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Abstract

The development and identification of dual target herbicides was one of primary approach to addressing the issue of
weed resistance. Protoporphyrinogen oxidase (PPO) and p-hydroxyphenylpyruvate dioxygenase (HPPD) are two im-
portant targets of photosynthesis in plants. Different from the traditional single target drug design, this study focuses on
HPPD and PPO dual target drug design. Hiphop pharmacophore models of HPPD and PPO targets were constructed
use commercial pesticides, and CBP pharmacophore models were constructed based on protein complexes. Over mil-
lions of molecules were screened using pharmacophore models and 8 compounds were obtained. Candidate compounds
chelated with Fe(II) in HPPD and formed stable -7 interactions with key residues in HPPD active pocket. Most com-
pounds produced hydrogen bond interactions and n-nt interactions with residues in PPO. Combined with a multiple
visual screen process, potential compounds with dual-target inhibition effect were obtained.
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1. Introduction

Weeds are a major hazard to crops, competing with
them for sunlight, water and nutrients in the soil.? As an
economical, efficient, and reliable solution for weed con-
trol, herbicide application is key role to ensuring high and
stable crop yields. The continuous application of herbi-
cides led the weed resistance increasing, and the impact of
herbicide residues on crops and the environment. There is
an urgent need to develop of safety, low-impact, low toxic-
ity and highly efficient novel herbicides.>*

During plant photosynthesis, the action sites of pig-
ment synthesis are tetrapyrrole, carotenoid and plastoqui-
none. As shown in Figure 1, the synergistic effect of three
enzymes, protoporphyrinogen oxidase (PPO) phytoene
desaturase (PDS) and p-hydroxyphenylpyruvate dioxy-
genase (HPPD) in plants were illustrated.® In the process
of chlorophyll synthesis, PPO is the key catalytic enzyme
in the process of tetrapyrrole biosynthesis. PPO catalyzes
protoporphyrinogen IX to produce protoporphyrin IX in
plants under the oxygen and sunlight conditions.®” Pro-
toporphyrin IX chelates with metal ions in chloroplasts to

produce chlorophyll.3-1° Protoporphyrinogen IX is unable
to bind to the active site of PPO after being treated with
PPO inhibitors in the presence of light and oxygen, pro-
toporphyrinogen IX is accumulated in cytoplasm and con-
verted to photosensitive protoporphyrin IX, causing the
cell to rupture and the plant death.!!-!* In addition to chlo-
rophyll, carotenoids, acting as light-harvesting pigments
in photosynthetic reaction, protect photosynthesis from
chlorophyll triplet and singlet oxygen damage.!* PDS is a
rate-limiting enzyme in carotenoid synthesis and catalyzes
the symmetric desaturation of phytoene to carotenoid.!>1®
Inhibition of PDS causes the phytoene accumulation in
plants, disrupting carotenoid and chlorophyll synthesis
and ultimately resulting in weeds death.!” In plants, HPPD
is an important oxidoreductase involved in the tyrosine
metabolic pathway, catalyzing the conversion of p-hy-
droxyphenylpyruvate (HPPA) to homogentisic acid
(HGA), which further reacts to produce plastoquinone
and tocopherol.'¥-2% Plastoquinone is the key cofactor of
PDS. HPPD inhibitors hinder the synthesis of plastoqui-
none and tocopherol,?"?? and the synthesis of carotenoid
is indirectly affected by the decrease of the content of plas-
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Figure 1. Action mode of PPO, PDS and HPPD in plants.

toquinone, eventually leaf bleaching of the plant leaves.?

24 The results show that leaves albinism occurred when
HPPD and PPO inhibitors are applied, further affecting
weed growth by reducing the content of chlorophyll.
Compared with traditional single-target drug de-
sign, multi-target drug acts on multiple targets in the same
body at the same time, producing synergistic effects on
each target.?” If a certain target is mutated, the drug will
maintain therapeutic efficacy by inhibiting other targets,
and avoiding drug resistance caused by single-target muta-
tions. Sorafenib is a multi-target drug that has been mar-
keted for the treatment of cancer by acting on metal-
lothionein 1G(MT1G), DNA methyltransferase 1 (NMT1),
Kriipple-like Factor 4(KLF4), and Carbonic anhydrase
9(CA9) in hepatocellular carcinoma.?® Virtual screening

of the dual FMS-like tyrosine kinase 3 (FLT3) and mito-
gen-activated protein kinase (MAPK)-interacting kinases
2 (MNK?2) inhibitor in the treatment of acute myeloid leu-
kemia was conducted by molecular docking methods and
cell experiments, the results showed that the obtained can-
didate K783-0308 exhibited inhibitory effect for the target
FLT3 and MNK2.?” Novel dual-target of HPPD and PDS
inhibitors were screened using pharmacophore models,
molecular docking and structure optimization.®
Pharmacophore models are collections of spatial and
electronic features, in continuous of our study on mul-
ti-target albino herbicides, HPPD and PPO multi-target
pharmacophore models were constructed and 1024513
small molecules were screened. Pharmacophore models
based on common characteristics of molecules (Hiphop)
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Figure 2. The workflow of multi virtual screening base on dual herbicide target.

and complex-based pharmacophore models (CBP) were
constructed respectively, molecular docking and molecu-
lar dynamics (MD) simulation were performed on candi-
date compounds. Finally, 8 potential compounds with in-
hibitory effects on HPPD and PPO were obtained. The
workflow of virtual screening based on the pharmacoph-
ore model is shown in Figure 2.

