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Abstract
Cobalt and nickel doped catalysts were synthesized by using chitosan and alginate and used in the degradation of Rema-
zol Yellow 4GL (RY) and Remazol Black B (RB) dyes. XRD pattern of catalysts exhibited that amorphous and semi-crys-
talline form for CoNi-chitosan and Co-alginate, respectively. SEM images showed catalyst’s surface was rough, grainy 
and rod-like structures. The surface functional groups were determined by FTIR analysis method and it was seen clearly 
presence of alginate and chitosan. The Co-alginate catalysts exhibited higher dye degradation (74% for RY) and lower 
reaction time (6 min for RB). The reduction reaction was in good agreement with pseudo-first-order kinetic model and 
reaction rate constant was determined as 0.140 min–1 and 0.174 min–1 for RY and RB, respectively. The RY reduction 
percent over both catalysts was higher than RB. Co-alginate showed approximately 70% reduction efficiency for RY even 
after 4 runs. The dye reduction efficiency and catalytic activity of the catalysts were promise for organic pollutant dyes 
catalytic reduction applications. 
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1. Introduction
Dyes are widely used in textile, cosmetics, paper, 

leather, food, plastic and many other industries. Azo dyes 
(–N=N– group) are among the most harmful dyes due to 
their high physicochemical stability.1 From these azo dyes, 
Remazol Yellow 4GL (RY) and Remazol Black B (RB) is a 
synthetic highly toxic dyes with a diazo group of symmet-
rical aromatic nature. They pose significant risks to human 
health such as mutagen, carcinogen, respiratory disorder, 
skin irritation and allergic reactions.2–8 Their discharge to 
water pollutes both environment and threat to human and 
many vivid species health due to their toxic, carcinogenic 
and mutagenic properties.9–13 Therefore, require efficient 
treatment before being released into aqueous media. Many 
methods such as adsorption, advanced oxidation, coagula-
tion and reverse osmosis have been used for the treatment 
of wastewater containing organic dyes. Adsorption pro-
cess is the most effective and reliable technique for remov-
al of dyes from wastewater. Although adsorption has the 
advantage of high processing efficiency, ease of use, and 
relatively low cost, it is difficult to remove contaminants 
from the adsorbent. In recent years, the chemical reduc-
tion strategy using NaBH4 in the presence of suitable cata-
lysts has gained more and more research attention due to 

its advantages of environment friendly, low cost, high effi-
ciency and easy operation. This process, while thermody-
namically favorable, is kinetically unfavorable.14–21 There-
fore, electrons need a catalyst for their rapid transfer from 
borohydride ions to dye molecules.22 Moreover, there may 
be a large redox potential difference between the electron 
donor (BH4

– ion) and acceptor (dyes) species and this is 
also can hinder relaying of electrons. Metal nanoparticles 
(MNPs) are feasible enough to reduce the potential differ-
ence due to their high Fermi potentials for which they can 
exhibit excellent dye degradation efficiency. Au, Pt, Pd and 
Ag noble metal nanoparticles have been utilized in catalyt-
ic dye degradation due to their good electron transfer ca-
pabilities resulting from favorable redox potentials. How-
ever, they are expensive, which greatly limits their 
industrial applications. Co, Ni, Fe and Cu transition metals 
having low cost are good candidates to replace the noble 
metals.16,23–26 The biggest obstacle to the use of these metal 
nanoparticles is instability and agglomeration problem 
that causes the reduction of their active sites due to their 
high surface energy. Also, they cannot be easily separated 
from the reaction medium, and this restricts their large-
scale applications. To overcome this problem, many poly-
meric hydrogel networks, support materials such as SBA-
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15, biochar, graphene have been used in preparation of 
metal nanoparticles.9,15,27–33 Chitosan and alginate which 
are a natural biodegradable polysaccharide having 
non-toxic, environmentally friendly, is used for providing 
of polymeric hydrogel networks. Both of them provides 
excellent chelating ability and binding capacity to divalent 
metal cations thanks to its functional groups (RCOO−, 
OH−, CO−, NH2−).15,28,34,35 This attractive crosslinking 
character ensures them various shapes such as bead and 
membrane, as well as it make them more attractive for en-
vironmental applications which are adsorption, filtration, 
oxidation and catalytic reduction of organic pollutants.15

