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Abstract
The development and identification of dual target herbicides was one of primary approach to addressing the issue of 
weed resistance. Protoporphyrinogen oxidase (PPO) and p-hydroxyphenylpyruvate dioxygenase (HPPD) are two im-
portant targets of photosynthesis in plants. Different from the traditional single target drug design, this study focuses on 
HPPD and PPO dual target drug design. Hiphop pharmacophore models of HPPD and PPO targets were constructed 
use commercial pesticides, and CBP pharmacophore models were constructed based on protein complexes. Over mil-
lions of molecules were screened using pharmacophore models and 8 compounds were obtained. Candidate compounds 
chelated with Fe(II) in HPPD and formed stable π-π interactions with key residues in HPPD active pocket. Most com-
pounds produced hydrogen bond interactions and π-π interactions with residues in PPO. Combined with a multiple 
visual screen process, potential compounds with dual-target inhibition effect were obtained.
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1. Introduction

Weeds are a major hazard to crops, competing with 
them for sunlight, water and nutrients in the soil.1,2 As an 
economical, efficient, and reliable solution for weed con-
trol, herbicide application is key role to ensuring high and 
stable crop yields. The continuous application of herbi-
cides led the weed resistance increasing, and the impact of 
herbicide residues on crops and the environment. There is 
an urgent need to develop of safety, low-impact, low toxic-
ity and highly efficient novel herbicides.3,4

During plant photosynthesis, the action sites of pig-
ment synthesis are tetrapyrrole, carotenoid and plastoqui-
none. As shown in Figure 1, the synergistic effect of three 
enzymes, protoporphyrinogen oxidase (PPO) phytoene 
desaturase (PDS) and p-hydroxyphenylpyruvate dioxy-
genase (HPPD) in plants were illustrated.5 In the process 
of chlorophyll synthesis, PPO is the key catalytic enzyme 
in the process of tetrapyrrole biosynthesis. PPO catalyzes 
protoporphyrinogen IX to produce protoporphyrin IX in 
plants under the oxygen and sunlight conditions.6,7 Pro-
toporphyrin IX chelates with metal ions in chloroplasts to 

produce chlorophyll.8–10 Protoporphyrinogen IX is unable 
to bind to the active site of PPO after being treated with 
PPO inhibitors in the presence of light and oxygen, pro-
toporphyrinogen IX is accumulated in cytoplasm and con-
verted to photosensitive protoporphyrin IX, causing the 
cell to rupture and the plant death.11–13 In addition to chlo-
rophyll, carotenoids, acting as light-harvesting pigments 
in photosynthetic reaction, protect photosynthesis from 
chlorophyll triplet and singlet oxygen damage.14 PDS is a 
rate-limiting enzyme in carotenoid synthesis and catalyzes 
the symmetric desaturation of phytoene to carotenoid.15,16 
Inhibition of PDS causes the phytoene accumulation in 
plants, disrupting carotenoid and chlorophyll synthesis 
and ultimately resulting in weeds death.17 In plants, HPPD 
is an important oxidoreductase involved in the tyrosine 
metabolic pathway, catalyzing the conversion of p-hy-
droxyphenylpyruvate (HPPA) to homogentisic acid 
(HGA), which further reacts to produce plastoquinone 
and tocopherol.18–20 Plastoquinone is the key cofactor of 
PDS. HPPD inhibitors hinder the synthesis of plastoqui-
none and tocopherol,21,22 and the synthesis of carotenoid 
is indirectly affected by the decrease of the content of plas-
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toquinone, eventually leaf bleaching of the plant leaves.23, 

24 The results show that leaves albinism occurred when 
HPPD and PPO inhibitors are applied, further affecting 
weed growth by reducing the content of chlorophyll.

Compared with traditional single-target drug de-
sign, multi-target drug acts on multiple targets in the same 
body at the same time, producing synergistic effects on 
each target.25 If a certain target is mutated, the drug will 
maintain therapeutic efficacy by inhibiting other targets, 
and avoiding drug resistance caused by single-target muta-
tions. Sorafenib is a multi-target drug that has been mar-
keted for the treatment of cancer by acting on metal-
lothionein 1G(MT1G), DNA methyltransferase 1 (NMT1), 
Krüpple-like Factor 4(KLF4), and Carbonic anhydrase 
9(CA9) in hepatocellular carcinoma.26 Virtual screening 

of the dual FMS-like tyrosine kinase 3 (FLT3) and mito-
gen-activated protein kinase (MAPK)-interacting kinases 
2 (MNK2) inhibitor in the treatment of acute myeloid leu-
kemia was conducted by molecular docking methods and 
cell experiments, the results showed that the obtained can-
didate K783-0308 exhibited inhibitory effect for the target 
FLT3 and MNK2.27 Novel dual-target of HPPD and PDS 
inhibitors were screened using pharmacophore models, 
molecular docking and structure optimization.5

Pharmacophore models are collections of spatial and 
electronic features, in continuous of our study on mul-
ti-target albino herbicides, HPPD and PPO multi-target 
pharmacophore models were constructed and 1024513 
small molecules were screened. Pharmacophore models 
based on common characteristics of molecules (Hiphop) 

Figure 1. Action mode of PPO, PDS and HPPD in plants.
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and complex-based pharmacophore models (CBP) were 
constructed respectively, molecular docking and molecu-
lar dynamics (MD) simulation were performed on candi-
date compounds. Finally, 8 potential compounds with in-
hibitory effects on HPPD and PPO were obtained. The 
workflow of virtual screening based on the pharmacoph-
ore model is shown in Figure 2.

