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Abstract

In the context of pharmacological intervention for pain, Transient Receptor Potential Vanilloid, member 1 (TRPV1), as
a non-selective cation channel belonging to the transient receptor potential (TRP) family of ion channels, has emerged
as a promising target. However, the availability of selective TRPV1 antagonists and their associated pharmacological
properties remains limited. This research paper explores various QSAR modeling techniques applied to a range of piper-
azinyl-aryl compounds acting as TRPV1 antagonists. The descriptors utilized in the creation of conformation-independ-
ent QSAR models included local molecular graph invariants and the SMILES notation, along with the incorporation of
the Monte Carlo optimization method as a model development technique. Several statistical methods were employed to
evaluate the quality, robustness, and predictive capacity of the developed models, yielding positive results. For the best
developed QSAR model following statistical parameters were obtained for training set R? = 0.7155, CCC = 0.8134, IIC =
0.7430, Q? = 0.6970, RMSE = 0.645, MAE = 0.489 and F = 157; and for test set R? = 0.9271, CCC = 0.9469, 1IC = 0.9635,
Q?=0.9241, RMSE = 0.367, MAE = 0.329 and F = 328. Additionally, molecular fragments derived from SMILES notation
descriptors, which explain observed changes in the evaluated activity, were identified, leading to the design of four new
antagonists. The final validation of the QSAR model and the designed antagonists was conducted through molecular
docking, which demonstrated strong correlation with the QSAR modeling results.
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1. Introduction

TRPV1 (transient receptor potential cation channel,
subfamilyV, member 1) is a non-selective cation channel
activated by a variety of exogenous and endogenous stim-
uli. Cloning of TRPV1 and demonstration of its therapeu-
tic value have led to intense research in understanding
the molecular mechanisms encompassing the responses
of sensory neurons to stimuli such as heat, protons, some
endogenous activators such as an and amide and exoge-
nous activators such as capasaicin!=>. TRPV1, also known
as VR1 (Vanilloid Receptor 1), is primarily expressed on

unmyelinated pain-sensing nerve fibers (C-fibers) and
small A fibers in the dorsal root and trigeminal ganglia®’.
Activation of the channel leads to an influx of calcium
and sodium ions into the cell, causing depolarization, and
that in turn results in the excitation of primary sensory
neurons and ultimately in the perception of pain, though
a reduction of the activation thresholds of the channel
to other stimuli indicate that agonists of the channel can
cause desensitization with therapeutic application in the
management of pain. However, such desensitization leads
to the side effects of burning sensation, irritation, and
neurotoxicity, resulting from continuous influx of calci-
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um ions into the cells, thus limiting the clinical use of ag-
onists®1%. Blocking the TRPV1- mediated pain signaling
pathways with receptor antagonists is an alternative prom-
ising strategy for the development of novel analgesic drugs
with potentially fewer side effects!!~!%. The chemistry and
pharmacology of several classes of competitive TRPV1 an-
tagonists, based on chemotypes containing thiourea, urea,
and amide groups, have been described and reviewed!>-18,
They have been classified into four profiles based on their
ability to differentially modulate TRPV1 activation by dif-
ferent modes such as capsaicin, pH 5 and heat!’.

Over the years, many antagonists that have entered
and progressed into various clinical phases have failed
due to the development of hyperthermia as an undesired
on-target side-effect. With increased structural, mecha-
nistic and biophysical knowledge on TRPV1, there is an
unrecognized need to find more and diverse chemo types
for TRPV1 antagonists. New chemo types are needed to
evolve functionally-selective or modality-selective antago-
nists that can probe and prove if hyperthermia can be dis-
sociated from the other functions of this ion channel?!-?2.
The need for new chemotypes is encouraged by the fact
that there numerous new indications attributed to TRPV1
for which small molecule chemical probes are required for
validation?>=2>. Apart from validation for newer indica-
tions, probes are required to decipher the potential con-
sequences of targeting a single indication. In this regard,
a generally applicable TRPV1 antagonist pharmacophore
that can enable discovery of novel chemotypesis critical.

Drug discovery and development are inherently
time-consuming processes, requiring substantial time, ef-
fort, and financial resources. These challenges arise from
the need to identify effective and safe therapeutic com-
pounds through extensive experimental screening, op-
timization, and validation. To mitigate these constraints,
chemoinformatics has emerged as an essential discipline,
leveraging computational tools and in silico methodolo-
gies to accelerate various stages of the drug development
pipeline. Chemoinformatic approaches offer a wide range
of applications, including the identification of novel lead
compounds, optimization of pharmacological activity,
and improvement of pharmacokinetic and toxicological
profiles of compounds with known biological activity?-28,
Among the numerous chemoinformatic techniques, quan-
titative structure-activity relationship (QSAR) modeling is
recognized as the most extensively applied and impactful
approach. QSAR studies aim to establish predictive rela-
tionships between the chemical structure of compounds
and their biological activity, providing valuable insights
into molecular interactions and activity mechanisms.
Contemporary QSAR models are developed using a va-
riety of molecular descriptors, which are computationally
derived parameters that capture distinct chemical, physi-
cal, and structural features of molecules. These descriptors
vary widely, encompassing properties such as electronic,
steric, hydrophobic, and topological characteristics. The

construction of QSAR models involves a systematic pro-
cess. Initially, molecular descriptors are calculated from
well-defined molecular structures, each descriptor con-
tributing unique insights into the molecule’s behavior.
These descriptors are then analyzed to identify their rel-
evance and predictive capacity, enabling the development
of robust mathematical equations that quantitatively relate
molecular descriptors to observed biological activities.
Such models provide a powerful framework for predicting
the activity of untested compounds, guiding the rational
design of new drugs, and prioritizing experimental vali-
dation.