In the removal of RB and RY from wastewater ad-
sorption and photocatalytic methods are generally 
used2–8,36, while the use of catalytic reduction method is 
encountered. In study performed by Almeida et al. RB has 
been degraded photocatalytically using electric arc fur-
nace dust and provided catalytic performance and degra-
dation time of 81% and 150 min.7 Secundino-Sánchez et 
al., have been declared that RB was degraded 50% and at 
20 min in the presence of TiO2-NF’s-anatase photocata-
lysts.4 In other work5, GO/CoFe2O4 photocatalyst has been 
used for degradation of RB and observed 53% degradation 
efficiency within 60 min. On the other hand, there are very 
limited studies for the removal of RY. One of these studies 
is the study conducted by Akti7 and the other is the study 
conducted by Akti and Balci.8 Photocatalytic method was 
used in these studies. Akti removed 96% of RY in 60 min 
using PANI-SnO2@diatomite, while Akti and Balci re-
moved 58.2% in 150 min.7,8 All these materials have exhib-
ited promising results in removing pollutants from waste-
water. However, there is still a need for effective, cheap, 
economical, environmentally friendly and non-toxic cata-
lysts. 

This paper deal with the synthesis, characterization 
and activity test of chitosan and alginate network-struc-
tured cobalt and cobalt-nickel bead type catalysts for cata-
lytic reduction of RY and RB, selected as a model pollut-
ant. The novelty of the present study lies in the fact that the 
synthesized catalysts have been reported in a limited num-
ber of studies in the literature for reduction, and their cat-
alytic activity is highly competitive. 

2. Materials and Methods
2. 1. Materials

CoCl2.6H2O (≥ 95%), NiCl2.6H2O (≥ 95%), sodium 
alginate, chitosan (low molecular weight), CaCl2 (≥ 93%) 
and NaOH (≥ 99%) were supplied from Sigma-Aldrich. 
Acetic acid (glacial 100%) and NaBH4 (≥ 98%) were taken 
Isolab and Merck, respectively. The Remazol Yellow 4GL 
(C. I. Reactive Yellow 160; C25H22ClN9Na2O12S3) and Re-
mazol Black B (C. I. Reactive Black 5; C26H21N5Na4O19S6) 
were obtained from a local textile company in Turkey. All 
chemicals were of analytical grade and were used directly.

2. 2. �Synthesis of Co-alginate and  
CoNi-chitosan Bead Type Catalysts
Co-alginate bead type catalysts synthesis; 0.2 g  

CoCl2.6H2O was dissolved in 50 mL distilled water, 1 g of 
sodium alginate (2 w/v%) added and mixture was stirred 
for 3h at room temperature. Afterward obtained gel was 
dropped into 100 mL of 1% (w/v) CaCl2 solution using a 
syringe for bead formation and stirred at 150 rpm for 2 h 
for stable structure. And then formed beads were filtered, 
rinsed several times with distilled water for remove unre-
acted CaCl2 and dried at room condition. 

CoNi-chitosan bead type catalysts synthesis; 0.1 g Co-
Cl2.6H2O and 0.1 g NiCl2.6H2O were dissolved in 50 mL 
acetic acid (1 v/v%) and added a solution containing 2% 
chitosan (w/v). The mixture was stirred for 3 h at room 
temperature and then dropped into 100 mL of 1 M NaOH 
solution with a syringe. The occurred beads were kept in 
NaOH solution at 150 rpm for 2 h for stable structure and 
then filtered, washed several times with distilled water for 
remove unreacted NaOH on the surface of beads and dried 
at room condition. 

