accurately 
represent the ligand-receptor interactions. Furthermore, 
the results of these docking studies provide a quantitative 
basis for ranking ligands based on their predicted binding 
affinity and inhibitory potential. These findings contribute 
to the identification of promising compounds for further 
experimental validation and drug development.

To complement molecular docking and provide an 
additional layer of binding affinity prediction, we applied 
KDEEP, a deep learning-based tool for structure-based 
binding affinity estimation. KDEEP uses 3D convolution-
al neural networks trained on experimentally validated 
protein–ligand complexes to predict binding strength and 
utilizes 3D Convolutional Neural Networks (3DCNN) to 
enhance the accuracy of binding predictions54. It classifies 
input molecules into eight pharmacophore properties: hy-
drophobic, aromatic, hydrogen-bond donor and acceptor, 
positive and negative ionizable, metallic, and total exclud-
ed volume. The molecules are then processed using a Deep 
Convolutional Neural Network (DCNN) model trained on 
the PDBbind 2016 database (available at https://playmole-
cule.com/Kdeep/)55. The docking results for ligand orien-
tation within the TRPV1 receptor active site obtained with 
MolDock were used to estimate absolute binding affinity 
with KDeep. For each ligand–TRPV1 complex, KDEEP 
calculated three key parameters: pKd, binding free ener-
gies (ΔG) and ligand efficiencies (LE).

By integrating computational and statistical rigor, 
the study establishes a robust framework for exploring 
ligand interactions with the TRPV1 receptor, paving the 
way for the development of novel therapeutic agents tar-
geting this receptor.

3. Results and Discussion
Table 1 summarizes the numerical values of all the 

validation metrics used to comprehensively evaluate the 
quality and performance of the conformation-independ-
ent QSAR models developed through the Monte Carlo Ta
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models are consistent and reliable across different configu-
rations. In addition, the mean absolute error (MAE)-based 
metric was used to evaluate the precision of the models, 
and the outcomes were rated as "GOOD," further solidify-
ing the models' robustness and reliability. The final layer of 
validation involved the calculation of the index of ideality 
of correlation (IIC). This metric assesses how closely the 
correlation between predicted and observed values aligns 
with an ideal relationship. The IIC values obtained were 
highly favorable, suggesting that the developed QSAR 
models not only perform well but also exhibit a high de-
gree of predictive reliability and alignment with theoret-
ical expectations. The findings of this study strongly in-
dicate that the QSAR models developed using the Monte 
Carlo optimization method possess exceptional predictive 
potential, making them valuable tools for future applica-
tions in drug discovery and other computational research 
domains. The comprehensive validation of these models 
using multiple metrics – including R2, RMSE, Q2, F-value, 
MAE, CCC, and IIC – underscores their robustness and 
generalizability. By incorporating a rigorous methodolo-
gy for defining and adhering to the applicability domain, 
the study ensures that these models can be reliably em-
ployed for predictions involving structurally similar com-
pounds within the defined chemical space. Furthermore, 
the absence of outliers and the high concordance between 
predicted and observed values across all validation steps 
provide additional confidence in the utility of these mod-
els. This thorough validation process paves the way for the 
practical application of these QSAR models in tasks such 

optimization method. These metrics demonstrate the 
robustness, predictive accuracy, and reproducibility of 
the models, providing a clear indication of their reliabil-
ity. The results highlight the strong predictive potential 
of the QSAR models, with no significant deviations or 
inconsistencies observed across the dataset. Among the 
various splits examined during the optimization process, 
the second split, utilizing a T value of 4 and Nepoch of 15, 
produced the most favorable results. This configuration 
led to a model with superior performance, as indicated 
by its validation metrics. Notably, no outliers were iden-
tified during the analysis, as the methodology applied for 
defining the applicability domain (AD) confirmed that all 
molecules fell within the defined chemical space. This is a 
crucial finding, as the absence of outliers ensures that the 
model’s predictions are both valid and reliable within the 
specified AD, thereby enhancing its applicability to unseen 
compounds. Figure 1 provides a graphical representation 
of the best-performing QSAR model, which achieved the 
highest R2 value across all three splits during the optimal 
Monte Carlo optimization run. The graph visually illus-
trates the close agreement between observed and predicted 
values, highlighting the model’s predictive accuracy and its 
capability to generalize across the dataset. To ensure fur-
ther validation, the concordance correlation coefficient 
(CCC) was calculated for all QSAR models. The CCC is 
a robust metric that evaluates the reproducibility of pre-
dictions by measuring the degree of agreement between 
observed and predicted values. The results demonstrated 
high reproducibility across all splits, confirming that the 