2. Experimental

2. 1. Database Collection and Preparation
1024513 Compounds were extracted from Bailing-
wei and Vitas-M (https://vitasmlab.biz) databases, and
screened according the Lipinski rules compounds. Com-
pounds were conformational optimized with Discovery
Studio (DS, Biovia Inc. San Diego, CA, USA, 2020), the 3D
database was built with the “Build 3D Database” module,
the conformation number was set to 200, and the BEST
method was selected for conformation generation.

2. 2. Generation and Verification of Hiphop
Pharmacophore Model and Virtual
Screening
The Hiphop pharmacophore was established in

“Common Feature Pharmacophore Generation model of

DS. According to the common characteristics of active

compounds, pharmacophore models were generated

based on the overlap of these common characteristics and

subsequently applied to virtual screening. Regarding HP-
PD, six commercial HPPD herbicides topramezone, pyra-
sulfotole, cypyrafluone, tolpyralate, fenpyrazone and tripy-
rasulfone were collected as the training set to construct
HPPD-Hiphop pharmacophore models, the physico-
chemical properties are listed in Table S1. All ligands were
set the MaxOmitFeat feature with 0 and Principal feature
with 2. Compound feature elements were selected using
the “Edit and Cluster Features” tool. The characteristic ele-
ments of hydrogen bond donor (HBD), hydrogen bond
acceptor (HBA), aromatic ring (AR) and hydrophobic
(HY) were selected to produce pharmacophore. Hiphop
pharmacophore was constructed using the “Common Fea-
ture Pharmacophore Generation” function in the “Create
Pharmacophores Automatically” module. The BEST was
selected to produce 10 pharmacophore and 200 conforma-
tions with a cut-off value of 10 kcal-mol-!. To test the reli-
ability of the pharmacophore model, the compounds re-
ported in literature on HPPD inhibitors and structures
that have no effect on HPPD were collected. 16 Active
compounds and 10 inactive compounds (Figure S1) were
collected as a testing set, the “Search, Screen and Profile”
module was used to evaluate the constructed Hiphop
pharmacophore match with the test set. Input File Phar-
macophores were loaded, and 10 pharmacophore models
were input. The Maximum Conformation number was set
to 200 and the Energy Threshold was set to 10.

In the same way as the construction process of the
pharmacophore model of HPPD, 6 commercial PPO herbi-
cides fluroximin, fomesafen, fluoroglycofen, lactofen, acif-
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luorfen and ethhoxyfen-ethyl were used as the training set
to construct the PPO-Hiphop pharmacophore model, the
physicochemical properties of six commercial PPO inhibi-
tors were shown in Table S2. The PPO pharmacophore con-
struction and validation were the same as that for HPPD
pharmacophore model. The PPO testing set consisted of 13
active compounds and 12 inactive compounds (Figure S2).
HPPD-Hiphop pharmacophore model was used to
screen the 3D database, and the remaining compounds
were screened by PPO-Hiphop pharmacophore model.

2. 3. Generation and Verification of CBP
Pharmacophore Model and Virtual
Screening

Different from the Hiphop model, the construction
of the CBP model was based on single receptor-ligand
crystal complex interaction, the number of training set
was fixed. To ensure the accuracy of the constructed CBP
model, a diverse set of active and inactive compounds
must be collected for rigorous validation. Arabidopsis
thaliana HPPD (AtHPPD) (PDB ID: 7X5Y) (resolution
1.50 A)'® and crystalline small compound were defined as
receptor and ligand, and the “Interaction Pharmacophore
Generation” module of DS was used to generate a CBP
pharmacophore model. Through a literature search, 47
Active compounds and 68 inactive compounds were col-
lected to validate the CBP pharmacophore model (Figure
S$3). Validation was set to True, Active Ligands were set to
All, Inactive Ligands were set to All and other parameters
were set to default. Commercial HPPD inhibitors included
triketone and pyrazole structure, and the active com-
pounds in the validation set were mainly composed of
these two structures. To examine the relationship between
the collected active compounds and inactive compounds,
principal component analysis (PCA) was employed to
analyze the chemical space. The molecular weight, number
of hydrogen bond donors and receptors, number of rotat-
able bonds and log p descriptors of the collected com-
pounds were used as input value.?®

The PPO-CBP pharmacophore model was con-
structed using the same protocol as for HPPD. Nicotiana
tabacum PPO (NtPPO, PDB ID: 1SEZ, resolution 2.90
A)? was selected to establish the CBP pharmacophore
model. The validation set of the PPO pharmacophore
model consisted of 19 active compounds and 43 inactive
compounds (Figure S4). The active compounds were dom-
inated by diphenyl ether structures.