2. 3. �Characterization of Co-alginate and 
CoNi-chitosan Bead Type Catalysts
X-ray diffraction (XRD) patterns were taken in the 

2θ range of 10–90° with 0.02o step size and scan speed of 
1o/min using Philips PW 3040 device with CuKα radiation 
(λ = 0.15406 nm). The crystallite sizes (D) of metal species 
within polymer matrix were determined from Debye 
Scherrer equation (D = 0.9 λ)/(βcosθ)) where β is full 
width half maximum (FWHM) of the strongest peak cor-
responding to metal species.37

Scanning electron microscopy (SEM) images were 
taken on Quanta 400F Field Emission model electron mi-
croscope at 30 kV. Before the analysis samples were at-
tached on carbon tape and covered with a very thin layer 
of Au-Pd. 

Fourier transforms infrared (FTIR) spectra (resolu-
tion of less than 0.09 cm−1) were recorded on a Thermo 
Scientific/Nicolet IS50 instrument with a Pike ATR (atten-
uated total reflectance) adapter. FTIR data were collected 
with 0.5 cm−1 increment in the wavelength range of 600–
4000 cm−1.

2. 4. �Catalytic Activity Evaluation of  
Co-alginate and CoNi-chitosan Bead 
Type Catalysts
The activity of the catalysts was tested in the reduc-

tion reaction of Remazol Yellow 4GL (RY) and Remazol 
Black B (RB) dyes in the presence of NaBH4. All solutions 
were freshly prepared before reaction test. 1.5 mL of dye 
solution (20 mg/L) and 1 mL of NaBH4 solution (0.3 M) 
were mixed. And then mixture was taken to a quartz cu-
vette, followed by addition of 30 mg of catalyst. Catalytic 
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Fig. 2 shows the surface morphology of Co-alginate 
and CoNi-chitosan. Grainy structure of 4–25 µm size were 
observed on the surfaces of catalysts (Fig. 2a and c). It was 
observed that the surface of CoNi-chitosan (Fig. 2d) was 
rougher than Co-alginate (Fig. 2b). In addition to, grainy 
and rod-like structures were also observed for CoNi-chi-
tosan. This different morphological structure may be relat-
ed to the interaction between metals and alginate and chi-
tosan.

Figure 2. SEM images bead type catalysts of Co-alginate (a, b) and 
CoNi-chitosan (c, d).

FTIR spectrums of catalysts are shown in Fig. 3. The 
peak at 850 cm−1 related to the C−H band in the chitosan 
structure. The peak observed at around 1030 cm−1 indi-
cates the C−O vibration, while the peaks obtained at 1350 
cm−1 and 1460 cm−1 shows the C−H vibration originating 
from the CH2/CH3 groups. The peak detected at 1644 
cm−1 was assigned the C=O bond found in chitosan and 

reduction was monitored at regular intervals of time using 
a Thermo Scientific/Evolution-201 UV-vis spectropho-
tometer in the wavelength range of 200–700 nm. Kinetic 
data were collected by measuring the absorbance values of 
RY and RB dye solutions at 429 nm and 562 nm, respec-
tively. The kinetics of the reduction were investigated by 
implying the reaction process pursuing the pseudo-first 
order and pseudo second-order law, with the following 
equations: Eqs. (1) and (2), respectively. Reduction rate % 
was calculated using Eq. (3).

� (1)

� (2)

� (3)

Where kapp (min–1) is the rate constant, At is absorb-
ance at time t, Ao is initial absorbance and Ae is absorbance 
at equilibrium of dye solutions. 

3. Results and Discussion
3. 1. Characterization of Catalysts

XRD patterns are given in Fig. 1. Co-alginate exhib-
ited semi-crystalline structure while CoNi-chitosan 
showed an amorphous structure. The semi-crystallinity 
due to chitosan derives from the presence of inter- and in-
tramolecular hydrogen bonds between the hydroxyl and 
amine groups on glucosamine units that lead to the forma-
tion of parallel and closely packed polymer chains.38 Two 
broad peaks corresponding to crystalline plane of chitosan 
were obtained at ~ 20o and 40o Bragg angle values for Co-
Ni-chitosan39,40. No obvious diffraction peaks related to 
the cobalt and nickel phases were obtained due to the met-
als might be embedded/settled as very small particle to the 
chitosan structure. Co-alginate exhibited oxide (2θ: 29.14o, 
33.96o and 36.98o) and metallic (2θ: 44.54o) forms of co-
balt species41,42 and crystallite size of cobalt was calculated 
as 25.12 nm from the highest peak intensity at 33.96 o by 
Scherrer equation.