2. Experimental
2. 1. Database Collection and Preparation

1024513 Compounds were extracted from Bailing-
wei and Vitas-M (https://vitasmlab.biz) databases, and 
screened according the Lipinski rules compounds. Com-
pounds were conformational optimized with Discovery 
Studio (DS, Biovia Inc. San Diego, CA, USA, 2020), the 3D 
database was built with the “Build 3D Database” module, 
the conformation number was set to 200, and the BEST 
method was selected for conformation generation.

2. 2. �Generation and Verification of Hiphop 
Pharmacophore Model and Virtual 
Screening
The Hiphop pharmacophore was established in 

“Common Feature Pharmacophore Generation model of 
DS. According to the common characteristics of active 
compounds, pharmacophore models were generated 
based on the overlap of these common characteristics and 

subsequently applied to virtual screening. Regarding HP-
PD, six commercial HPPD herbicides topramezone, pyra-
sulfotole, cypyrafluone, tolpyralate, fenpyrazone and tripy-
rasulfone were collected as the training set to construct 
HPPD-Hiphop pharmacophore models, the physico-
chemical properties are listed in Table S1. All ligands were 
set the MaxOmitFeat feature with 0 and Principal feature 
with 2. Compound feature elements were selected using 
the “Edit and Cluster Features” tool. The characteristic ele-
ments of hydrogen bond donor (HBD), hydrogen bond 
acceptor (HBA), aromatic ring (AR) and hydrophobic 
(HY) were selected to produce pharmacophore. Hiphop 
pharmacophore was constructed using the “Common Fea-
ture Pharmacophore Generation” function in the “Create 
Pharmacophores Automatically” module. The BEST was 
selected to produce 10 pharmacophore and 200 conforma-
tions with a cut-off value of 10 kcal·mol–1. To test the reli-
ability of the pharmacophore model, the compounds re-
ported in literature on HPPD inhibitors and structures 
that have no effect on HPPD were collected. 16 Active 
compounds and 10 inactive compounds (Figure S1) were 
collected as a testing set, the “Search, Screen and Profile” 
module was used to evaluate the constructed Hiphop 
pharmacophore match with the test set. Input File Phar-
macophores were loaded, and 10 pharmacophore models 
were input. The Maximum Conformation number was set 
to 200 and the Energy Threshold was set to 10.

In the same way as the construction process of the 
pharmacophore model of HPPD, 6 commercial PPO herbi-
cides fluroximin, fomesafen, fluoroglycofen, lactofen, acif-

Figure 2. The workflow of multi virtual screening base on dual herbicide target.
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luorfen and ethhoxyfen-ethyl were used as the training set 
to construct the PPO-Hiphop pharmacophore model, the 
physicochemical properties of six commercial PPO inhibi-
tors were shown in Table S2. The PPO pharmacophore con-
struction and validation were the same as that for HPPD 
pharmacophore model. The PPO testing set consisted of 13 
active compounds and 12 inactive compounds (Figure S2).

HPPD-Hiphop pharmacophore model was used to 
screen the 3D database, and the remaining compounds 
were screened by PPO-Hiphop pharmacophore model.

2. 3. �Generation and Verification of CBP 
Pharmacophore Model and Virtual 
Screening
Different from the Hiphop model, the construction 

of the CBP model was based on single receptor-ligand 
crystal complex interaction, the number of training set 
was fixed. To ensure the accuracy of the constructed CBP 
model, a diverse set of active and inactive compounds 
must be collected for rigorous validation. Arabidopsis 
thaliana HPPD (AtHPPD) (PDB ID: 7X5Y) (resolution 
1.50 Å)19 and crystalline small compound were defined as 
receptor and ligand, and the “Interaction Pharmacophore 
Generation” module of DS was used to generate a CBP 
pharmacophore model. Through a literature search, 47 
Active compounds and 68 inactive compounds were col-
lected to validate the CBP pharmacophore model (Figure 
S3). Validation was set to True, Active Ligands were set to 
All, Inactive Ligands were set to All and other parameters 
were set to default. Commercial HPPD inhibitors included 
triketone and pyrazole structure, and the active com-
pounds in the validation set were mainly composed of 
these two structures. To examine the relationship between 
the collected active compounds and inactive compounds, 
principal component analysis (PCA) was employed to 
analyze the chemical space. The molecular weight, number 
of hydrogen bond donors and receptors, number of rotat-
able bonds and log p descriptors of the collected com-
pounds were used as input value.28

The PPO-CBP pharmacophore model was con-
structed using the same protocol as for HPPD. Nicotiana 
tabacum PPO (NtPPO, PDB ID: 1SEZ, resolution 2.90 
Å)29 was selected to establish the CBP pharmacophore 
model. The validation set of the PPO pharmacophore 
model consisted of 19 active compounds and 43 inactive 
compounds (Figure S4). The active compounds were dom-
inated by diphenyl ether structures.