2. 4. Molecular Docking

In order to ensure the accuracy of molecular docking
results, complex structures of plant origin with resolution
less than 2.0 A were selected for study. Mesotrione and oxy-
fluofen were used as positive controls, the AtHPPD (PDB
ID: 1TFZ) (resolution 1.8 A)* and NtPPO crystal structure

were downloaded from the PDB database for molecular
docking with compounds. Sequence information for 1TFZ
and 1SEZ is provided in Table S3. Proteins and ligands were
treated with DS and SYBYL-X 2.0. The unnecessary water
molecules and side chains of the Protein were removed, the
Protein was treated with “Prepare Protein” under the “Mo-
lecular” module in DS, the lost residues were supplemented,
and the position of the protein was added with the
CHARMm force field.>*!32 The Sketch module in SYBYL-X
2.0 was used to process compounds. Under the Tripos force
field, Gasteiger-Huckel charge was used to optimize the
molecules, the maximum iteration coefficient was selected
as 1000, and the energy convergence was 0.005 kcal mol™.

CDOCKER in DS “Receptor-Ligand Interactions”
module was used for molecular docking. The high temper-
ature dynamic rotation method was used to generate the
random ligand configuration, and then the lattice based
simulated annealing algorithm was used to optimize the
ligand configuration, using the “From Current Selection”
under the “Define and Edit Binding Site” module to define
the binding site of the protein around the ligand. The bind-
ing site size was set to 10A, other settings were default.>®
The AfHPPD binding site information was x: 45.937, y:
38.936, z: 51.499, and the NtPPO binding site information
was x: —39.832, y: —6.094, z: 28.669. Set the Dock Ligands
(CDOCKER) parameter to define the coordinates and ra-
dius of the docking site, and adjust the Pose Cluster Radius
parameter to 0.5 to maximize diversity in the docking con-
formations. After docking, the interactions between lig-
ands and proteins were analyzed and the top 10 conforma-
tional combinations with higher -CDOCKER_ENERGY
values were preserved.

2. 5. MD Simulation

MD simulation was commonly used to aid in the
study of dynamic atomic details, reveal the dynamics of
receptor-ligand interactions and explain the molecular
mechanisms behind them, allowing for a more accurate
and convenient assessment of the binding affinity of select-
ed compounds.®*~*¢In order to verify the stability of bind-
ing between the screening results and proteins, MD simu-
lation was further tested by using Desmond module of
Schrodinger software. Biological macromolecules mostly
used the water model, after the structure of the complex
was optimized, the system was constructed by a simple
point charge (SPC) water model and the ligand-protein
complex was placed in a regular hexahedral box filled with
water molecules.?’=3° To ensure the simulation system was
neutral, appropriate counterbalance ion neutralization
was added. With the parameters set under the Molecular
Dynamics module, the complex was simulated for 100 ns
at 298 K temperature and 1.01 bar pressure. In addition,
the maximum interaction was set to 2000, the convergence
threshold was set to 1.0 kcal mol~! A~1, and the OPLS_2005
force field was used to minimize the energy of the complex
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system.? The steepest descent and limited memory
Broyden Fletcher Goldfarb Shanno algorithm minimize
system energy with 5000 steps until it reached the gradient
threshold of 25 kcal mol~! A-!. Mesotrione and oxyfluofen
were used as positive control groups in MD simulation.
After the simulation, RMSD of protein skeleton, residues
around ligands and binding pockets, and ligand heavy at-
oms were analyzed for the equilibrium state and stability
of the complex. RMSD of the backbone was the main in-
dex to evaluate the stability of the system.

The Desmond module of Schrédinger software was
selected to calculate the molecular mechanics/generalized
born surface area (MM/GBSA) for the compounds, the
binding free energy (AGy;,;) was divided into molecular
mechanical terms and solvation energy, respectively, re-
flecting the degree of binding between compounds and
proteins. Al 42

3. Results and Discussion

3. 1. Hiphop Pharmacophore for Virtual
Screening

All of the ten pharmacophore models generated ac-
cording to the HPPD training set had six characteristic
elements and ranked above 85, which proved the reliability
of the pharmacophore models, as shown in Table 1. By
matching the HPPD-Hiphop pharmacophore models with
the training set, the hydrogen bond receptors were nearby
the oxygen and nitrogen atoms of the training set, the aro-
matic ring center was formed at the benzene ring, and the

e
o

Properties

hydrophobic characteristics could be found at the methyl
of the compounds (Figure S5). To ensure the accuracy of
the pharmacophore models, the Hiphop pharmacophore
models were verified through the testing set (Figure 3(a)).
The pharmacophore models could well recognize the ac-
tive and inactive compounds, and HPPD-Hiphop phar-
macophore models-02, 03 and 05 were more effective than
other models. The Hiphop pharmacophore model-02 had
a score of 89.143, was selected for further screening (Fig-
ure 3(b)). The pharmacophore signature elements includ-
ed 1 aromatic ring center, 1 hydrophobic feature, and 4
hydrogen bond receptors.

Table 1 Result parameters of HPPD-Hiphop pharmacophore model.