Figure 1. XRD patterns of Co-alginate and CoNi-chitosan bead 
type catalysts.

Figure 3. FTIR spectrums of Co-alginate and CoNi-chitosan bead 
type catalysts.
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alginate structures. Addition, the N−H groups of chitosan 
were observed at 1557 cm−1 and 3270 cm−1 wavenumbers. 
The peak obtained at approximately 3450 cm−1 is due to 
the O−H band in the structure of chitosan and algi-
nate.40,43–46

3. 2. �Catalytic reduction of RY and RB over 
catalysts
The Co-alginate and CoNi-chitosan catalysts were 

tested in RY and RB reduction reaction and monitored re-
sults by UV-vis absorption spectra with time-dependent 
(Fig. 4). The dyes were reduced immediately in a short 
time. The rapid decrease in the absorption peaks observed 
at 429 nm and 562 nm clearly indicated the degradation of 
RY and RB, respectively. The reduction rate of RY in the 
first 2 min was about 18% for both catalysts. In total, RY 
was degraded by 74.0% in 10 min with Co-alginate and 
50.4% in 6 min with CoNi-chitosan. RB degraded by 33% 
with CoNi–chitosan and by 4% with Co–alginate within 

the first 2 min. As can be predicted from the reduction in 
the absorption peak intensity at 562 nm, 66.4% and 21.9% 
of RB degraded by Co-alginate and CoNi-chitosan, re-
spectively (Fig. 4a-d and Fig. 5b). 

The difference in degradation performance of two 
dyes with different structures on different catalysts is 
due to the different physicochemical properties and mo-
lecular and electronic structures of the catalysts and 
dyes. It is well known that functional groups such as sul-
fonic (SO3), hydroxyl (OH), methyl (CH3), nitro (NO2), 
and azo linkages (N=N) present in dye structures play a 
significant role in influencing the degradation pro-
cess.47–49 Khataee and Kasiri reported that monoazo 
dyes exhibited a higher degradation rate.49 Rauf et al. 
stated that dye degradation occur primarily due to the 
cleavage of –N=N– azo bonds.50 The –NH group in dye 
molecule is the fragile group. Besides, the sulfonic group 
may be increased the adsorb ability of the dye molecules 
on the catalyst contributing to higher degradation rate. 
On the other hand, the electron donating group attached 

Figure 4. Time dependent UV–Vis absorption monitoring reduction of RY dye (a: Co-alginate, b: CoNi-chitosan) and RB dye (c: Co-alginate, d: 
CoNi-chitosan) over catalysts.
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to the molecular structure of dyes becomes more nu-
cleophilic by donating some of its electron density.48 
Pervez et al. stated that the presence of –CH3 group has 
a significant effect on the molecular mobility of dye mol-
ecules in the catalytic degradation of dyes.47 Khataee 
and Kasiri explained that the number of –OH groups in 
dye molecule can increase the dye degradation rate.49 

Apart from these discussions, Von-Kiti et al. stated that 
the topological polar surface area (TPSA) of dyes is ef-
fective in dye removal, and that dyes with a low TPSA 
can show better removal performance.51 

In the present study, the reduction rate of RY was 
found to be higher than that of RB. There could be several 
reasons for this. For example, RY is a monoazo dye (with a 

Figure 5. (a) The relationships of (C/Co) versus reaction time (b) Reduction rate percent of dyes over catalysts.

Table 1. Properties of dyes.