Despite their strengths, QSAR models are not with-
out limitations. The accuracy and reliability of a QSAR
model depend heavily on the quality and diversity of the
training dataset, the choice of molecular descriptors, and
the statistical methods employed. Moreover, the interpret-
ability of these models can sometimes be challenging, es-
pecially when complex machine learning algorithms are
used. Nevertheless, QSAR remains a cornerstone of mod-
ern drug discovery, contributing to significant time and
cost savings by enabling the prioritization of promising
candidates for further experimental testing?~*. As com-
putational power and chemoinformatics methodologies
continue to evolve, the integration of QSAR with other
in silico approaches, such as molecular docking, phar-
macophore modeling, and machine learning, promises to
further enhance its predictive capabilities. This integration
will likely play a pivotal role in addressing the growing de-
mand for efficient, cost-effective, and innovative drug de-
velopment strategies.

This research employed various in silico methods
to identify novel compounds with potential antagonistic
effects on the TRPV1 receptor. The study focused on de-
veloping QSAR models using conformation-independent
molecular descriptors derived from SMILES notation and
local graph invariants, integrated with the Monte Car-
lo optimization method. A key objective was to identify
molecular fragments or structural features responsible for
TRPV1 antagonism and to explore correlations among the
different computational approaches used. The study suc-
cessfully pinpointed molecular fragments present in small
molecules that are critical for ligand-receptor interactions.
These findings provide valuable insights into the structural
basis of TRPV1 antagonism, offering a foundation for the
rational design and development of novel analgesic agents.
The identified fragments could be strategically employed
to enhance the efficiency and specificity of future drug dis-
covery efforts targeting TRPV 1-related pathways.

2. Materials and Method

In this study, a dataset comprising 98 molecules
known to TRPVl1antagonism effect was collected from
the scientific literature®*. The compounds analyzed in

Golubovic et al.: Development of Novel Analgesics Related to TRPV 1

451



452

Acta Chim. Slov. 2025, 72, 450-462

this study were evaluated for their ability to inhibit cap-
saicin- (CAP, 500 nM) or acid- (pH 5.0) induced uptake
of #Ca?* in Chinese Hamster Ovary (CHO) cells sta-
bly expressing rat TRPV1 (rTRPV1), as previously de-
scribed®3¢. Functional activity was reported as ICso +
SEM (nM), based on experimental measurements. These
ICso values were collected from [insert database or lit-
erature reference], and converted to pICs, values using
the standard equation: pICso = -log10(ICso x 107°). The
dataset was curated to remove duplicates, inconsistent
records, and extreme outliers prior to model develop-
ment. The SMILES notation for all the molecules used in
the study, along with their corresponding pICs, values, is
provided in Table S1 within the Supplementary Material.
To ensure the robustness of the analysis, the dataset was
randomly divided into three random splits with two sets:
a training set consisting of 73 compounds (75%) and a
test set comprising 25 compounds (25%). The normality
of the activity distribution for all the dataset splits was
assessed following the methodology described in a pub-

lished reference?.

2. 1. QSAR Modeling Utilizing the Monte
Carlo Optimization Method

The Monte Carlo optimization method was em-
ployed to construct a conformation-independent QSAR
model using a hybrid approach that combined molecular
graph-based and SMILES notation-based descriptors. The
molecular graph-based descriptors included local graph
invariants derived from fundamental graph theory con-
cepts, such as paths and walks, with detailed mathemat-
ical definitions available in the literature®. The optimal
descriptors identified from the graph-based approach en-
compassed Morgan extended connectivity indices (ECO),
valence shell descriptors for ranges 2 and 3 (s2, s3), path
numbers for lengths 2 and 3 (p2, p3), the number of neigh-
boring carbon atoms (Number of Carbon), and the num-
ber of neighboring non-carbon atoms (Number of Non
Carbon). In parallel, SMILES notation-based descriptors
offered mechanistic insights by representing molecular
fragments. Each descriptor contributes to the molecule's
Descriptor Correlation Weight (DCW), which is comput-
ed as the sum of the correlation weights (CW) assigned to
all relevant SMILES descriptors. This relationship is math-
ematically formalized in Equation 1. By combining these
two descriptor systems, the hybrid approach provides a
robust framework for characterizing molecular features,
enabling enhanced predictive accuracy and interpretabili-
ty in identifying key structural determinants of biological
activity.

DCW(T,Nepoch) = zZCW(ATOMPAIR) +
xCW(NOSP) + yCW(BOND) + tCW(HALO) +
rCW(HARD) + aZCW(Sy) + PZCW(SSy) +
yEZCW(SSS})

(1)

In Equation 1, the variables z, x, y, t, a, B, y repre-
sent binary values — 1 indicating "yes" and 0 indicating
"no" - that determine whether the corresponding SMILES
descriptor is included in the QSAR model development.
The symbol Sy refers to a SMILES atom represented by a
single SMILES notation symbol (or a pair of inseparable
symbols) and is associated with local molecular descrip-
tors. Descriptors constructed as linear combinations of
two and three SMILES atoms are denoted by SS, and SSSy,
respectively, to account for interactions between multi-
ple atomic components. The second category of SMILES
notation-based descriptors used in the study comprises
global descriptors, which capture the overall properties
of the studied molecule. These include descriptors such
as ATOMPAIR, HALO, BOND, NOSP, and HARD, each
defined according to methodologies outlined in referenc-
es*>*0. These global descriptors provide a comprehensive
overview of molecular structure and complement the
local descriptors in capturing the nuances of molecular
behavior. The QSAR model developed in this study inte-
grated both SMILES notation-based descriptors (local and
global) and local graph invariants. This hybrid approach
facilitated the calculation of the Descriptor Correlation
Weight (DCW) for molecules as described in Equation 2,
providing a robust and versatile framework for accurately
modeling the relationship between molecular features and
biological activity.