Figure 1. Above) Graphical presentation of the best Monte Carlo optimization runs (the highest value for R2) for the developed QSAR models; 
Bellow) Diff. – Difference between experimental and calculated values for pIC50.
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as virtual screening, lead optimization, and the prediction 
of biological activity for new compounds. Ultimately, these 
models represent a significant advancement in the integra-
tion of computational tools into modern drug discovery 
workflows.

The mathematical formulations for the top-perform-
ing QSAR models, as determined by the test set R2 values 
for all the splits, are provided in Equations 6–8.

�Split 1: pIC50 = –0.4579(±0.0534) + 
0.0398(±0.0003)×DCW(3,24) 			  (6)

�Split 2: pIC50 = 0.3013(±0.0420) + 
0.0297(±0.0002)×DCW(1,10) 			  (7)

�Split 3: pIC50 = 2.1931(±0.0443) + 
0.0339(±0.0003)×DCW(3,23)			  (8)

The equations (Eq. 6–8) show that for split 1, the 
preferred values for T and Nepoch are 3 and 24, respective-
ly. For split 2, the preferred values are 1 for T and 10 for  
Nepoch, while for split 3, the preferred values are 3 for T and 
23 for Nepoch.

There have been significant efforts to apply li-
gand-based methodologies for developing pharmacoph-
ore and QSAR models aimed at TRPV1 antagonists. These 
studies have utilized various computational approaches, 
demonstrating the versatility and effectiveness of such 
methods in exploring the molecular basis of TRPV1 an-
tagonism. Some studies have employed molecular field-
based techniques like CoMFA (Comparative Molecular 
Field Analysis) and CoMSIA (Comparative Molecular 
Similarity Indices Analysis), as well as Phase QSAR meth-
odologies56. These approaches focus on the spatial and 
electronic properties of molecules to identify patterns cor-
relating with antagonistic activity. Others have used de-
scriptor-based algorithms to determine molecular descrip-
tors most strongly associated with TRPV1 antagonism, 
enabling the development of predictive QSAR models57. 
In other efforts, 3D alignments of TRPV1 antagonists have 
been analyzed in the context of homology models. These 
studies have leveraged the structural insights provided by 
homology models to explore the spatial arrangements and 
interactions of antagonists within the receptor binding 
site54.58. For example, Goldmann et al. utilized publicly 
available data on TRPV1 antagonists to construct pharma-
cophore models. Their research involved extensive valida-
tion of these models, which were then applied to virtually 
screen the LifeChem database comprising 305,841 com-
pounds. This exercise identified 12 hits with promising ac-
tivity and diversity compared to reference antagonists and 
other active compounds. Goldmann and colleagues fur-
ther hypothesized that pharmacophore modeling of public 
data could reveal "pharmacophoric ensembles," helping to 
differentiate safe compounds from those with undesirable 
profiles59. Similarly, Feng et al. reported constructing hu-