2. 4. Molecular Docking
In order to ensure the accuracy of molecular docking 

results, complex structures of plant origin with resolution 
less than 2.0 Å were selected for study. Mesotrione and oxy-
fluofen were used as positive controls, the AtHPPD (PDB 
ID: 1TFZ) (resolution 1.8 Å)30 and NtPPO crystal structure 

were downloaded from the PDB database for molecular 
docking with compounds. Sequence information for 1TFZ 
and 1SEZ is provided in Table S3. Proteins and ligands were 
treated with DS and SYBYL-X 2.0. The unnecessary water 
molecules and side chains of the Protein were removed, the 
Protein was treated with “Prepare Protein” under the “Mo-
lecular” module in DS, the lost residues were supplemented, 
and the position of the protein was added with the 
CHARMm force field.5,31,32 The Sketch module in SYBYL-X 
2.0 was used to process compounds. Under the Tripos force 
field, Gasteiger-Huckel charge was used to optimize the 
molecules, the maximum iteration coefficient was selected 
as 1000, and the energy convergence was 0.005 kcal mol–1.

CDOCKER in DS “Receptor-Ligand Interactions” 
module was used for molecular docking. The high temper-
ature dynamic rotation method was used to generate the 
random ligand configuration, and then the lattice based 
simulated annealing algorithm was used to optimize the 
ligand configuration, using the “From Current Selection” 
under the “Define and Edit Binding Site” module to define 
the binding site of the protein around the ligand. The bind-
ing site size was set to 10Å, other settings were default.33 
The AtHPPD binding site information was x: 45.937, y: 
38.936, z: 51.499, and the NtPPO binding site information 
was x: –39.832, y: –6.094, z: 28.669. Set the Dock Ligands 
(CDOCKER) parameter to define the coordinates and ra-
dius of the docking site, and adjust the Pose Cluster Radius 
parameter to 0.5 to maximize diversity in the docking con-
formations. After docking, the interactions between lig-
ands and proteins were analyzed and the top 10 conforma-
tional combinations with higher –CDOCKER_ENERGY 
values were preserved.

2. 5. MD Simulation
MD simulation was commonly used to aid in the 

study of dynamic atomic details, reveal the dynamics of 
receptor-ligand interactions and explain the molecular 
mechanisms behind them, allowing for a more accurate 
and convenient assessment of the binding affinity of select-
ed compounds.34–36 In order to verify the stability of bind-
ing between the screening results and proteins, MD simu-
lation was further tested by using Desmond module of 
Schrodinger software. Biological macromolecules mostly 
used the water model, after the structure of the complex 
was optimized, the system was constructed by a simple 
point charge (SPC) water model and the ligand-protein 
complex was placed in a regular hexahedral box filled with 
water molecules.37–39 To ensure the simulation system was 
neutral, appropriate counterbalance ion neutralization 
was added. With the parameters set under the Molecular 
Dynamics module, the complex was simulated for 100 ns 
at 298 K temperature and 1.01 bar pressure. In addition, 
the maximum interaction was set to 2000, the convergence 
threshold was set to 1.0 kcal mol–1 A–1, and the OPLS_2005 
force field was used to minimize the energy of the complex 
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system.40 The steepest descent and limited memory 
Broyden Fletcher Goldfarb Shanno algorithm minimize 
system energy with 5000 steps until it reached the gradient 
threshold of 25 kcal mol–1 Å–1. Mesotrione and oxyfluofen 
were used as positive control groups in MD simulation. 
After the simulation, RMSD of protein skeleton, residues 
around ligands and binding pockets, and ligand heavy at-
oms were analyzed for the equilibrium state and stability 
of the complex. RMSD of the backbone was the main in-
dex to evaluate the stability of the system.

The Desmond module of Schrödinger software was 
selected to calculate the molecular mechanics/generalized 
born surface area (MM/GBSA) for the compounds, the 
binding free energy (ΔGbind) was divided into molecular 
mechanical terms and solvation energy, respectively, re-
flecting the degree of binding between compounds and 
proteins.41, 42

3. Results and Discussion
3. 1. �Hiphop Pharmacophore for Virtual 

Screening

All of the ten pharmacophore models generated ac-
cording to the HPPD training set had six characteristic 
elements and ranked above 85, which proved the reliability 
of the pharmacophore models, as shown in Table 1. By 
matching the HPPD-Hiphop pharmacophore models with 
the training set, the hydrogen bond receptors were nearby 
the oxygen and nitrogen atoms of the training set, the aro-
matic ring center was formed at the benzene ring, and the 

hydrophobic characteristics could be found at the methyl 
of the compounds (Figure S5). To ensure the accuracy of 
the pharmacophore models, the Hiphop pharmacophore 
models were verified through the testing set (Figure 3(a)). 
The pharmacophore models could well recognize the ac-
tive and inactive compounds, and HPPD-Hiphop phar-
macophore models-02, 03 and 05 were more effective than 
other models. The Hiphop pharmacophore model-02 had 
a score of 89.143, was selected for further screening (Fig-
ure 3(b)). The pharmacophore signature elements includ-
ed 1 aromatic ring center, 1 hydrophobic feature, and 4 
hydrogen bond receptors.

Table 1 Result parameters of HPPD-Hiphop pharmacophore model.