Num- Features Rank Direct Partial Max
ber Hit Hit Fit
01 RHAAAA 91.10 111111 000000 6
02 RHAAAA 89.14 111111 000000 6
03 RHAAAA 89.14 111111 000000 6
04 RHAAAA 88.67 111111 000000 6
05 RHAAAA 88.42 111111 000000 6
06 RHAAAA 88.26 111111 000000 6
07 RHAAAA 88.25 111111 000000 6
08 RHAAAA 87.84 111111 000000 6
09 RHAAAA 87.84 111111 000000 6
10 RHAAAA 87.83 111111 000000 6

Rank: Indicates the fit values of the pharmacophore.

Direct Hit: indicates the match between the pharmacophore and the
training set molecule.

Partial Hit: indicates the number of pharmacophore features that
match the training set molecule.

Max Fit: indicates the matching of pharmacophore features.
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Figure 3. HPPD-Hiphop pharmacophore. (a) The heat map of the 10 hypotheses in the test; (b) The matching of pharmacophore model-02 with
tripyrasulfone, the color of pharmacophore features RA, HY and HBA are represented by orange, blue and green, respectively. RA: The aromatic ring
needs to be defined by two parameters: one parameter was the spatial position of the aromatic ring and the other parameter was the direction of the
aromatic ring plane vector. HY: The hydrophobic center need not be represented by a vector. HBA: Hydrogen bond interaction has a clear directivi-
ty, and two points are used to describe hydrogen bond characteristics. One point represents the spatial position of the heavy atom in the hydrogen
bond feature, and the other point represents the vector direction of the hydrogen bond acceptor.
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Ten PPO pharmacophore models were generated
ranking above 95 and had six characteristic elements, 2 ar-
omatic ring centers, 2 hydrophobic characteristics and 2
hydrogen bond receptors, as shown in Table 2. The match-
ing between the training set and the PPO-Hiohop phar-
macophore models showed that the benzene ring in the
compound produced the aromatic ring center, and the hy-
drogen bond receptor was formed nearby the oxygen at-
om. The hydrophobic features were observed between me-
thyl and fluorine atom (Figure S6). Consistent with the test
method of HPPD, according to the rank and the matching
between the testing set and pharmacophore (Figure 4(a)),
Hiphop pharmacophore model-01 was finally selected for
subsequent screening, which included 2 aromatic ring
centers, 2 hydrophobic features and 2 hydrogen bond re-
ceptors (Figure 4(b)).

Table 2 Result parameters of PPO-Hiphop pharmacophore model.

Num- Features Rank Direct Partial Max
ber Hit Hit Fit
01 RRHHAA 96.17 111111 000000 6
02 RRHHAA 96.17 111111 000000 6
03 RRHHAA 96.16 111111 000000 6
04 RRHHAA 96.16 111111 000000 6
05 RRHHAA 96.15 111111 000000 6
06 RRHHAA 96.12 111111 000000 6
07 RRHHAA 95.96 111111 000000 6
08 RRHHAA 95.96 111111 000000 6
09 RRHHAA 95.40 111111 000000 6
10 RRHHAA 95.40 111111 000000 6

Rank: Indicates the fit values of the pharmacophore.

Direct Hit: indicates the match between the pharmacophore and the
training set molecule.

Partial Hit: indicates the number of pharmacophore features that
match the training set molecule.

Max Fit: indicates the matching of pharmacophore features.
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3. 2. CBP Pharmacophore for Virtual

Screening

As for the PCA of compounds (Figure 5(a)), the data
of active compounds and inactive compounds was distrib-
uted widely. There was a clear separation between the two
groups, which could be used to validate the model. The ten
generated HPPD pharmacophore models have more than
five characteristic elements and the area under the curve
(AUC) value was above 0.7, as shown in Table 3. Accord-
ing to the AUC value, the HPPD-CBP-01 model (AUC =
0.976) was selected for virtual screening. The HP-
PD-CBP-01 contained aromatic ring centers, the hydrogen
bond receptor and the hydrophobic group. Hydrogen
bond acceptor was located at the oxygen atom, the
six-membered ring center and the methyl group generated
the hydrophobic feature (Figure 5(b)). The receiver oper-
ating characteristic curve (ROC) was used to verify the
ability of the HPPD-CBP pharmacophore model to distin-
guish between active and inactive compounds, the accura-
cy of the CBP pharmacophore model was evaluated by
AUC value, and ROC curves of ten CBP pharmacophore
models were shown in Figure S7(a).

PCA was performed for PPO active compounds and
inactive compounds, as shown in Figure 6(a), the spatial
distribution of compounds was wide, active compounds
and inactive compounds were distributed on two sides,
with a clear demarcation line, the constructed model was
verified by a test set. In ten PPO-CBP pharmacophore
models, PPO-CBP-01 and PPO-CBP-02 included six char-
acteristic elements, and the remaining models included
five characteristic elements. According to the AUC values
(Table 4), CBP pharmacophore models was selected for
virtual screening. PPO-CBP-04 contained 2 hydrogen
bond receptors, 2 hydrophobic features and 1 Harom (Fig-
ure 6(b)). Figure S7(b) shows the ROC of ten CBP phar-
macophore models.