DCW(T>Nepoch) = ZCW(Sk) + ZCW(SSk) +
SCW(SSS,) + ZCW(ECO,) + SCW(PT2,) +
SCW(PT3,) + SCW(VS2,) + SCW(VS3,) +
SCW(NNC,)

(2)

In addition to the previously defined symbols S, SS;
and SSS;, Equation 2 incorporates the following symbols:
The Morgan connectivity index of zero order (the hydro-
gen-suppressed graph was used in this research) - ECOy,
paths of length of 2 and 3 - PT2, and PT3y, valence shell 2
and 3 - VS2,, and VS3,, and Nearest Neighbors - NNC; .
The linear regression approach is used to compute the
QSAR model (utilizing the training set) as indicated in
Equation 3. This is achieved when the numerical data re-
garding the correlation weights are derived from the mod-
el, leading to favorable statistical results for the test set. In
this specific study, the search for the optimal combination
of T'and Nep,oc, was carried out within the ranges of 1-5 for
T and 0-50 for Nepoch-

Ac = Cy+ C; X DCW(T,Nepoch) 3)

To thoroughly evaluate the quality, robustness, and
predictive reliability of the developed conformation-inde-
pendent QSAR models, a comprehensive set of validation
metrics was employed. These included widely used statis-
tical parameters such as the squared correlation coefficient
(R?), which measures the proportion of variance explained
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by the model, and the root-mean-squared error (RMSE),
a standard indicator of prediction error magnitude.
Cross-validation coeficients (Q?) were calculated to assess
the model's performance in predicting data excluded from
the training set, while the F-value was used to determine
the statistical significance of the regression. Additionally,
the mean absolute error (MAE) was included as a measure
of the average deviation between observed and predict-
ed values, providing further insights into model accura-
cy*1~*. To strengthen the reliability of the QSAR models,
advanced validation metrics were also applied. These in-
cluded R, and MAE-based metrics, which emphasize the
model’s predictive power for new datasets. The concord-
ance correlation coefficient (CCC) was used to evaluate
the agreement between predicted and observed values,
while the index of ideality of correlation (IIC) offered in-
sights into the degree to which the correlation between the
predicted and observed values aligned with an ideal rela-
tionship*. The inclusion of these metrics ensured a thor-
ough validation process and a holistic assessment of model
performance. A pivotal component of any QSAR model is
the establishment of its applicability domain (AD), which
defines the chemical space within which the model can
make reliable predictions. The AD ensures that predictions
are made for compounds structurally and chemically sim-
ilar to those in the training set, preventing extrapolation
into areas of chemical space where the model may be un-
reliable. In this study, a literature-derived method was em-
ployed to determine the AD, as recommended in referenc-
es?6~8_This involved systematic evaluation of the chemical
structures and descriptors used in the model, ensuring
that predictions adhered to the established AD criteria.
A key aspect of this study was the analysis of "statistical
defects" in conformation-independent molecular descrip-
tors, particularly d(A), to define the AD. These descriptors,
previously utilized in QSAR model construction®*-, were
scrutinized to identify potential outliers or anomalies that
could affect model reliability. The calculations for AD de-
termination were performed using the CORAL software,
which allowed for precise evaluation and correction of
these statistical defects. Equation 4 formalized the meth-
odology for this process, ensuring consistency and rigor.

— |P(Atrain)—P (Atest)|
d(A) n N(A.Era.in)_N(Atres.!) (4)

In the equation above, P(A) i, and P(A) ., denote
the probabilities of a conformation-independent attribute
or descriptor (A) in the training and test sets, respectively.
Meanwhile, NA (i,in) and NA(.,;,) represent the frequency
of occurrence of a conformation-independent attribute or
descriptor (A) in the training set and the test set, respec-
tively. The statistical SMILES defect (D) is the cumulative
sum of the defects, d(A), of all the attributes found in the
SMILES notation of the molecules. It is computed accord-
ing to Equation 5.

D = defect(SMILES) = Y32, d(A) (5)

A molecule is labeled as an outlier if it falls outside
the defined applicability domain (AD), which happens
when its D exceeds 2 times Dav, where Dav represents the
average D calculated for the relevant set (whether it's the
training or test set) in which the molecule is located.

2. 2. Molecular Docking

Docking studies were carried out using the Molegro
Virtual Docker (MVD) software to evaluate the interac-
tions between potential ligands and the TRPV1 receptor.
Ligands were geometrically optimized prior to docking
using the MMFF94 force field to ensure accurate struc-
tural representations. The three-dimensional structure of
the TRPV1 receptor used for docking studies was obtained
from the Protein Data Bank (PDB ID: 5IRX), represent-
ing the rat TRPV1 channel in complex with the antagonist
capsazepine, resolved at 3.27 A resolution?!. This structure
was selected based on its biological relevance and com-
patibility with the experimental system used in the QSAR
dataset. The binding site was defined based on the position
of the co-crystallized antagonist and included amino acid
residues known to participate in ligand interactions, such
as Tyr511, Ser512, Met547, Thr550, and Glu570*2. These
residues form the hydrophobic pocket and polar environ-
ment critical for antagonist binding. Protein preparation
included removal of crystallographic water molecules, as-
signment of charges, and optimization of hydrogen bond-
ing network using default MVD settings. The docking grid
was centered on the native ligand position, with a radius of
15 A to ensure full coverage of the binding cavity. Standard
MolDock scoring function and search algorithm parame-
ters were applied (maximum iterations = 1500; population
size = 50; number of poses = 10 per ligand). MVD employs
a hybrid approach in which the receptor structure is treat-
ed as rigid, while the ligand structures are allowed flexibil-
ity. This approach balances computational efficiency with
the ability to account for conformational adaptability of li-
gands during docking. MVD identifies and quantifies both
hydrophobic and hydrophilic interactions between the re-
ceptor and the ligands. Hydrophobic interactions primari-
ly encompass Van der Waals forces and steric effects, while
hydrophilic interactions involve hydrogen bond formation
between ligand atoms and specific amino acid residues in
the active site. These interactions are quantified through
the use of "scoring" functions, which calculate numerical
values corresponding to binding energies®">2. In molecu-
lar docking studies, the strength and nature of ligand-re-
ceptor interactions are critical indicators of potential in-
hibitory activity. A general principle applies to enzyme and
receptor studies: stronger and more favorable interactions
typically correlate with enhanced inhibition potential. For
this reason, the "scoring" functions calculated by MVD
provide valuable insights into the binding affinity and po-
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tential efficacy of the studied ligands*. In this research, two
primary scoring functions were calculated and utilized for
the evaluation of inhibitory potential: MolDock Score and
Rerank Score. The MolDockScore represents the primary
binding energy calculated during docking, encompass-
ing contributions from steric, electrostatic, and hydrogen
bonding interactions. The Rerank Score is a secondary
evaluation that re-assesses the binding interactions using
additional weighting for certain interaction types, pro-
viding a more refined prediction of binding affinity. The
docking protocol employed in this study was meticulously
validated to ensure its reliability and accuracy. The valida-
tion was performed in accordance with established meth-
odologies from the literature®, which involve comparing
docking results with experimentally determined binding
modes or known inhibitors. This validation step is crucial
for confirming that the docking simulations accurately
represent the ligand-receptor interactions. Furthermore,
the results of these docking studies provide a quantitative
basis for ranking ligands based on their predicted binding
affinity and inhibitory potential. These findings contribute
to the identification of promising compounds for further
experimental validation and drug development.