Dye					     Properties
	 NN=N	 NSO3	 NOH	 NNH	 NCH3	 HBDC*	 TPSA (Å)2* 	 Complexity*

Remazol Yellow 4GL	 1	 2	 –	 4	 2	 5	 355	 1720
Remazol Black B	 2	 4	 1	 1	 –	 2	 462	 2030

N: number of groups; *: Ref: https://pubchem.ncbi.nlm.nih.gov/

Figure 6. Kinetic plots of catalytic reduction of RY and RB dyes over Co-alginate and CoNi-chitosan bead type catalysts (a) first-order (b) second-or-
der.
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single –N=N– bond), and it has a higher number of –NH 
and –CH3 groups compared to RB. Additionally, the hy-
drogen bond donor count (HBDC) of RY is higher than 
that of RB. Moreover, the topological polar surface area 
(TPSA) and complexity values of RY are lower than those 
of RB. Although RB has a higher number of SO3 and –OH 
groups compared to RY, its lower removal percentage may 
be due to the reduced interaction between the catalyst and 
the dye molecules, or its higher complexity and greater 
number of N=N groups (Table 1).

To discuss the kinetics of the dye reduction, pseu-
do-first-order and pseudo-second-order kinetic models 
were applied.52,53 The kapp values were estimated from the 
slope of the lines in Fig. 6. The rate constants and coeffi-
cients of determination (R²) calculated for the models are 
presented in Table 2. As the kinetic models were com-
pared, kinetic data fitted well pseudo-first-order kinetic 
model (R2 ≤ 0.979). The kapp values for RY were found to 
be 0.140 and 0.124 min–1 for the Co-alginate and Co-
Ni-chitosan, respectively and for RB as 0.174 and 0.052 
min–1. Both higher dye reduction and a higher reaction 
rate constant were obtained with Co-alginate. Possible rea-
sons for this include the combination of cobalt with algi-
nate may be improve the steric structure inside the algi-
nate, thereby increasing the adsorption of dye onto the 
catalyst surface.35

Reusability test was performed for Co-alginate in 
degradation of RY. Firstly, the catalyst was easily collected 

after completing of reaction thanks to their bead shape, 
washed with deionized water and then reused under the 
same reaction conditions. The catalyst could be successful-
ly recycled up to 4 runs and the reduction efficiency of RY 
was determined as 70% even after 4 runs (Fig. 7). 

Figure 7. Reusability of Co-alginate for RY dye. 

The dye reduction performance of the synthesized 
catalysts was compared with that of different materials and 

Table 3. The catalytic degradation reaction kinetic of RY and RB over different catalysts.

Sample	 Dye	 Dye	 Degradation	 Degradation 	Degradation	 kapp	 Reference
		  concentration	 method	 (%)	 time (min)	 (min–1)
		  (mg/L)

Co-alginate	 Remazol Yellow 4GL	 20	 Catalytic reduction	 74.0	 10	 0.140	 This work
CoNi-chitosan	 Remazol Yellow 4GL	 20	 Catalytic reduction	 50.4	 6	 0.124	 This work
PANI-SnO2@Diatomite	 Remazol Yellow 4GL	 50	 Photocatalytic	 96.0	 60	 0.042	 7

Sn/SBA-15@APTES(EA)	 Remazol Yellow 4GL	 50	 Photocatalytic	 58.2	 150	 0.0016	 8

α-Fe2O3 NPs	 Remazol Yellow RR	 50	 Photocatalytic	 75.0	 250	 0.006	 54

Fe2+ ions	 Remazol Yellow FG	 100	 Contact glow discharge	 51.3	 180	 −	 55

			   electrolysis
Co-alginate	 Remazol Black B	 20	 Catalytic reduction	 66.4	 6	 0.174	 This work
CoNi-chitosan	 Remazol Black B	 20	 Catalytic reduction	 21.9	 6	 0.052	 This work
Electric arc furnace dust	 Remazol Black B	 40	 Photocatalytic	 81.0	 150	 0.002	 2

TiO2-NF’s-anatase	 Remazol Black B	 20	 Photocatalytic	 50.0	 20	 0.068	 4

GO/CoFe2O4	 Remazol Black B	 10	 Photocatalytic	 53.0	 60	 0.102	 5

Table 2. First-order and second-order kinetic parameters for the reduction of RY and RB over catalysts.