(b)

Figure 4. PPO-Hiphop pharmacophore. (a) The heat map of the 10 hypotheses in the test; (b) The matching of pharmacophore model-01 with
lactofen, the color of pharmacophore features RA, HY and HBA are represented by orange, blue and green, respectively. RA: The aromatic ring needs
to be defined by two parameters: one parameter was the spatial position of the aromatic ring and the other parameter was the direction of the aro-
matic ring plane vector. HY: The hydrophobic center need not be represented by a vector. HBA: Hydrogen bond interaction has a clear directivity,
and two points are used to describe hydrogen bond characteristics. One point represents the spatial position of the heavy atom in the hydrogen bond
feature, and the other point represents the vector direction of the hydrogen bond acceptor.
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Table 3 Result parameters of HPPD-CBP pharmacophore model.

Number TP TN FP FN SE Sp AUC Features

01 45 68 1 2 0.96 0.98 0.98 AAHHRR

02 42 66 3 5 0.89 0.96 0.94 AAHHRR

03 45 68 1 2 0.96 0.98 0.98 AAHHRR

04 43 66 3 4 0.91 0.96 0.95 AAHHRR

05 47 52 17 0 1.00 0.75 0.91 AAHHHaromR
06 45 53 16 2 0.96 0.77 0.89 AAHHHaromR
07 47 53 16 0 1.00 0.77 0.89 AAHHHaromR
08 46 54 15 1 0.98 0.78 0.90 AAHHHaromR
09 32 59 10 15 0.68 0.86 0.75 DHHRR

10 32 59 10 15 0.68 0.86 0.75 DHHRR

TP: true positive; TN: true negative; FP: false positive; FN: false negative; SE: sensitivity; SP: specificity.
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Figure 5. (a) PCA of active compounds and inactive compounds of HPPD; (b) The matching of pharmacophore model-01 with crystalline small

compound.

Table 4 Result parameters of PPO-CBP pharmacophore model.

PC1

Number TP TN FP FN SE SP AUC Features

1 15 43 0 4 0.79 1.00 0.89 AAFFHalHarom
2 17 43 0 2 0.89 1.00 0.95 AAFFHalHarom
3 17 43 0 2 0.89 1.00 0.95 AAFFHal

4 18 43 0 1 0.95 1.00 0.97 AAFFHarom

5 18 42 1 1 0.95 0.98 0.97 AAFFHalHarom
6 18 42 1 1 0.96 0.98 0.97 AAFFHalHarom
7 17 43 0 2 0.89 1.00 0.95 AAFFHal

8 18 43 0 1 0.96 1.00 0.97 AAFFHarom

9 18 43 0 1 0.96 1.00 0.97 AAFFHalHarom
10 18 43 0 1 0.96 1.00 0.97 AAFFHalHarom

TP: true positive; TN: true negative; FP: false positive; FN: false negative; SE: sensitivity; SP: specificity

3. 3. Pharmacophore Virtual Screening

Before the virtual screening, the database was pre-
processed. 1024513 Compounds, extracted from Bailingwei
and Vitas-M databases, were screened according to the Li-
pinski principle: MW < 500, HBD < 5, HBA < 10, log p < 5,
RB < 10. 498843 screened compounds were used to create a

3D database for the future investigations. HipHop pharma-
cophore model and CBP pharmacophore model were used
to screen the compounds, and the intersection compounds
of the two models were selected for further study.

83042 Compounds were screened through the Hiphop
pharmacophore of HPPD-02, and the hit compounds were
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Table 5 FitValues of compounds and pharmacophore model.

Name Structure FitValue® FitValue® FitValue® FitValued
Compound49317 i ﬁ; 3.29 3.73 3.28 291
g
F_<() g N O
¥ L= 0
I
Compound10674 Q | 3.01 3.62 3.01 2.57
(o]
F o
SK'N\/JLN’Q:O
% i i
Compound35215 3.11 3.36 2.89 2.50
Compound1555 3.15 3.49 3.47 2.12
STOCKIN-41398 7“%3 3.15 3.1491 3.35 2.64
T = ]
U% .
[ Lo
STOCKIN-67214 > “; 3.06 3.69 3.18 2.64
N »
e
o] 0
STOCKIN-57851 "‘NJ'LN “T)L\’/\‘ 3.19 3.25 2.52 2.58
ISSSe
L0
STOCKIN-40313 3.59 3.36 3.55 2.51

a: Hiphop-HPPD FitValue; b: Hiphop-PPO FitValue; c: CBP-HPPD FitValue; d: CBP-FitValue
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sent to the PPO-01 pharmacophore model, finally, 3571
compounds were obtained with the FitValue greater than 2.
The CBP pharmacophore virtual screening was similar to
Hiphop model. HPPD-01 was employed to screen 498843
compounds, 58300 compounds could hit the pharmacoph-
ore model, the hit compounds were filtered the PPO-04
model, 164 compounds were matched to the model. Finally,
8 cross-compounds were obtained by Hiphop model and
CBP model, the FitValues were shown in Table 5.