To complement molecular docking and provide an
additional layer of binding affinity prediction, we applied
KDEEP, a deep learning-based tool for structure-based
binding affinity estimation. KDEEP uses 3D convolution-
al neural networks trained on experimentally validated
protein-ligand complexes to predict binding strength and
utilizes 3D Convolutional Neural Networks (3DCNN) to
enhance the accuracy of binding predictions®*. It classifies
input molecules into eight pharmacophore properties: hy-
drophobic, aromatic, hydrogen-bond donor and acceptor,
positive and negative ionizable, metallic, and total exclud-
ed volume. The molecules are then processed using a Deep
Convolutional Neural Network (DCNN) model trained on
the PDBbind 2016 database (available at https://playmole-
cule.com/Kdeep/)*>. The docking results for ligand orien-
tation within the TRPV1 receptor active site obtained with
MolDock were used to estimate absolute binding affinity
with KDeep. For each ligand—-TRPV1 complex, KDEEP
calculated three key parameters: pKd, binding free ener-
gies (AG) and ligand efficiencies (LE).

By integrating computational and statistical rigor,
the study establishes a robust framework for exploring
ligand interactions with the TRPV1 receptor, paving the
way for the development of novel therapeutic agents tar-
geting this receptor.

3. Results and Discussion

Table 1 summarizes the numerical values of all the
validation metrics used to comprehensively evaluate the
quality and performance of the conformation-independ-
ent QSAR models developed through the Monte Carlo

Table 1. The statistical quality of the developed conformational-independent QSAR models for TRPV1 antagonism by piperazinyl-aryl compounds

Test set

CII

Training set

Q? RMSE MAE F

CCC IIC

RZ

RMSE MAE F

2

CII

CCC IIC

RZ

0.433 109

0.547
0.529

0.7799
0.8077
0.8124
0.8000
0.8087
0.8100
0.8535
0.8241
0.8977
0.8932
0.9241
0.9050

0.9097
0.9305
0.9344
0.9249
0.8931
0.8979
0.9212
0.9041
0.9568
0.9430
0.9593
0.9530

0.8401
0.7270
0.8449
0.8040
0.8352
0.8394
0.8858
0.8535
0.9155
0.9299
0.9635
0.9363

0.8851
0.8923
0.8859
0.8878
0.8657
0.8485
0.8894
0.8679
0.9535
0.9448
0.9469
0.9484

0.8263
0.8410
0.8487
0.8387
0.8367
0.8379
0.8770
0.8505
0.9158
0.9119
0.9271
0.9183

271

0.517 0.410

0.7775
0.7798
0.7732
0.7768
0.7090
0.7360
0.7672
0.7374
0.7316
0.7156
0.6970
0.7147

0.8828
0.8833
0.8715
0.8729
0.8298
0.8406
0.8658
0.8545
0.8447
0.8255
0.7766
0.8156

0.8200
0.8201
0.7743
0.8048
0.7826
0.7539
0.7690
0.7685
0.7757
0.7895
0.7430
0.7694

0.8843
0.8844
0.8800
0.8829
0.8385
0.8557
0.8752
0.8565
0.8553
0.8297
0.8134
0.8328

0.7926
0.7928
0.7858
0.7904
0.7219
0.7478
0.7781
0.7493
0.7472
0.7244
0.7155
0.7290

1 run
2 run
3 run

Av

Split 1

122

0.424

272

0.398
0.399
0.402
0.413

0.517

0.421 129

0.534
0.537

260

0.525
0.520
0.591

120

0.426

268

118

0.505

0.591

184

1 run
2 run
3 run

Av

Split 2
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119

0.512

0.616

210

0.398
0.373
0.395
0.439

0.563

164

0.441

0.538

249

0.528
0.561

134
239
228
328
265

0.486

0.582

214

0.311

0.363

213

0.578
0.636

1 run
2 run
3 run

Av

Split 3

0.338

0.384
0.367
0.371

164

0.481

0.329

0.489 157

0.645
0.620

0.326

178

0.470

R?- Correlation coefficient CCC - Concordance correlation coefficient 1IC - Index of ideality of correlation Q?- Cross-validated correlation coefficient RMSE - Root mean squared error MAE - Mean