man TRPV1 (hTRPV1) homology models based on the 
recently released rat TRPV1 (rTRPV1) structure. Their 
study involved validation using known agonists and an-
tagonists, prediction of binding modes for well-known 
antagonists, and a virtual screening exercise targeting the 
putative antagonist binding site. This approach provided 
valuable insights into the molecular interactions govern-
ing TRPV1 antagonism and highlighted potential candi-
dates for further investigation60. Kristam et al. developed 
and validated predictive 3D-QSAR models for a collection 
of TRPV1 receptor antagonists using CoMFA and Topo-
mer-CoMFA methodologies. These models were applied 
to screen databases for alternative fragments that could re-
place key functional groups in known antagonists, such as 
the disubstituted dimidazolyl moiety (R1 fragment) or the 
piperazine aryl moiety (R2 fragment)34. Their work un-
derscores the potential of 3D-QSAR techniques in guiding 
the rational design of structurally optimized TRPV1 an-
tagonists. Together, these studies demonstrate the power 
of ligand-based methodologies, including pharmacophore 
modeling, QSAR, and homology modeling, in advancing 
our understanding of TRPV1 receptor antagonists. They 
highlight the potential of computational tools to identify 
novel candidates, optimize known scaffolds, and reveal 
critical molecular features that differentiate efficacious and 
safe compounds from those with less desirable profiles. 
These approaches continue to contribute significantly to 
the field of TRPV1-targeted drug discovery, offering path-
ways to innovative therapeutic agents for pain manage-
ment and other conditions.

A primary objective of this research was to identi-
fy molecular fragments, defined as optimal descriptors in 
SMILES notation, that contribute positively or negatively to 
the studied activity, as supported by prior studies39,40,61,62. 
These fragments are essential for understanding the struc-
tural features that influence the biological activity of com-
pounds, providing valuable insights for drug design and 
optimization. The complete set of calculated molecular 
descriptors, derived from both SMILES notation and mo-
lecular graph-based approaches, is provided in Table S2 in 
the Supplementary Material. These descriptors encompass 
a wide range of molecular properties and were systemati-
cally analyzed to determine their relevance to the studied 
activity. To aid in understanding, an example calculation 
of a molecule’s summarized Descriptor Correlation Weight 
(DCW) and its corresponding studied activity (pIC50) is 
detailed in Table 2. For simplicity, molecular graph-based 
descriptors are excluded from the example, allowing for 
a more focused interpretation of the contributions from 
SMILES-based descriptors. This example highlights the 
methodology used to link molecular features to biologi-
cal activity, demonstrating how individual descriptor con-
tributions are aggregated into the DCW. Furthermore, a 
graphical representation of the molecular fragments asso-
ciated with the same molecule is provided in Figure 2. This 
visualization illustrates the structural components of the 
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Table 2. Example of DCW calculation

SMILES notation:
Nc1ccc(cc1)c1cc(cc2c1NC(N2)N1CCN(CC1)c1ncccc1C(F)(F)F)C(F)(F)F

DCW = 115.8633 
pIC50(calc.) = 6.1255

SAk	 CW(SAk)	 SAk	 CW(SAk)	 SAk	 CW(SAk)	 SAk	 CW(SAk)