ADMET properties play a crucial role in drug dis-
covery for the druggability and safety. ADMET predic-

tions were performed to evaluate the solubility and safety
profiles of the selected compounds. The DS "Calculate Mo-
lecular Properties” module under the "ADMET Descrip-
tors" function was used for ADMET prediction, set evalu-
ation option while maintaining default other Settings. The
molecular properties (Table S4) and ADMET predictions
(Table S5) of the selected compounds showed satisfactory
results. It was evident from the predictions that all com-
pounds exhibited good solubility. In addition, based on the
CYP2D6 binding value, none of the 8 compounds showed
inhibition CYP2D6, indicating their potential to avoid ab-

Table 6 The structure and evaluation of the potential compounds.

Compound Structure -CDOCKER ENERGY-HPPD -CDOCKER ENERGY-PPO
(kcal/mol) (kcal/mol)
Natural ligand 15.61 4.72
Negative compound (1 \-1(/‘ 5.49 3.84
Mesotrione 19.70 -
Oxyfluofen N - 18.52
Compound49317 {_/H‘W‘E‘.J 32.75 19.07
ol N A o
i v [ -
I
Compound10674 f\ﬂ - 34.14 25.48
(S WYL
.,-\l\" il “I\i' e r‘)
Compound35215 ke 14.54 14.39
4] w? J
D A“j’ﬂ“'\."kv
“'/\“’ o' 1S ?\T}
Compound1555 _\\ 36.73 25.58
¥ _
4
="
STOCKIN-41398 _“% y 24.87 24.15
’—> o (’_, 55‘
\“d}fu\_\
W
STOCKIN-67214 % 3221 14.48
o ]?}ﬁfuh.\_g \
STOCKI1N-57851 34.61 34.81
STOCKI1N-40313 ) 43.74 36.63
0
0””\ ocl
_\—{n I
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normal blood concentration due to CYP2D6 inhibition. procedure, and the natural ligand was extracted for hydro-
Additionally, the binding form and stability of these 8 genation and energy minimization. As shown in Figure S8,
compounds were conducted. the redocking ligand (brown) and the natural ligand (blue)

almost completely overlapped, the RMSD values between
HPPD, PPO and the natural ligand were 0.599 and 0.892,
indicating that the CDOCKER procedure was reliable.

To test the binding mode of the 8 hit compounds to Eight compounds were docked with 1TFZ and 1SEZ,
the target, the CDOCKER program in DS was carried out, the results were analyzed according to the -CDOCKER
retenting the result of a high CDOCKER ENERGY value. ENERGY value. As shown in Table 6, for HPPD, the -
Before the molecular docking, the natural ligand was re- CDOCKER ENERGY was higher than that the natural li-
docked to protein to verify the reliability of the docking gand except Compound35215. In PPO, the results of all

(b)

3. 4. Molecular Docking

PIT-T0T

PHE-360

©)

PHE-360

HIS-287

GIN-35H

LEU-244

B Puraos

Figure 7. CDOCKER docking results of AfHPPD. (a) Compound49317; (b) Compound10674; (c) Compound35215; (d) Compound1555; (e)
STOCK1N-41398; (f) STOCK1N-67214; (g) STOCKIN-57851; (h) STOCK1N-40313 interact with receptor-ligand at the active site of AftHPPD.

Zhang et al.: Identification of Novel HPPD/PPO Dual-Target Inhibitors



Acta Chim. Slov. 2025, 72, 463-477

compounds were superior to the natural ligand. The com-
mercial herbicides mesotrione and oxyfluofen were select-
ed for molecular docking with AfHPPD and NtPPO, and it
was found that except Compound35215, the ~-CDOCK-
ER_ENERGY of the other 7 compounds were superior to
the commercial herbicides. The docking results of negative
compound showed that all compounds had good docking
results, which were higher than negative compound.

The interactions between HPPD and ligands were
shown in Figure 7. All the 8 compounds could chelate with
the metal Fe(IT). Compound49317, Compound10674, and

o=

(e)

Yo

PIE-392

STOCKIN-57851 formed bidentate combination. The hot
spot residues Phe403 and Phe360 binded to the benzene
ring via m-m interaction. Phe398 binded to ligands in two
ways, one was the m-mt interaction with the aromatic rings
of Compound49317, STOCKIN-41398, STOCKIN-

67214 and STOCK1N-40313, another way of binding was
to hydrogen bond interactions with the hydrogen atoms of
Compound10674, Compound1555, STOCKIN-41398,
STOCKIN-57851, and STOCK1N-40313. In addition to a
metal ligand, Phe403, Phe398, and Phe360, the formation
of interactions between ligands and other residues (His287,

Figure 8. CDOCKER docking results of NtPPO. (a) Compound49317; (b) Compound10674; (c) Compound35215; (d) Compound1555; (e)
STOCK1N-41398; (f) STOCKIN-67214; (g) STOCKIN-57851; (h) STOCK1N-40313 interact with receptor-ligand at the active site of NtPPO.
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Phe360, Phe371, Met314) was also beneficial to improve
the binding stability of the compound to the target, which
enhanced the inhibition effect.