absolute error  F - Fischer ratio  Av — Average value for statistical parameters obtained from three independent Monte Carlo optimization runs
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optimization method. These metrics demonstrate the
robustness, predictive accuracy, and reproducibility of
the models, providing a clear indication of their reliabil-
ity. The results highlight the strong predictive potential
of the QSAR models, with no significant deviations or
inconsistencies observed across the dataset. Among the
various splits examined during the optimization process,
the second split, utilizing a T value of 4 and Npoe, of 15,
produced the most favorable results. This configuration
led to a model with superior performance, as indicated
by its validation metrics. Notably, no outliers were iden-
tified during the analysis, as the methodology applied for
defining the applicability domain (AD) confirmed that all
molecules fell within the defined chemical space. This is a
crucial finding, as the absence of outliers ensures that the
model’s predictions are both valid and reliable within the
specified AD, thereby enhancing its applicability to unseen
compounds. Figure 1 provides a graphical representation
of the best-performing QSAR model, which achieved the
highest R? value across all three splits during the optimal
Monte Carlo optimization run. The graph visually illus-
trates the close agreement between observed and predicted
values, highlighting the model’s predictive accuracy and its
capability to generalize across the dataset. To ensure fur-
ther validation, the concordance correlation coefficient
(CCC) was calculated for all QSAR models. The CCC is
a robust metric that evaluates the reproducibility of pre-
dictions by measuring the degree of agreement between
observed and predicted values. The results demonstrated
high reproducibility across all splits, confirming that the

models are consistent and reliable across different configu-
rations. In addition, the mean absolute error (MAE)-based
metric was used to evaluate the precision of the models,
and the outcomes were rated as "GOOD," further solidify-
ing the models' robustness and reliability. The final layer of
validation involved the calculation of the index of ideality
of correlation (IIC). This metric assesses how closely the
correlation between predicted and observed values aligns
with an ideal relationship. The IIC values obtained were
highly favorable, suggesting that the developed QSAR
models not only perform well but also exhibit a high de-
gree of predictive reliability and alignment with theoret-
ical expectations. The findings of this study strongly in-
dicate that the QSAR models developed using the Monte
Carlo optimization method possess exceptional predictive
potential, making them valuable tools for future applica-
tions in drug discovery and other computational research
domains. The comprehensive validation of these models
using multiple metrics - including R?, RMSE, Q?, F-value,
MAE, CCC, and IIC - underscores their robustness and
generalizability. By incorporating a rigorous methodolo-
gy for defining and adhering to the applicability domain,
the study ensures that these models can be reliably em-
ployed for predictions involving structurally similar com-
pounds within the defined chemical space. Furthermore,
the absence of outliers and the high concordance between
predicted and observed values across all validation steps
provide additional confidence in the utility of these mod-
els. This thorough validation process paves the way for the
practical application of these QSAR models in tasks such
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Figure 1. Above) Graphical presentation of the best Monte Carlo optimization runs (the highest value for R?) for the developed QSAR models;
Bellow) Diff. - Difference between experimental and calculated values for pICs.
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as virtual screening, lead optimization, and the prediction
of biological activity for new compounds. Ultimately, these
models represent a significant advancement in the integra-
tion of computational tools into modern drug discovery
workflows.

The mathematical formulations for the top-perform-
ing QSAR models, as determined by the test set R? values
for all the splits, are provided in Equations 6-8.

Split 1: pICsy = —0.4579(+0.0534) + .
0.0398(£0.0003)xDCW (3,24) (6)

Split 2: pICs, = 0.3013(+0.0420) + .
0.0297(+0.0002)xDCW(1,10) ()

Split 3: pICsq = 2.1931(+0.0443) + o
0.0339(+0.0003)xDCW(3,23) (8)

The equations (Eq. 6-8) show that for split 1, the
preferred values for T and N,oc, are 3 and 24, respective-
ly. For split 2, the preferred values are 1 for T and 10 for
Nepoch» While for split 3, the preferred values are 3 for T and
23 for Nepoch-

There have been significant efforts to apply li-
gand-based methodologies for developing pharmacoph-
ore and QSAR models aimed at TRPV1 antagonists. These
studies have utilized various computational approaches,
demonstrating the versatility and effectiveness of such
methods in exploring the molecular basis of TRPV1 an-
tagonism. Some studies have employed molecular field-
based techniques like CoMFA (Comparative Molecular
Field Analysis) and CoMSIA (Comparative Molecular
Similarity Indices Analysis), as well as Phase QSAR meth-
odologies®®. These approaches focus on the spatial and
electronic properties of molecules to identify patterns cor-
relating with antagonistic activity. Others have used de-
scriptor-based algorithms to determine molecular descrip-
tors most strongly associated with TRPV1 antagonism,
enabling the development of predictive QSAR models*”.
In other efforts, 3D alignments of TRPV1 antagonists have
been analyzed in the context of homology models. These
studies have leveraged the structural insights provided by
homology models to explore the spatial arrangements and
interactions of antagonists within the receptor binding
site>*>8, For example, Goldmann et al. utilized publicly
available data on TRPV1 antagonists to construct pharma-
cophore models. Their research involved extensive valida-
tion of these models, which were then applied to virtually
screen the LifeChem database comprising 305,841 com-
pounds. This exercise identified 12 hits with promising ac-
tivity and diversity compared to reference antagonists and
other active compounds. Goldmann and colleagues fur-
ther hypothesized that pharmacophore modeling of public
data could reveal "pharmacophoric ensembles," helping to
differentiate safe compounds from those with undesirable
profiles®. Similarly, Feng et al. reported constructing hu-

man TRPV1 (hTRPV1) homology models based on the
recently released rat TRPV1 (rTRPV1) structure. Their
study involved validation using known agonists and an-
tagonists, prediction of binding modes for well-known
antagonists, and a virtual screening exercise targeting the
putative antagonist binding site. This approach provided
valuable insights into the molecular interactions govern-
ing TRPV1 antagonism and highlighted potential candi-
dates for further investigation®. Kristam et al. developed
and validated predictive 3D-QSAR models for a collection
of TRPV1 receptor antagonists using CoMFA and Topo-
mer-CoMFA methodologies. These models were applied
to screen databases for alternative fragments that could re-
place key functional groups in known antagonists, such as
the disubstituted dimidazolyl moiety (R1 fragment) or the
piperazine aryl moiety (R2 fragment)**. Their work un-
derscores the potential of 3D-QSAR techniques in guiding
the rational design of structurally optimized TRPV1 an-
tagonists. Together, these studies demonstrate the power
of ligand-based methodologies, including pharmacophore
modeling, QSAR, and homology modeling, in advancing
our understanding of TRPV1 receptor antagonists. They
highlight the potential of computational tools to identify
novel candidates, optimize known scaffolds, and reveal
critical molecular features that differentiate efficacious and
safe compounds from those with less desirable profiles.
These approaches continue to contribute significantly to
the field of TRPV1-targeted drug discovery, offering path-
ways to innovative therapeutic agents for pain manage-
ment and other conditions.