10001000	 –0.0545	 C...(.......	 0.4633	 c...c...1...	 –0.1625	 N...(...C...	 1.6575
(...(.......	 0.2736	 c...(...c...	 0.2654	 C...C...1...	 –0.11	 N...........	 –0.1445
(...........	 0.1116	 c...........	 0.0465	 c...c...2...	 –2.6721	 n...........	 0.2927
(...C...(...	 0.3527	 C...........	 –0.3361	 c...c...c...	 0.1654	 N...1.......	 –0.7082
(...F...(...	 –0.0813	 c...1...(...	 0.2406	 C...N...(...	 –0.1388	 n...1.......	 –0.5053
1...(.......	 0.8061	 C...1...(...	 0.1533	 c...N.......	 0.1804	 N...1...C...	 –0.0284
1...........	 0.2906	 c...1.......	 0.0952	 C...N...1...	 0.1723	 n...1...c...	 0.1866
1...c...(...	 –0.3129	 C...1.......	 –0.5409	 c...n...1...	 0.0845	 N...2.......	 0.5679
1...C...(...	 0.4098	 c...1...c...	 0.7524	 F...(...(...	 0.3315	 N...C...(...	 –0.2294
1...N...(...	 0.1976	 c...1...C...	 0.2782	 F...(.......	 0.0918	 N...C.......	 –0.1215
2...(.......	 0.3586	 c...1...N...	 –0.424	 F...(...C...	 1.0121	 n...c.......	 0.7165
2...........	 0.4303	 c...2.......	 0.0583	 F...(...F...	 0.0196	 N...c...1...	 0.4924
2...c...1...	 –0.6572	 c...2...c...	 0.1318	 F...........	 0.3709	 N...C...C...	 –2.8109
BOND00000	 0.1922	 c...c...(...	 0.1144	 HALO10000	 –0.6764	 n...c...c...	 2.3328
c...(.......	 0.1999	 C...C...(...	 0.0764	 N...(.......	 1.8556	 NOSP10000	 0.6488
c...c.......	 0.1336	 C...C.......	 –0.4259	 N...(...2...	 0.6523		

Figure 2. Contribution of molecular fragments to TRPV1antagonism (Green – Increase, Red – Decrease).
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molecule and their respective roles, offering a clear depic-
tion of how specific fragments correlate with the observed 
activity. Together, these analyses provide a comprehensive 
framework for identifying and understanding the molec-
ular determinants of TRPV1 antagonism, facilitating the 
rational design of new compounds with improved efficacy 
and safety profiles.

The results from QSAR modeling revealed specific 
molecular fragments, identified through SMILES nota-
tion, that significantly influence pIC50 activity, either posi-
tively or negatively. These findings provide a structural ba-
sis for designing new TRPV1 antagonists with enhanced 
activity.Molecular fragments that positively influenced 
pIC50 activity included those associated with trifluorome-
thyl groups, such as “F...........”, “(...........”, “C...(.......”, “F...
(.......”, “(...(.......”, “F...(...C...”, “F...(...(...”, “F...(...F...”, “(...C...(...”, 
and “F...(...C...”. Fragments associated with aromatic car-
bon atoms, including “c...........”, “c...c.......”, and “c...c...c...”, 
as well as the nitrogen atom bonded to aromatic carbon 
(“c...N.......”), also demonstrated positive effects. Fragments 
that negatively influenced pIC50 activity included the ni-
trogen atom (“N...........”), carbon atom (“C...........”); and 
combinations of nitrogen bonded to one or two carbon 
atoms (“N...C.......” and “N...C...C...” respectively). These 
negatively correlated fragments provided insights into 
structural features that should be avoided or minimized in 
antagonist design.

cule A1 was created by replacing the amino group with a 
hydroxyl group in the para position, resulting in the addi-
tion of the fragment “O............”. Molecule A2 introduced a 
chlorine atom at the same position, adding the “Cl............” 
fragment, while molecule A3 incorporated a methoxy 
group with the fragment “C...O.......”. Molecule A4 intro-
duced an aminomethyl group, adding the “C...N.......” frag-
ment, enhancing hydrogen bonding potential. Molecule 
A5 featured a dimethylamino group, adding the fragments 
“C...(.......”, “(...........”, “N...(.......”, and “N...(...C...”, which in-
dicated increased molecular branching around the nitro-
gen atom. Molecule A6 incorporated an isopropyl group, 
resulting in fragments such as “C...(.......”, “(...........”, “C...
(.......”, and “C...(...C...” that also indicated increased branch-
ing on carbon atoms. Molecule A7 introduced a carboxyl 
group, contributing fragments such as “=...........”, “=...C...
(...”, “C...=.......”, “O...(.......”, “O...(...C...”, “O...=.......”, “O...C...
(...”, and “O...C.......” that enhanced electron-withdrawing 
and polar interaction properties. All introduced fragments 
in molecules A1–A7 were associated with a positive im-
pact on pIC50 activity, leading to higher predicted activity 
values. The substitution strategy and resulting molecular 
modifications were validated through increased pIC50 
values, as summarized in Table 3. These results demon-
strate the effectiveness of the CAD approach in integrating 
QSAR insights for the rational design of novel TRPV1 an-
tagonists with improved biological activity.