Num-	 Features	 Rank	 Direct	 Partial	 Max
ber			   Hit	 Hit	 Fit

01	 RHAAAA	 91.10	 111111	 000000	 6
02	 RHAAAA	 89.14	 111111	 000000	 6
03	 RHAAAA	 89.14	 111111	 000000	 6
04	 RHAAAA	 88.67	 111111	 000000	 6
05	 RHAAAA	 88.42	 111111	 000000	 6
06	 RHAAAA	 88.26	 111111	 000000	 6
07	 RHAAAA	 88.25	 111111	 000000	 6
08	 RHAAAA	 87.84	 111111	 000000	 6
09	 RHAAAA	 87.84	 111111	 000000	 6
10	 RHAAAA	 87.83	 111111	 000000	 6

Rank: Indicates the fit values of the pharmacophore.
Direct Hit: indicates the match between the pharmacophore and the 
training set molecule.
Partial Hit: indicates the number of pharmacophore features that 
match the training set molecule.
Max Fit: indicates the matching of pharmacophore features.

Figure 3. HPPD-Hiphop pharmacophore. (a) The heat map of the 10 hypotheses in the test; (b) The matching of pharmacophore model-02 with 
tripyrasulfone, the color of pharmacophore features RA, HY and HBA are represented by orange, blue and green, respectively. RA: The aromatic ring 
needs to be defined by two parameters: one parameter was the spatial position of the aromatic ring and the other parameter was the direction of the 
aromatic ring plane vector. HY: The hydrophobic center need not be represented by a vector. HBA: Hydrogen bond interaction has a clear directivi-
ty, and two points are used to describe hydrogen bond characteristics. One point represents the spatial position of the heavy atom in the hydrogen 
bond feature, and the other point represents the vector direction of the hydrogen bond acceptor.
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Ten PPO pharmacophore models were generated 
ranking above 95 and had six characteristic elements, 2 ar-
omatic ring centers, 2 hydrophobic characteristics and 2 
hydrogen bond receptors, as shown in Table 2. The match-
ing between the training set and the PPO-Hiohop phar-
macophore models showed that the benzene ring in the 
compound produced the aromatic ring center, and the hy-
drogen bond receptor was formed nearby the oxygen at-
om. The hydrophobic features were observed between me-
thyl and fluorine atom (Figure S6). Consistent with the test 
method of HPPD, according to the rank and the matching 
between the testing set and pharmacophore (Figure 4(a)), 
Hiphop pharmacophore model-01 was finally selected for 
subsequent screening, which included 2 aromatic ring 
centers, 2 hydrophobic features and 2 hydrogen bond re-
ceptors (Figure 4(b)).

Table 2 Result parameters of PPO-Hiphop pharmacophore model.

Num-	 Features	 Rank	 Direct	 Partial	 Max
ber			   Hit	 Hit	 Fit

01	 RRHHAA	 96.17	 111111	 000000	 6
02	 RRHHAA	 96.17	 111111	 000000	 6
03	 RRHHAA	 96.16	 111111	 000000	 6
04	 RRHHAA	 96.16	 111111	 000000	 6
05	 RRHHAA	 96.15	 111111	 000000	 6
06	 RRHHAA	 96.12	 111111	 000000	 6
07	 RRHHAA	 95.96	 111111	 000000	 6
08	 RRHHAA	 95.96	 111111	 000000	 6
09	 RRHHAA	 95.40	 111111	 000000	 6
10	 RRHHAA	 95.40	 111111	 000000	 6

Rank: Indicates the fit values of the pharmacophore.
Direct Hit: indicates the match between the pharmacophore and the 
training set molecule.
Partial Hit: indicates the number of pharmacophore features that 
match the training set molecule.
Max Fit: indicates the matching of pharmacophore features.

3. 2. �CBP Pharmacophore for Virtual 
Screening
As for the PCA of compounds (Figure 5(a)), the data 

of active compounds and inactive compounds was distrib-
uted widely. There was a clear separation between the two 
groups, which could be used to validate the model. The ten 
generated HPPD pharmacophore models have more than 
five characteristic elements and the area under the curve 
(AUC) value was above 0.7, as shown in Table 3. Accord-
ing to the AUC value, the HPPD-CBP-01 model (AUC = 
0.976) was selected for virtual screening. The HP-
PD-CBP-01 contained aromatic ring centers, the hydrogen 
bond receptor and the hydrophobic group. Hydrogen 
bond acceptor was located at the oxygen atom, the 
six-membered ring center and the methyl group generated 
the hydrophobic feature (Figure 5(b)). The receiver oper-
ating characteristic curve (ROC) was used to verify the 
ability of the HPPD-CBP pharmacophore model to distin-
guish between active and inactive compounds, the accura-
cy of the CBP pharmacophore model was evaluated by 
AUC value, and ROC curves of ten CBP pharmacophore 
models were shown in Figure S7(a).