Catalyst	 Dye	                   Pseudo-first-order	             Pseudo-second-order
		  kapp (min–1)	 R2	 kapp (Lg–1min–1)	 R2

Co-alginate	 Remazol Yellow 4GL	 0.140	 0.979	 0.346	 0.887
CoNi-chitosan	 Remazol Yellow 4GL	 0.124	 0.969	 0.452	 0.928
Co-alginate	 Remazol Black B	 0.174	 0.930	 1.127	 0.860
CoNi-chitosan	 Remazol Black B	 0.052	 0.968	 0.115	 0.960
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reduction methods, and the results are presented in Table 
3. In the present study, both high reduction capacity and a 
high reaction rate constant value were achieved with the 
synthesized catalysts, and it was observed that reduction 
or degradation occurred in a shorter time. From this per-
spective, it can be said that the catalysts are promising for 
dye reduction.

3. 3. �Possible Catalytic Reduction Mechanism 
of RY and RB Dyes

The reduction reaction of dyes in the presence of 
NaBH4 proceeds via Langmuir–Hinshelwood mechanism, 
where the reaction occurs due to interaction between ad-
sorbed species (both dye and reductant). In this dye reduc-

Scheme 1. Possible mechanism of reduction reaction of two dyes by catalysts.
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tion process, the first step involves the diffusion of reac-
tants into the pores of catalysts, and it is generated that 
electrons from NaBH4 and hydrides from aqueous media. 
In the second step, these electrons and active hydride spe-
cies are transferred to metal nanoparticles, resulting in the 
formation of metal–hydride bonds. Dye molecules incline 
to capture hydrogen and electrons from the metal–hydride 
complex.26,56–59 According to the previously reported liter-
ature studies19,26,59–62, the possible mechanism of dye re-
duction by catalyst and resulting products are proposed in 
Scheme 1. The H atom attaches to the N atom of heterocy-
clic ring in dye and breaks down azo double bond (−
N=N−) between N and aromatic ring via conjugation. The 
broken bonds reduce to hydrazine group (−HN−NH−) 
and convert to products. The products occur according to 
azo double bond number of RY (single azo class) and RB 
(double azo class) (Scheme 1a and 1b).

4. Conclusion
Co-alginate and CoNi-chitosan catalysts were suc-

cessfully designed for the catalytic reduction of RY and RB 
dyes. Co-alginate demonstrated high catalytic efficiency 
within a short time. The RY degraded 74% and 50% with 
Co-alginate and CoNi-chitosan, and also RB 66% and 
22%, respectively. Different results were obtained with the 
same catalyst for RY and RB reduction. This behavior is 
thought to be due to the interaction between the dye and 
the catalyst. The rate constant, reaction time and reusabil-
ity obtained in this study are quite assertive. The catalysts 
may serve as potential candidates not only for the dye re-
duction but also for the removal of various harmful organ-
ic and inorganic pollutants.
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Povzetek
Katalizatorji, dopirani s kobaltom in nikljem, so bili sintetizirani z uporabo hitozana in alginata ter uporabljeni pri degra-
daciji barvil Remazol Yellow 4GL (RY) in Remazol Black B (RB). XRD vzorec katalizatorjev je pokazal amorfno obliko 
za CoNi-hitozan in polikristalinično obliko za Co-alginat. SEM slike so pokazale, da je bila površina katalizatorja groba, 
zrnata in z valjastimi strukturami. Površinske funkcionalne skupine so bile določene z metodo FTIR analize in jasno je 
bila opažena prisotnost alginata in hitozana. Katalizatorji Co-alginat so pokazali višjo degradacijo barvila (74% za RY) 
in tudi krajši čas reakcije (6 min za RB). Reakcija redukcije je bila dobro skladna s kinetičnim modelom pseudo-prvega 
reda, konstanta hitrosti reakcije pa je bila določena kot 0,140 min–1 za RY in 0,174 min–1 za RB. Delež redukcije RY z 
obema katalizatorjema je bila višja kot pri RB. Co-alginat je pokazal približno 70% učinkovitost redukcije za RY celo po 4 
ponovitvah. Učinkovitost redukcije barvila in katalitska aktivnost katalizatorjev obetata možnosti za aplikacije katalitske 
redukcije organskih onesnaževalnih barvil.