A primary objective of this research was to identi-
fy molecular fragments, defined as optimal descriptors in
SMILES notation, that contribute positively or negatively to
the studied activity, as supported by prior studies?*40-61:62,
These fragments are essential for understanding the struc-
tural features that influence the biological activity of com-
pounds, providing valuable insights for drug design and
optimization. The complete set of calculated molecular
descriptors, derived from both SMILES notation and mo-
lecular graph-based approaches, is provided in Table S2 in
the Supplementary Material. These descriptors encompass
a wide range of molecular properties and were systemati-
cally analyzed to determine their relevance to the studied
activity. To aid in understanding, an example calculation
of amolecule’s summarized Descriptor Correlation Weight
(DCW) and its corresponding studied activity (pICs) is
detailed in Table 2. For simplicity, molecular graph-based
descriptors are excluded from the example, allowing for
a more focused interpretation of the contributions from
SMILES-based descriptors. This example highlights the
methodology used to link molecular features to biologi-
cal activity, demonstrating how individual descriptor con-
tributions are aggregated into the DCW. Furthermore, a
graphical representation of the molecular fragments asso-
ciated with the same molecule is provided in Figure 2. This
visualization illustrates the structural components of the
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Table 2. Example of DCW calculation

-

F H

F B # & 7
O H>—”\_/:§®
@ o

NH2

SMILES notation:
Neclece(cel)elec(ecc2cINC(N2)N1CCN(CCl1)clncecc1 C(F)(F)F)C(F)(F)F
DCW =115.8633
pICsp(calc.) = 6.1255

SA, CW(SA,) SA, CW(SAD SA,  CW(SAY SA,  CW(SAY
10001000  -0.0545 Colovennn 0.4633 ccnl., -0.1625 N...(..C... 1.6575
(oo 0.2736 CorensCone 0.2654 C..C.1.. ~0.11 N -0.1445
[ 0.1116 P 0.0465 G2, ~2.6721 Do 0.2927
(.Con(.e. 0.3527 Corrrreree ~0.3361 CornCorCon 0.1654 Nolo. -0.7082
(FEunn -0.0813 el 0.2406 C.N..(... -0.1388 P -0.5053
Lo 0.8061 Col(.. 0.1533 N 0.1804 N..1..C... -0.0284
Lo 0.2906 Corlunn 0.0952 C..N..l... 0.1723 n..l..c.. 0.1866
Lo ~0.3129 Colu. ~0.5409 conl... 0.0845 N2 0.5679
1..Coo(ow. 0.4098 cloce 0.7524 E.((. 0.3315 N...C...(... -0.2294
1..N..(.. 01976  c..1..C... 0.2782 Eoloonn 0.0918 N..Ce... -0.1215
20 03586  c..l.N... ~0.424 E.(..C.. 1.0121 NeCorrn 0.7165
P 0.4303 CoZrnnn 0.0583 E.(.E.. 0.0196 N..c..l... 0.4924
2..c..l.. ~0.6572 C2unCon 0.1318 oo 0.3709 N..C..C... ~2.8109
BONDO00000  0.1922 oG 0.1144 HALO10000 ~0.6764 NeCorsCone 2.3328
Corlovnnn 01999  C..C...(... 0.0764 N 1.8556  NOSP10000 0.6488
CorsCarn 01336  C..C....... -0.4259 N..(.2... 0.6523

Figure 2. Contribution of molecular fragments to TRPV lantagonism (Green - Increase, Red — Decrease).
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molecule and their respective roles, offering a clear depic-
tion of how specific fragments correlate with the observed
activity. Together, these analyses provide a comprehensive
framework for identifying and understanding the molec-
ular determinants of TRPV1 antagonism, facilitating the
rational design of new compounds with improved efficacy
and safety profiles.

The results from QSAR modeling revealed specific
molecular fragments, identified through SMILES nota-
tion, that significantly influence pICs activity, either posi-
tively or negatively. These findings provide a structural ba-
sis for designing new TRPV1 antagonists with enhanced
activity.Molecular fragments that positively influenced
pICs, activity included those associated with trifluorome-
thyl groups, such as “E......J “(......5 “C..(....J “E..
and “F...(...C.... Fragments assoc1ated Wlth aromatlc car-
bon atoms, including “........... 7 “c..c...y and “c..c..c.
as well as the nitrogen atom bonded to aromatic carbon
(“c..N......7), also demonstrated positive effects. Fragments
that negatively influenced pICs, activity included the ni-
trogen atom (“N..........] ), carbon atom (“C.........”); and
combinations of nitrogen bonded to one or two carbon
atoms (“N...C.....” and “N...C..C..” respectively). These
negatively correlated fragments provided insights into
structural features that should be avoided or minimized in
antagonist design.

cule A1 was created by replacing the amino group with a
hydroxyl group in the para position resulting in the addi-
tion of the fragment “O............ ”. Molecule A2 introduced a
chlorine atom at the same position, adding the “Cl...........] 2
fragment, while molecule A3 incorporated a methoxy
group with the fragment “C...O......> Molecule A4 intro-
duced an aminomethyl group, adding the “C...N......” frag-
ment, enhancing hydrogen bonding potential. Molecule
AS5 featured a dimethylamino group, adding the fragments
“Coloney “Coveen “NLL(.y and “NLL(...C..75 which in-
dicated increased molecular branching around the nitro-
gen atom. Molecule A6 incorporated an isopropyl group,
resultmg in fragments such as “C...(......”, “(ceenenccsd 5 “C...

and “C...(...C..” that also indicated increased branch-
ing on carbon atoms. Molecule A7 introduced a carboxyl
group, contributing fragments such as “=........7, “=..C...