PCA was performed for PPO active compounds and 
inactive compounds, as shown in Figure 6(a), the spatial 
distribution of compounds was wide, active compounds 
and inactive compounds were distributed on two sides, 
with a clear demarcation line, the constructed model was 
verified by a test set. In ten PPO-CBP pharmacophore 
models, PPO-CBP-01 and PPO-CBP-02 included six char-
acteristic elements, and the remaining models included 
five characteristic elements. According to the AUC values 
(Table 4), CBP pharmacophore models was selected for 
virtual screening. PPO-CBP-04 contained 2 hydrogen 
bond receptors, 2 hydrophobic features and 1 Harom (Fig-
ure 6(b)). Figure S7(b) shows the ROC of ten CBP phar-
macophore models.

Figure 4. PPO-Hiphop pharmacophore. (a) The heat map of the 10 hypotheses in the test; (b) The matching of pharmacophore model-01 with 
lactofen, the color of pharmacophore features RA, HY and HBA are represented by orange, blue and green, respectively. RA: The aromatic ring needs 
to be defined by two parameters: one parameter was the spatial position of the aromatic ring and the other parameter was the direction of the aro-
matic ring plane vector. HY: The hydrophobic center need not be represented by a vector. HBA: Hydrogen bond interaction has a clear directivity, 
and two points are used to describe hydrogen bond characteristics. One point represents the spatial position of the heavy atom in the hydrogen bond 
feature, and the other point represents the vector direction of the hydrogen bond acceptor.
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3. 3. Pharmacophore Virtual Screening
Before the virtual screening, the database was pre-

processed. 1024513 Compounds, extracted from Bailingwei 
and Vitas-M databases, were screened according to the Li-
pinski principle: MW ≤ 500, HBD < 5, HBA < 10, log p < 5, 
RB ≤ 10. 498843 screened compounds were used to create a 

3D database for the future investigations. HipHop pharma-
cophore model and CBP pharmacophore model were used 
to screen the compounds, and the intersection compounds 
of the two models were selected for further study.

83042 Compounds were screened through the Hiphop 
pharmacophore of HPPD-02, and the hit compounds were 

Figure 5. (a) PCA of active compounds and inactive compounds of HPPD; (b) The matching of pharmacophore model-01 with crystalline small 
compound.

Table 3 Result parameters of HPPD-CBP pharmacophore model.

Number	 TP	 TN	 FP	 FN	 SE	 SP	 AUC	 Features

01	 45	 68	 1	 2	 0.96	 0.98	 0.98	 AAHHRR
02	 42	 66	 3	 5	 0.89	 0.96	 0.94	 AAHHRR
03	 45	 68	 1	 2	 0.96	 0.98	 0.98	 AAHHRR
04	 43	 66	 3	 4	 0.91	 0.96	 0.95	 AAHHRR
05	 47	 52	 17	 0	 1.00	 0.75	 0.91	 AAHHHaromR
06	 45	 53	 16	 2	 0.96	 0.77	 0.89	 AAHHHaromR
07	 47	 53	 16	 0	 1.00	 0.77	 0.89	 AAHHHaromR
08	 46	 54	 15	 1	 0.98	 0.78	 0.90	 AAHHHaromR
09	 32	 59	 10	 15	 0.68	 0.86	 0.75	 DHHRR
10	 32	 59	 10	 15	 0.68	 0.86	 0.75	 DHHRR 

TP: true positive; TN: true negative; FP: false positive; FN: false negative; SE: sensitivity; SP: specificity.

Table 4 Result parameters of PPO-CBP pharmacophore model.

Number	 TP	 TN	 FP	 FN	 SE 	 SP	 AUC	 Features

1	 15	 43	 0	 4	 0.79	 1.00	 0.89	 AAFFHalHarom
2	 17	 43	 0	 2	 0.89	 1.00	 0.95	 AAFFHalHarom
3	 17	 43	 0	 2	 0.89	 1.00	 0.95	 AAFFHal
4	 18	 43	 0	 1	 0.95	 1.00	 0.97	 AAFFHarom
5	 18	 42	 1	 1	 0.95	 0.98	 0.97	 AAFFHalHarom
6	 18	 42	 1	 1	 0.96	 0.98	 0.97	 AAFFHalHarom
7	 17	 43	 0	 2	 0.89	 1.00	 0.95	 AAFFHal
8	 18	 43	 0	 1	 0.96	 1.00	 0.97	 AAFFHarom
9	 18	 43	 0	 1	 0.96	 1.00	 0.97	 AAFFHalHarom
10	 18	 43	 0	 1	 0.96	 1.00	 0.97	 AAFFHalHarom

TP: true positive; TN: true negative; FP: false positive; FN: false negative; SE: sensitivity; SP: specificity
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Figure 6. (a) PCA of active compounds and inactive compounds of PPO; (b) The matching of pharmacophore model-04 with crystalline small 
compound.

Table 5 FitValues of compounds and pharmacophore model.

Name	 Structure	 FitValuea	 FitValueb	 FitValuec	 FitValued

Compound49317		  3.29	 3.73	 3.28	 2.91

Compound10674		  3.01	 3.62	 3.01	 2.57

Compound35215		  3.11	 3.36	 2.89	 2.50

Compound1555		  3.15	 3.49	 3.47	 2.12

STOCK1N-41398		  3.15	 3.1491	 3.35	 2.64

STOCK1N-67214		  3.06	 3.69	 3.18	 2.64

STOCK1N-57851		  3.19	 3.25	 2.52	 2.58

STOCK1N-40313		  3.59	 3.36	 3.55	 2.51

a: Hiphop-HPPD FitValue; b: Hiphop-PPO FitValue; c: CBP-HPPD FitValue; d: CBP-FitValue
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sent to the PPO-01 pharmacophore model, finally, 3571 
compounds were obtained with the FitValue greater than 2. 
The CBP pharmacophore virtual screening was similar to 
Hiphop model. HPPD-01 was employed to screen 498843 
compounds, 58300 compounds could hit the pharmacoph-
ore model, the hit compounds were filtered the PPO-04 
model, 164 compounds were matched to the model. Finally, 
8 cross-compounds were obtained by Hiphop model and 
CBP model, the FitValues were shown in Table 5.