The interactions between PPO and ligands were
shown in Figure 8. There were hydrogen bond interactions
with Arg98 and oxygen atoms in 8 ligands, and n-m inter-
actions with Phe392 and aromatic rings, all ligands pro-
duced m-alkyl interactions with Leu372. The n-w interac-
tion was observed in STOCKIN-41398 and
STOCKIN-57851 with Phe439, and the mn-alkyl interac-
tion was identified in Compound10674, Compound35215,
STOCKI1N-67214 and STOCK1N-40313 with Phe439. By
molecular docking analysis with AtHPPD and NtPPO, it
was found that all compounds could bind to the key resi-
dues of two targets, and obtained similar docking scores
with commercial herbicides.

3. 4. MD Simulation

The MD simulation was employed to verify the sta-
bility of the binding of the compound to the protein. The
simulation time was set at 100 ns, and a stable system was
obtained. The results were expressed using the root-mean-
square deviation (RMSD), which included the Ca atom of
the protein backbone, the heavy atom of the ligand, and
the active pocket of the residues around the ligand. As
shown in Figure 9(a)(b)(c), in the process of binding with
HPPD, Compound35215 fluctuated at the first 10 ns and
stabilized after 20 ns. Compound49317, Compound10674
and STOCKIN-57851 did not fluctuate significantly after

15 ns. Compared with the natural ligand in 1TFZ, the
RMSD of STOCKIN-40313, STOCKIN-41398 and Com-
pound35215 were similar as the native ligand. The RMSD
values for Compoundl10674, Compound35215, Com-
pound49317, STOCKIN-57851, and STOCKIN-67214
were comparable to those of commercial herbicides. In
contrast, the RMSD values for Compound1555, Com-
pound40313, and Compound41398 were lower than those
observed for mesotrione. 8 Compounds maintained good
stability during MD simulation. As shown in Figure 9(d)
(e)(f), STOCKIN-57851, STOCKIN-41398 and STOCK-
IN-40313 kept stable after 15 ns with the PPO protein. 3
Compounds showed lower RMSD than natural ligand.
Compound10674 and STOCKIN-67214 began to level off
after 40 ns. Exception of Compound 35215, the RMSD val-
ues for the other seven compounds were comparable to
those of the commercial herbicide oxyfluofen. All com-
pounds tended to stabilize after a certain period of time,
which proved that the screened compounds could stably
bind to the target. In HPPD and PPO targets, the screened
compounds showed good stability in MD simulation,
which further indicated that the screened compounds
could form stable structures with the targets.

As shown in Figure S9, the residues Phe403, Glu373,
Phe398, His287, Phe360 and His205 in HPPD contributed
significantly to the protein binding process of the natural
ligand, Compound49317, Compound10674 and STOCK-
IN-57851. Similar to HPPD analysis, in the binding pro-
cess of PPO to ligand, Phe392, Leu372, Leu356 and Arg98
contributed greatly, these residues were the key residues of
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-
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Figure 9 (a) AtHPPD-RMSD of skeleton Ca atom; (b) AfHPPD-RMSD of the heavy atom of the ligand; (¢) AfFHPPD-RMSD of the protein active
pocket with 5 A residues around the ligand. (e) NtPPO-RMSD of skeleton Ca atom; (f) RMSD of the heavy atom of the ligand; (g) RMSD of the

protein active pocket with 5 A residues around the ligand.
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PPO protein. In addition to key residues, Thr68 and
Phe439 also played key roles in MD simulation.

The acceptor-ligand binding free energy (AGy;,,)
was calculated using the MM/GBSA method. Table 7 gave
the parameters of AGy;,s, AGy,q coulomb, AGy,;,; Hbond,
AGbind Lipo and AGy;,; vdW. The AG,,;,4 value reflected
the degree of binding between the compound and HPPD.
Among the 8 compounds, AGy,;,; Covalent was positive
values, indicating that AGy,;,; Covalent formed negative ef-
fect on protein binding, and the calculated values of AGy,;,y
Lipo and AG;,; vdW were both negative, according to the
parameters, it was concluded that AGy;,; Lipo and AGy;,4
vdW were the main contributors of binding free energy.
The AGy;,  values of STOCKIN-57851, STOCKIN-40313
and STOCKI1N-67214 were —41.03 kcal mol-!, -26.14 kcal
mol!and-24.75kcalmol ™!, respectively. STOCK1N-57851
showed the greatest binding force with the protein. AGy;,y
Coulomb was -38.37 kcal mol™!, AGy,;,; Hbond was -0.75
kcal mol! and AGy,,; Lipo was —24.87 kcal mol™!, AGy;,4
vdW was -48.05 kcal mol™!. According to the residue con-
tribution degree and binding free energy, the compound
had the potential to be an inhibitor of HPPD.