(. and “O...C ....... ” that enhanced electron—w1thdraw1ng
and polar interaction properties. All introduced fragments
in molecules A1-A7 were associated with a positive im-
pact on pICs, activity, leading to higher predicted activity
values. The substitution strategy and resulting molecular
modifications were validated through increased pICs,
values, as summarized in Table 3. These results demon-
strate the effectiveness of the CAD approach in integrating
QSAR insights for the rational design of novel TRPV1 an-
tagonists with improved biological activity.

foaese
slololelelelele

A A1 A2 A3

Figure 3. Chemical structures of designed molecules.

The molecular fragments identified as positively in-
fluencing activity were applied in a Computer-Aided De-
sign (CAD) process to develop seven novel compounds
with enhanced pICs, values. These compounds were de-
signed by introducing functional groups that incorporated
new fragments positively associated with activity. Mole-

A4 A5 A6 A?

All the designed molecules, along with the template
molecule A, were subjected to molecular docking studies
targeting TRPV1 to evaluate and further validate the pre-
dictive accuracy of the developed QSAR models. Table 3
provides the numerical values of the calculated "scoring”
functions, which reflect the strength of interactions be-

Golubovic et al.:
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Table 3. The list of all the designed molecules with their calculated activities, score values (kcal/mol), AG (kcal/

mol), ligand efficiency (LE) (kcal/mol) and pKd

Molecule  pICsy(calc.) Rerank MolDock AG LE pKd
A0 6.1255 -121.35 -118.85 -7.437 -0.1957 5.5089
Al 6.4688 -133.49 -128.49 -8.3795 -0.2328 6.207
A2 6.6225 -137.85 -121.65 -9.3946 -0.2610 6.9590
A3 6.5881 -136.35 -134.32 -8.6117 -0.2328 6.3790
A4 6.4472 -133.22 -130.66 -8.7899 -0.2376 6.5110
A5 7.0963 -139.59 -136.57 -9.2786 -0.2577 6.8730
A6 7.2891 -144.43 -137.47 -9.7236 -0.2559 7.2027
A7 6.7976 -138.48 -130.3 -9.1377 -0.2405 6.7686

tween the ligands and the receptor. Since different scor-
ing functions capture distinct ligand-amino acid interac-
tions, a comprehensive assessment of inhibitory potency
requires consideration of all relevant factors. Based on
the results obtained for the MolDock and ReRank scoring
functions, molecule A6 emerged as the compound with
the highest potential inhibitory activity. This finding aligns
well with the predictions from QSAR modeling, reinforc-
ing the consistency and reliability of the models. In con-
trast, the template molecule A exhibited the lowest Mol-
Dock and ReRank scores, a result that also corresponds to
the predictions made by the QSAR models. These correla-
tions between docking results and QSAR predictions pro-
vide strong validation for the approach used in this study.
Table 3 presents a list of the designed TRPV1 antagonist
candidates, along with their predicted biological activity
(pICso), binding free energy (AG), ligand efficiency (LE),
and predicted dissociation constant pKd These values were
calculated using a combination of QSAR modeling, mo-
lecular docking, and KDEEP-based binding affinity esti-
mation. As expected, compounds with higher predicted
pICso values—which indicate stronger biological activity
and lower effective concentration-generally correspond to
more favorable binding energies (lower AG values). This
relationship is consistent with the principle that stronger

binding (i.e., more negative AG) often correlates with in-
creased ligand efficiency and potency. For instance, com-
pound A6 shows the highest predicted pICs, (7.2891), in
line with its strong binding affinity (AG = -9.72 kcal/mol)
and the highest pKd (7.20), indicating a tighter ligand-
receptor complex. Ligand efficiency (LE), defined as the
binding energy per heavy atom, also supports this trend
and reflects the balance between molecular size and bind-
ing strength. Compounds A5 and A6 exhibit both high
pICso and LE values, suggesting that they are not only po-
tent but also structurally efficient binders. Overall, these
results demonstrate a high level of consistency between
ligand-based (QSAR) and structure-based (docking and
deep learning) predictions, further validating the designed
molecules as promising candidates for future experimental
testing.

The best-calculated binding poses of all designed
molecules within the active site of TRPV1 are illustrat-
ed in Figure 4. Further in Figure 4 sufraces of active site
(aromatic, hydrophobic, H-Bond and solvent accessibility
surface — SAS). These visual representations highlight the
spatial orientation and interaction profiles of each mol-
ecule, further supporting the docking results and their
alignment with QSAR-based predictions. Together, these
findings underscore the effectiveness of combining QSAR

Figure 4. Left) The best calculated poses for all the designed molecules within the active site of TRPV1; Right) Surfaces inside active site: A) Aro-

matic, B) Hydrophobic, C) H-Bond and D) SAS
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modeling and molecular docking studies in identifying
and validating promising TRPV1 antagonists.