Figure 3. Chemical structures of designed molecules.

The molecular fragments identified as positively in-
fluencing activity were applied in a Computer-Aided De-
sign (CAD) process to develop seven novel compounds 
with enhanced pIC50 values. These compounds were de-
signed by introducing functional groups that incorporated 
new fragments positively associated with activity. Mole-

All the designed molecules, along with the template 
molecule A, were subjected to molecular docking studies 
targeting TRPV1 to evaluate and further validate the pre-
dictive accuracy of the developed QSAR models. Table 3 
provides the numerical values of the calculated "scoring" 
functions, which reflect the strength of interactions be-
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tween the ligands and the receptor. Since different scor-
ing functions capture distinct ligand-amino acid interac-
tions, a comprehensive assessment of inhibitory potency 
requires consideration of all relevant factors. Based on 
the results obtained for the MolDock and ReRank scoring 
functions, molecule A6 emerged as the compound with 
the highest potential inhibitory activity. This finding aligns 
well with the predictions from QSAR modeling, reinforc-
ing the consistency and reliability of the models. In con-
trast, the template molecule A exhibited the lowest Mol-
Dock and ReRank scores, a result that also corresponds to 
the predictions made by the QSAR models. These correla-
tions between docking results and QSAR predictions pro-
vide strong validation for the approach used in this study. 
Table 3 presents a list of the designed TRPV1 antagonist 
candidates, along with their predicted biological activity 
(pIC₅₀), binding free energy (ΔG), ligand efficiency (LE), 
and predicted dissociation constant pKd These values were 
calculated using a combination of QSAR modeling, mo-
lecular docking, and KDEEP-based binding affinity esti-
mation. As expected, compounds with higher predicted 
pIC₅₀ values–which indicate stronger biological activity 
and lower effective concentration–generally correspond to 
more favorable binding energies (lower ΔG values). This 
relationship is consistent with the principle that stronger 

binding (i.e., more negative ΔG) often correlates with in-
creased ligand efficiency and potency. For instance, com-
pound A6 shows the highest predicted pIC₅₀ (7.2891), in 
line with its strong binding affinity (ΔG = –9.72 kcal/mol) 
and the highest pKd (7.20), indicating a tighter ligand–
receptor complex. Ligand efficiency (LE), defined as the 
binding energy per heavy atom, also supports this trend 
and reflects the balance between molecular size and bind-
ing strength. Compounds A5 and A6 exhibit both high 
pIC₅₀ and LE values, suggesting that they are not only po-
tent but also structurally efficient binders. Overall, these 
results demonstrate a high level of consistency between 
ligand-based (QSAR) and structure-based (docking and 
deep learning) predictions, further validating the designed 
molecules as promising candidates for future experimental 
testing.

The best-calculated binding poses of all designed 
molecules within the active site of TRPV1 are illustrat-
ed in Figure 4. Further in Figure 4 sufraces of active site 
(aromatic, hydrophobic, H-Bond and solvent accessibility 
surface – SAS). These visual representations highlight the 
spatial orientation and interaction profiles of each mol-
ecule, further supporting the docking results and their 
alignment with QSAR-based predictions. Together, these 
findings underscore the effectiveness of combining QSAR 

Table 3. The list of all the designed molecules with their calculated activities, score values (kcal/mol), ΔG (kcal/
mol), ligand efficiency (LE) (kcal/mol) and pKd