ADMET properties play a crucial role in drug dis-
covery for the druggability and safety. ADMET predic-

tions were performed to evaluate the solubility and safety 
profiles of the selected compounds. The DS "Calculate Mo-
lecular Properties" module under the "ADMET Descrip-
tors" function was used for ADMET prediction, set evalu-
ation option while maintaining default other Settings. The 
molecular properties (Table S4) and ADMET predictions 
(Table S5) of the selected compounds showed satisfactory 
results. It was evident from the predictions that all com-
pounds exhibited good solubility. In addition, based on the 
CYP2D6 binding value, none of the 8 compounds showed 
inhibition CYP2D6, indicating their potential to avoid ab-

Table 6 The structure and evaluation of the potential compounds.

Compound	 Structure	 –CDOCKER ENERGY-HPPD	 –CDOCKER ENERGY-PPO
		  (kcal/mol)	 (kcal/mol)

Natural ligand		  15.61	 4.72

Negative compound		  5.49	 3.84

Mesotrione		  19.70	 –

Oxyfluofen		  –	 18.52

Compound49317		  32.75	 19.07

Compound10674		  34.14	 25.48

Compound35215		  14.54	 14.39

Compound1555		  36.73	 25.58

STOCK1N-41398		  24.87	 24.15

STOCK1N-67214		  32.21	 14.48

STOCK1N-57851		  34.61	 34.81

STOCK1N-40313		  43.74	 36.63
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normal blood concentration due to CYP2D6 inhibition. 
Additionally, the binding form and stability of these 8 
compounds were conducted.

3. 4. Molecular Docking
To test the binding mode of the 8 hit compounds to 

the target, the CDOCKER program in DS was carried out, 
retenting the result of a high CDOCKER ENERGY value. 
Before the molecular docking, the natural ligand was re-
docked to protein to verify the reliability of the docking 

procedure, and the natural ligand was extracted for hydro-
genation and energy minimization. As shown in Figure S8, 
the redocking ligand (brown) and the natural ligand (blue) 
almost completely overlapped, the RMSD values between 
HPPD, PPO and the natural ligand were 0.599 and 0.892, 
indicating that the CDOCKER procedure was reliable.

Eight compounds were docked with 1TFZ and 1SEZ, 
the results were analyzed according to the -CDOCKER 
ENERGY value. As shown in Table 6, for HPPD, the –
CDOCKER ENERGY was higher than that the natural li-
gand except Compound35215. In PPO, the results of all 

Figure 7. CDOCKER docking results of AtHPPD. (a) Compound49317; (b) Compound10674; (c) Compound35215; (d) Compound1555; (e) 
STOCK1N-41398; (f) STOCK1N-67214; (g) STOCK1N-57851; (h) STOCK1N-40313 interact with receptor-ligand at the active site of AtHPPD.
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compounds were superior to the natural ligand. The com-
mercial herbicides mesotrione and oxyfluofen were select-
ed for molecular docking with AtHPPD and NtPPO, and it 
was found that except Compound35215, the –CDOCK-
ER_ENERGY of the other 7 compounds were superior to 
the commercial herbicides. The docking results of negative 
compound showed that all compounds had good docking 
results, which were higher than negative compound.

The interactions between HPPD and ligands were 
shown in Figure 7. All the 8 compounds could chelate with 
the metal Fe(II). Compound49317, Compound10674, and 

STOCK1N-57851 formed bidentate combination. The hot 
spot residues Phe403 and Phe360 binded to the benzene 
ring via π-π interaction. Phe398 binded to ligands in two 
ways, one was the π-π interaction with the aromatic rings 
of Compound49317, STOCK1N-41398, STOCK1N- 
67214 and STOCK1N-40313, another way of binding was 
to hydrogen bond interactions with the hydrogen atoms of 
Compound10674, Compound1555, STOCK1N-41398, 
STOCK1N-57851, and STOCK1N-40313. In addition to a 
metal ligand, Phe403, Phe398, and Phe360, the formation 
of interactions between ligands and other residues (His287, 

Figure 8. CDOCKER docking results of NtPPO. (a) Compound49317; (b) Compound10674; (c) Compound35215; (d) Compound1555; (e) 
STOCK1N-41398; (f) STOCK1N-67214; (g) STOCK1N-57851; (h) STOCK1N-40313 interact with receptor-ligand at the active site of NtPPO.
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Phe360, Phe371, Met314) was also beneficial to improve 
the binding stability of the compound to the target, which 
enhanced the inhibition effect.