This study highlights the potential of the Monte
Carlo optimization method for generating diverse and
informative QSAR models. However, certain limitations
merit further investigation to enhance the method's appli-
cability and reliability. One notable limitation involves the
interpretability of certain SMILES-based descriptors. The
inclusion of two- and three-atom combinations can result
in descriptors such as "(..2....." or "#.../......", which lack
clear physical or chemical meaning. This ambiguity makes
it challenging to derive mechanistic insights into their in-
fluence on biological properties, such as vaginal permeabil-
ity predictions. Improving the clarity and interpretability of
these descriptors would significantly enhance the practical
utility of the models. Fragment identification also poses
challenges. The method may struggle to detect rare but
biologically significant molecular fragments, which could
provide valuable insights into permeability or activity. Ad-
ditionally, the focus on smaller fragments, such as those
comprising three atoms, may overlook the contributions
of larger structural motifs or long-range interactions that
play a critical role in biological processes. The CORAL al-
gorithm, employed within the Monte Carlo optimization
framework, introduces another limitation. Its potential
prevalence bias may prioritize common fragments within
the dataset, potentially underestimating the significance of
truly active fragments that are present across all SMILES
descriptors. This bias could reduce the algorithm’s ability
to identify unique features critical for model predictions.
While the hybrid approach incorporates descriptors de-
rived from both SMILES notation and molecular graphs,
some molecular graph-based descriptors also lack clear
mechanistic interpretation. This limitation restricts the
ability to connect model predictions with underlying
chemical or biological principles, which is essential for ad-
vancing scientific understanding and rational compound
design. To address these limitations, data preprocessing
strategies could be implemented. Preliminary analysis and
filtering of molecular fragments and descriptors might help
identify those that are most informative and relevant to
the studied activity. This approach could reduce noise, im-
prove model interpretability, and enhance the mechanistic
insights derived from the models. Additionally, incorpo-
rating techniques that balance the emphasis on rare and
common fragments may improve the identification of bio-
logically significant features. Future research should focus
on addressing these challenges to enhance the capabilities
of the Monte Carlo optimization method. Efforts could in-
clude refining descriptor definitions, exploring alternative
algorithms with reduced bias, and expanding the scope of
descriptors to capture larger and more complex molecular
interactions. By overcoming these limitations, the Monte
Carlo optimization method could become an even more
powerful tool in the development of QSAR models and
their application in drug discovery and beyond.

4. Conclusion

The primary goal of this study was to develop relia-
ble QSAR models with strong predictive power for TRPV1
antagonism, validated through a comprehensive set of
statistical parameters. Conformation-independent QSAR
models were constructed using the Monte Carlo optimi-
zation method, leveraging optimal descriptors derived
from both local graph invariants and SMILES notation.
These descriptors provided a robust foundation for the
modeling process, enabling the identification of structural
features influencing TRPV1 antagonism. The robustness
and predictive capabilities of the QSAR models were thor-
oughly evaluated using various statistical techniques. The
validation metrics confirmed the high applicability of the
models, demonstrating their effectiveness in predicting
biological activity. The Monte Carlo optimization method
facilitated the identification of molecular fragments, repre-
sented as SMILES notation fragments, with both positive
and negative effects on TRPV1 antagonism. These insights
offered a deeper understanding of the molecular features
contributing to or detracting from activity, supporting the
rational design of more effective antagonists. Molecular
docking studies served as the final validation step, further
confirming the predictive accuracy of the developed QSAR
models. The docking results provided an additional layer
of evidence for the potential inhibitory effects of the de-
signed molecules. A strong inter-correlation was observed
between the calculated pICs, values from the best QSAR
model and the interaction energies derived from docking
studies with the TRPV1 active site. To further strengthen
the predictive workflow, we incorporated KDEEP-a deep
learning-based method for protein-ligand binding affin-
ity estimation-which provided additional independent
predictions of pKd and AG values. The strong concord-
ance between these results and the QSAR-predicted pICs,
values supports the internal validity of the designed com-
pounds and adds confidence to their prioritization. KDEEP
thus served as a third, Al-powered validation layer with-
in our CADD pipeline, highlighting its utility in guiding
early-phase drug discovery even in the absence of experi-
mental data. This concordance highlights the reliability of
the combined QSAR and molecular docking approach in
predicting ligand-receptor interactions. The methodology
described in this study demonstrates significant potential
for broader applications, including the discovery of nov-
el therapeutics for conditions such as atherosclerosis. By
targeting the antagonism of Transient Receptor Potential
Vanilloid, member 1 (TRPV1), the outlined approach pro-
vides a versatile framework for identifying and optimizing
drug candidates for a variety of therapeutic areas.
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V kontekstu farmakoloskega posega pri lajsanju bolecine se je transientni receptorski potencial vaniloid tip 1 (TRPV1),
nespecifi¢ni kationski kanal iz druzine TRP ionskih kanalov, izkazal kot obetavna tarc¢a. Kljub temu pa je razpolozljivost
selektivnih antagonistov TRPV1 in njihovih farmakoloskih lastnosti $e vedno omejena. V tem raziskovalnem ¢lanku
predstavljamo razli¢ne tehnike QSAR modeliranja, uporabljene na nizu piperazinil-arilnih spojin, ki delujejo kot an-
tagonisti TRPV1. Opisi, uporabljeni pri oblikovanju konformacijsko neodvisnih QSAR modelov, vklju¢ujejo lokalne
molekulske grafe in SMILES notacijo, pri ¢emer je bila za razvoj modela uporabljena tudi Monte Carlo optimizacija. Za
oceno kakovosti, robustnosti in napovedne sposobnosti razvitih modelov smo uporabili ve¢ statisti¢nih metod, ki so
dale pozitivne rezultate. Za najboljsi QSAR model so bili doseZeni naslednji statisti¢ni parametri: za u¢no mnozico R?
=0.7155, CCC = 0.8134, IIC = 0.7430, Q* = 0.6970, RMSE = 0.645, MAE = 0.489 in F = 157; za testno mnoZico pa R?=
0.9271, CCC = 0.9469, IIC = 0.9635, Q* = 0.9241, RMSE = 0.367, MAE = 0.329 in F = 328. Poleg tega smo identificirali
molekulske fragmente, izpeljane iz deskriptorjev SMILES notacije, ki pojasnjujejo opazene spremembe v ocenjeni ak-
tivnosti, kar je vodilo do zasnove $tirih novih antagonistov. Kon¢na validacija QSAR modela in zasnovanih antagonistov
je bila izvedena z molekulskim sidranjem, ki je pokazalo dobro ujemanje z rezultati QSAR modeliranja.
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