Molecule	 pIC50(calc.)	 Rerank	 MolDock	 ΔG 	 LE 	 pKd 

A0	 6.1255	 –121.35	 –118.85	 –7.437	 –0.1957	 5.5089
A1	 6.4688	 –133.49	 –128.49	 –8.3795	 –0.2328	 6.207
A2	 6.6225	 –137.85	 –121.65	 –9.3946	 –0.2610	 6.9590
A3	 6.5881	 –136.35	 –134.32	 –8.6117	 –0.2328	 6.3790
A4	 6.4472	 –133.22	 –130.66	 –8.7899	 –0.2376	 6.5110
A5	 7.0963	 –139.59	 –136.57	 –9.2786	 –0.2577	 6.8730
A6	 7.2891	 –144.43	 –137.47	 –9.7236	 –0.2559	 7.2027
A7	 6.7976	 –138.48	 –130.3	 –9.1377	 –0.2405	 6.7686

Figure 4. Left) The best calculated poses for all the designed molecules within the active site of TRPV1; Right) Surfaces inside active site: A) Aro-
matic, B) Hydrophobic, C) H-Bond and D) SAS
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modeling and molecular docking studies in identifying 
and validating promising TRPV1 antagonists.

This study highlights the potential of the Monte 
Carlo optimization method for generating diverse and 
informative QSAR models. However, certain limitations 
merit further investigation to enhance the method's appli-
cability and reliability. One notable limitation involves the 
interpretability of certain SMILES-based descriptors. The 
inclusion of two- and three-atom combinations can result 
in descriptors such as "(...2......." or "#.../.......", which lack 
clear physical or chemical meaning. This ambiguity makes 
it challenging to derive mechanistic insights into their in-
fluence on biological properties, such as vaginal permeabil-
ity predictions. Improving the clarity and interpretability of 
these descriptors would significantly enhance the practical 
utility of the models. Fragment identification also poses 
challenges. The method may struggle to detect rare but 
biologically significant molecular fragments, which could 
provide valuable insights into permeability or activity. Ad-
ditionally, the focus on smaller fragments, such as those 
comprising three atoms, may overlook the contributions 
of larger structural motifs or long-range interactions that 
play a critical role in biological processes. The CORAL al-
gorithm, employed within the Monte Carlo optimization 
framework, introduces another limitation. Its potential 
prevalence bias may prioritize common fragments within 
the dataset, potentially underestimating the significance of 
truly active fragments that are present across all SMILES 
descriptors. This bias could reduce the algorithm’s ability 
to identify unique features critical for model predictions. 
While the hybrid approach incorporates descriptors de-
rived from both SMILES notation and molecular graphs, 
some molecular graph-based descriptors also lack clear 
mechanistic interpretation. This limitation restricts the 
ability to connect model predictions with underlying 
chemical or biological principles, which is essential for ad-
vancing scientific understanding and rational compound 
design. To address these limitations, data preprocessing 
strategies could be implemented. Preliminary analysis and 
filtering of molecular fragments and descriptors might help 
identify those that are most informative and relevant to 
the studied activity. This approach could reduce noise, im-
prove model interpretability, and enhance the mechanistic 
insights derived from the models. Additionally, incorpo-
rating techniques that balance the emphasis on rare and 
common fragments may improve the identification of bio-
logically significant features. Future research should focus 
on addressing these challenges to enhance the capabilities 
of the Monte Carlo optimization method. Efforts could in-
clude refining descriptor definitions, exploring alternative 
algorithms with reduced bias, and expanding the scope of 
descriptors to capture larger and more complex molecular 
interactions. By overcoming these limitations, the Monte 
Carlo optimization method could become an even more 
powerful tool in the development of QSAR models and 
their application in drug discovery and beyond.