The interactions between PPO and ligands were 
shown in Figure 8. There were hydrogen bond interactions 
with Arg98 and oxygen atoms in 8 ligands, and π-π inter-
actions with Phe392 and aromatic rings, all ligands pro-
duced π-alkyl interactions with Leu372. The π-π interac-
tion was observed in STOCK1N-41398 and 
STOCK1N-57851 with Phe439, and the π-alkyl interac-
tion was identified in Compound10674, Compound35215, 
STOCK1N-67214 and STOCK1N-40313 with Phe439. By 
molecular docking analysis with AtHPPD and NtPPO, it 
was found that all compounds could bind to the key resi-
dues of two targets, and obtained similar docking scores 
with commercial herbicides.

3. 4. MD Simulation
The MD simulation was employed to verify the sta-

bility of the binding of the compound to the protein. The 
simulation time was set at 100 ns, and a stable system was 
obtained. The results were expressed using the root-mean-
square deviation (RMSD), which included the Cα atom of 
the protein backbone, the heavy atom of the ligand, and 
the active pocket of the residues around the ligand. As 
shown in Figure 9(a)(b)(c), in the process of binding with 
HPPD, Compound35215 fluctuated at the first 10 ns and 
stabilized after 20 ns. Compound49317, Compound10674 
and STOCKIN-57851 did not fluctuate significantly after 

15 ns. Compared with the natural ligand in 1TFZ, the 
RMSD of STOCKIN-40313, STOCKIN-41398 and Com-
pound35215 were similar as the native ligand. The RMSD 
values for Compound10674, Compound35215, Com-
pound49317, STOCKIN-57851, and STOCKIN-67214 
were comparable to those of commercial herbicides. In 
contrast, the RMSD values for Compound1555, Com-
pound40313, and Compound41398 were lower than those 
observed for mesotrione. 8 Compounds maintained good 
stability during MD simulation. As shown in Figure 9(d)
(e)(f), STOCKIN-57851, STOCKIN-41398 and STOCK-
IN-40313 kept stable after 15 ns with the PPO protein. 3 
Compounds showed lower RMSD than natural ligand. 
Compound10674 and STOCKIN-67214 began to level off 
after 40 ns. Exception of Compound 35215, the RMSD val-
ues for the other seven compounds were comparable to 
those of the commercial herbicide oxyfluofen. All com-
pounds tended to stabilize after a certain period of time, 
which proved that the screened compounds could stably 
bind to the target. In HPPD and PPO targets, the screened 
compounds showed good stability in MD simulation, 
which further indicated that the screened compounds 
could form stable structures with the targets.

As shown in Figure S9, the residues Phe403, Glu373, 
Phe398, His287, Phe360 and His205 in HPPD contributed 
significantly to the protein binding process of the natural 
ligand, Compound49317, Compound10674 and STOCK-
IN-57851. Similar to HPPD analysis, in the binding pro-
cess of PPO to ligand, Phe392, Leu372, Leu356 and Arg98 
contributed greatly, these residues were the key residues of 

Figure 9 (a) AtHPPD-RMSD of skeleton Cα atom; (b) AtHPPD-RMSD of the heavy atom of the ligand; (c) AtHPPD-RMSD of the protein active 
pocket with 5 Å residues around the ligand. (e) NtPPO-RMSD of skeleton Cα atom; (f) RMSD of the heavy atom of the ligand; (g) RMSD of the 
protein active pocket with 5 Å residues around the ligand.
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PPO protein. In addition to key residues, Thr68 and 
Phe439 also played key roles in MD simulation.

The acceptor-ligand binding free energy (ΔGbind) 
was calculated using the MM/GBSA method. Table 7 gave 
the parameters of ΔGbind, ΔGbind coulomb, ΔGbind Hbond, 
ΔGbind Lipo and ΔGbind vdW. The ΔGbind value reflected 
the degree of binding between the compound and HPPD. 
Among the 8 compounds, ΔGbind Covalent was positive 
values, indicating that ΔGbind Covalent formed negative ef-
fect on protein binding, and the calculated values of ΔGbind 
Lipo and ΔGbind vdW were both negative, according to the 
parameters, it was concluded that ΔGbind Lipo and ΔGbind 
vdW were the main contributors of binding free energy. 
The ΔGbind values of STOCK1N-57851, STOCK1N-40313 
and STOCK1N-67214 were –41.03 kcal mol–1, –26.14 kcal 
mol–1 and –24.75 kcal mol–1, respectively. STOCK1N-57851 
showed the greatest binding force with the protein. ∆Gbind 
Coulomb was –38.37 kcal mol–1, ∆Gbind Hbond was –0.75 
kcal mol–1 and ∆Gbind Lipo was –24.87 kcal mol–1, ∆Gbind 
vdW was –48.05 kcal mol–1. According to the residue con-
tribution degree and binding free energy, the compound 
had the potential to be an inhibitor of HPPD.

As shown in Table 8, similar as the HPPD complex, 
most of the ΔGbind Covalent in 8 compounds were mostly 
positive, which had a negative effect on protein binding. 
Gbind Lipo and ΔGbind vdW were major contributors to 
binding free energy. The ΔGbind values of STOCK1N-57851, 
STOCK1N-40313 and STOCK1N-41398 were –73.20 kcal 
mol–1, –52.53 kcal mol–1 and –57.40 kcal mol–1, respec-
tively. The ∆Gbind vdW of STOCK1N-57851 and 
STOCK1N-40313 were –48.05 kcal mol–1 and –46.54 kcal 

mol–1, respectively. The results confirmed that 
STOCK1N-57851 had good binding ability for both HP-
PD and PPO.