As shown in Table 8, similar as the HPPD complex,
most of the AG,;,,; Covalent in 8 compounds were mostly
positive, which had a negative effect on protein binding.
Gying Lipo and AGy;,; vdW were major contributors to
binding free energy. The AGy;,; values of STOCKIN-57851,
STOCKIN-40313 and STOCK1N-41398 were —73.20 kcal
mol™!, -52.53 kcal mol™! and -57.40 kcal mol~!, respec-
tively. The AGy,; vdW of STOCKIN-57851 and
STOCKI1N-40313 were —48.05 kcal mol™! and -46.54 kcal

mol™!, respectively. The results confirmed that
STOCKI1N-57851 had good binding ability for both HP-
PD and PPO.

4. Conclusion

In summary, based on commercial inhibitors and
crystalline complexes of two herbicide targets enzyme
(HPPD and PPO), Hiphop pharmacophore and CBP
pharmacophore models were constructed for screening,
respectively. Eight potential molecules were obtained for
further molecular docking, ADMET prediction, dynamics
studies and binding free energy calculation. All the eight
compounds matched with AftHPPD and NtPPO well. The
selected ligands were in line with drug formation and had
the advantages of low toxicity and no pollution, which
were in accord with the current concept of developing
green pesticides and had the potential to become double
target herbicides. STOCKIN-57851 interacted with the
key residues Arg98, Phe392, Leu372 and Phe439 in PPO
active site, blocking the synthesis of chlorophyll. For
HPPD receptor, in addition to interacting with the key res-
idues, it also formed bidentate combination with Fe(II), by
occupying the active site. This compound prevented HP-
PD from participating in the biosynthesis of plastoqui-
none and tocopherol in plants, thereby inhibiting photo-
synthesis. In general, STOCK1N-57851 was regarded as a
promising potential dual-target inhibitor of HPPD and
PPO, providing valuable insights for the design of novel
molecular frameworks.

Table 7 HPPD-Contribution of various energy components to binding free energy (kcal mol™!).

Compound AGyig  AGygCoulomb  AGy;, Covalent  AGy, Hy,q  AGyi,g Lipo AGpiugvdW
STOCKIN-57851 -41.03 -38.37 8.82 -0.75 -24.87 -48.05
Compound35215 -19.21 -9.06 9.32 -0.68 -24.62 -44.61
Compound49317 -6.13 -25.56 1.18 -0.04 -15.09 -49.95
Compound10674 -18.48 -49.48 7.58 0.06 -18.40 -41.38
STOCKIN-40313 -26.14 -18.88 8.60 0.015 -23.12 -46.54
STOCKIN-41398 -13.17 -38.47 11.75 -1.21 -21.46 -40.97
Compound1555 -14.74 -24.75 4.95 -0.04 -22.91 -45.11
STOCKIN-67214 -24.75 -46.54 9.074 -1.64 -23.89 -45.37
Table 8 PPO-Contribution of various energy components to binding free energy (kcal mol™!).
Compound AGbind AGbind Coulomb AGbind Covalent AGbind Hbond AGbind LipO AGbind vdW
STOCKIN-57851 -73.20 -9.00 6.64 -1.09 -28.73 -55.94
Compound35215 -62.33 -19.49 -1.63 -1.62 -20.46 -46.59
Compound49317 -64.99 10.45 3.92 -0.62 -14.752 -56.75
Compound10674 -46.15 -12.52 2.96 -2.11 -10.45 -44.71
STOCKIN-40313 -52.53 -0.477 10.04 -1.09 -18.77 -54.96
STOCKIN-41398 -57.40 -12.99 6.15 -0.99 -21.82 -49.68
Compound1555 -57.64 -12.06 1.58 -2.19 -19.085 -49.53
STOCKIN-67214 -64.28 -8.26 8.64 -0.02 -25.80 -60.66
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Povzetek

Razvoj in identifikacija herbicidov z dvojno tar¢o je eden izmed glavnih pristopov za reSevanje problema odpornosti
plevela. Protoporfirinogen oksidaza (PPO) in p-hidroksifenilpiruvat dioksigenaza (HPPD) sta dve pomembni tar¢i v fo-
tosintezi rastlin. V nasprotju s tradicionalnim nac¢rtovanjem zdravil, ki temeljijo na eni sami tar¢i, se ta tudija osredotoca
na oblikovanje zdravil z dvojnim u¢inkom na HPPD in PPO. Hiphop farmakoforni modeli za tar¢i HPPD in PPO so
bili izdelani z uporabo komercialnih pesticidov, farmakoforni modeli CBP pa so bili napravljeni na podlagi proteinskih
kompleksov. Z uporabo farmakofornih modelov smo pregledali ve¢ milijonov molekul, izmed katerih smo jih izbrali 8.
Kandidatne spojine so tvorile kelate z Zelezom (Fe II) v HPPD in vypostavile stabilne nt-m interakcije s klju¢nimi ostan-
ki v aktivnem mestu HPPD. Vecina spojin je tvorila vodikove vezi in n-n interakcije z ostanki v PPO. V kombinaciji z
vecstopenjskim vizualnim presejalnim postopkom smo pridobili potencialne spojine z zaviralnim uc¢inkom na obe tar¢i.
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