4. Conclusion
The primary goal of this study was to develop relia-

ble QSAR models with strong predictive power for TRPV1 
antagonism, validated through a comprehensive set of 
statistical parameters. Conformation-independent QSAR 
models were constructed using the Monte Carlo optimi-
zation method, leveraging optimal descriptors derived 
from both local graph invariants and SMILES notation. 
These descriptors provided a robust foundation for the 
modeling process, enabling the identification of structural 
features influencing TRPV1 antagonism. The robustness 
and predictive capabilities of the QSAR models were thor-
oughly evaluated using various statistical techniques. The 
validation metrics confirmed the high applicability of the 
models, demonstrating their effectiveness in predicting 
biological activity. The Monte Carlo optimization method 
facilitated the identification of molecular fragments, repre-
sented as SMILES notation fragments, with both positive 
and negative effects on TRPV1 antagonism. These insights 
offered a deeper understanding of the molecular features 
contributing to or detracting from activity, supporting the 
rational design of more effective antagonists. Molecular 
docking studies served as the final validation step, further 
confirming the predictive accuracy of the developed QSAR 
models. The docking results provided an additional layer 
of evidence for the potential inhibitory effects of the de-
signed molecules. A strong inter-correlation was observed 
between the calculated pIC50 values from the best QSAR 
model and the interaction energies derived from docking 
studies with the TRPV1 active site. To further strengthen 
the predictive workflow, we incorporated KDEEP-a deep 
learning-based method for protein–ligand binding affin-
ity estimation–which provided additional independent 
predictions of pKd and ΔG values. The strong concord-
ance between these results and the QSAR-predicted pIC₅₀ 
values supports the internal validity of the designed com-
pounds and adds confidence to their prioritization. KDEEP 
thus served as a third, AI-powered validation layer with-
in our CADD pipeline, highlighting its utility in guiding 
early-phase drug discovery even in the absence of experi-
mental data. This concordance highlights the reliability of 
the combined QSAR and molecular docking approach in 
predicting ligand-receptor interactions. The methodology 
described in this study demonstrates significant potential 
for broader applications, including the discovery of nov-
el therapeutics for conditions such as atherosclerosis. By 
targeting the antagonism of Transient Receptor Potential 
Vanilloid, member 1 (TRPV1), the outlined approach pro-
vides a versatile framework for identifying and optimizing 
drug candidates for a variety of therapeutic areas.
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Povzetek
V kontekstu farmakološkega posega pri lajšanju bolečine se je transientni receptorski potencial vaniloid tip 1 (TRPV1), 
nespecifični kationski kanal iz družine TRP ionskih kanalov, izkazal kot obetavna tarča. Kljub temu pa je razpoložljivost 
selektivnih antagonistov TRPV1 in njihovih farmakoloških lastnosti še vedno omejena. V tem raziskovalnem članku 
predstavljamo različne tehnike QSAR modeliranja, uporabljene na nizu piperazinil-arilnih spojin, ki delujejo kot an-
tagonisti TRPV1. Opisi, uporabljeni pri oblikovanju konformacijsko neodvisnih QSAR modelov, vključujejo lokalne 
molekulske grafe in SMILES notacijo, pri čemer je bila za razvoj modela uporabljena tudi Monte Carlo optimizacija. Za 
oceno kakovosti, robustnosti in napovedne sposobnosti razvitih modelov smo uporabili več statističnih metod, ki so 
dale pozitivne rezultate. Za najboljši QSAR model so bili doseženi naslednji statistični parametri: za učno množico R² 
= 0.7155, CCC = 0.8134, IIC = 0.7430, Q² = 0.6970, RMSE = 0.645, MAE = 0.489 in F = 157; za testno množico pa R² = 
0.9271, CCC = 0.9469, IIC = 0.9635, Q² = 0.9241, RMSE = 0.367, MAE = 0.329 in F = 328. Poleg tega smo identificirali 
molekulske fragmente, izpeljane iz deskriptorjev SMILES notacije, ki pojasnjujejo opažene spremembe v ocenjeni ak-
tivnosti, kar je vodilo do zasnove štirih novih antagonistov. Končna validacija QSAR modela in zasnovanih antagonistov 
je bila izvedena z molekulskim sidranjem, ki je pokazalo dobro ujemanje z rezultati QSAR modeliranja.
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