4. Conclusion
In summary, based on commercial inhibitors and 

crystalline complexes of two herbicide targets enzyme 
(HPPD and PPO), Hiphop pharmacophore and CBP 
pharmacophore models were constructed for screening, 
respectively. Eight potential molecules were obtained for 
further molecular docking, ADMET prediction, dynamics 
studies and binding free energy calculation. All the eight 
compounds matched with AtHPPD and NtPPO well. The 
selected ligands were in line with drug formation and had 
the advantages of low toxicity and no pollution, which 
were in accord with the current concept of developing 
green pesticides and had the potential to become double 
target herbicides. STOCK1N-57851 interacted with the 
key residues Arg98, Phe392, Leu372 and Phe439 in PPO 
active site, blocking the synthesis of chlorophyll. For  
HPPD receptor, in addition to interacting with the key res-
idues, it also formed bidentate combination with Fe(II), by 
occupying the active site. This compound prevented HP-
PD from participating in the biosynthesis of plastoqui-
none and tocopherol in plants, thereby inhibiting photo-
synthesis. In general, STOCK1N-57851 was regarded as a 
promising potential dual-target inhibitor of HPPD and 
PPO, providing valuable insights for the design of novel 
molecular frameworks.

Table 7 HPPD-Contribution of various energy components to binding free energy (kcal mol–1).

Compound	 ΔGbind	 ΔGbind Coulomb	 ΔGbind Covalent	 ΔGbind Hbond	 ΔGbind Lipo	 ΔGbind vdW

STOCK1N-57851	 –41.03	 –38.37	 8.82	 –0.75	 –24.87	 –48.05
Compound35215	 –19.21	 –9.06	 9.32	 –0.68	 –24.62	 –44.61
Compound49317	 –6.13	 –25.56	 1.18	 –0.04	 –15.09	 –49.95
Compound10674	 –18.48	 –49.48	 7.58	 0.06	 –18.40	 –41.38
STOCK1N-40313	 –26.14	 –18.88	 8.60	 0.015	 –23.12	 –46.54
STOCK1N-41398	 –13.17	 –38.47	 11.75	 –1.21	 –21.46	 –40.97
Compound1555	 –14.74	 –24.75	 4.95	 –0.04	 –22.91	 –45.11
STOCK1N-67214	 –24.75	 –46.54	 9.074	 –1.64	 –23.89	 –45.37

Table 8 PPO-Contribution of various energy components to binding free energy (kcal mol–1).

Compound	 ΔGbind	 ΔGbind Coulomb	 ΔGbind Covalent	 ΔGbind Hbond	 ΔGbind Lipo	 ΔGbind vdW

STOCK1N-57851	 –73.20	 –9.00	 6.64	 –1.09	 –28.73	 –55.94
Compound35215	 –62.33	 –19.49	 –1.63	 –1.62	 –20.46	 –46.59
Compound49317	 –64.99	 10.45	 3.92	 –0.62	 –14.752	 –56.75
Compound10674	 –46.15	 –12.52	 2.96	 –2.11	 –10.45	 –44.71
STOCK1N-40313	 –52.53	 –0.477	 10.04	 –1.09	 –18.77	 –54.96
STOCK1N-41398	 –57.40	 –12.99	 6.15	 –0.99	 –21.82	 –49.68
Compound1555	 –57.64	 –12.06	 1.58	 –2.19	 –19.085	 –49.53
STOCK1N-67214	 –64.28	 –8.26	 8.64	 –0.02	 –25.80	 –60.66
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Povzetek
Razvoj in identifikacija herbicidov z dvojno tarčo je eden izmed glavnih pristopov za reševanje problema odpornosti 
plevela. Protoporfirinogen oksidaza (PPO) in p-hidroksifenilpiruvat dioksigenaza (HPPD) sta dve pomembni tarči v fo-
tosintezi rastlin. V nasprotju s tradicionalnim načrtovanjem zdravil, ki temeljijo na eni sami tarči, se ta študija osredotoča 
na oblikovanje zdravil z dvojnim učinkom na HPPD in PPO. Hiphop farmakoforni modeli za tarči HPPD in PPO so 
bili izdelani z uporabo komercialnih pesticidov, farmakoforni modeli CBP pa so bili napravljeni na podlagi proteinskih 
kompleksov. Z uporabo farmakofornih modelov smo pregledali več milijonov molekul, izmed katerih smo jih izbrali 8. 
Kandidatne spojine so tvorile kelate z železom (Fe II) v HPPD in vypostavile stabilne π-π interakcije s ključnimi ostan-
ki v aktivnem mestu HPPD. Večina spojin je tvorila vodikove vezi in π-π interakcije z ostanki v PPO. V kombinaciji z 
večstopenjskim vizualnim presejalnim postopkom smo pridobili potencialne spojine z zaviralnim učinkom na obe tarči.

Except when otherwise noted, articles in this journal are published under the terms and conditions of the  
Creative Commons Attribution 4.0 International License
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