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Abstract

Sphingomyelin synthase 2 (SMS2) has emerged as a promising target for atherosclerosis threatment. However, the avail-
ability of selective SMS2 inhibitors and their associated pharmacological properties remains limited. This research pa-
per explores various QSAR modeling techniques applied to a range of compounds acting as SMS2 inhibitors. Multiple
distinct QSAR modeling methodologies were employed, including conformation-independent, GA-MLR and 3D based
QSAR modeling, and their mutual correlations were investigated, Various statistical methods were applied to assess the
quality, robustness, and predictive capacity of these developed models, yielding favorable results. Furthermore, molec-
ular fragments derived from SMILES notation descriptors, which account for the observed changes in the evaluated
activity, were defined. The methodology presented in this research holds potential for identifying novel agents for ather-

osclerosis treatment by targeting sphingomyelin synthase 2.
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1. Introduction

Sphingomyelin (SM) is a major phospholipid in the
circulatory system, and scientific literature indicates that
human plasma SM levels are an independent risk factor
for coronary heart disease.!> Moreover, in patients with
acute coronary syndrome, the measurement of human
plasma SM levels can serve as a valuable prognostic tool.?
Studies have demonstrated that control mice exhibit ap-
proximately one-fourth the plasma SM levels compared to
apoE KO mice, and this increase in plasma SM levels may
be associated with the development of atherosclerosis in
these animals.**> Additionally, SM has been shown to have

significant effects on the metabolism of apoB-containing
lipoproteins, and a deficiency in SM could potentially re-
duce the atherogenic properties of the mice.®’

Inhibition of serine palmitoyltransferase (SPT), the
initial enzyme involved in sphingomyelin (SM) biosynthe-
sis, has been shown to reduce SM levels in mouse models.®?
However, it is worth noting that this approach may lead to
various off-target side effects because the entire de novo
synthesis pathway of sphingolipids can be affected by the in-
hibition of SPT. As an alternative strategy to lower SM levels,
inhibiting sphingomyelin synthase (SMS) is considered.

Scientific literature suggests that the overexpres-
sion of sphingomyelin synthase (SMS) promotes the ac-
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cumulation of atherogenic lipoproteins and increases the
atherogenic potential. Conversely, in a mouse model, the
alleviation of atherosclerosis is linked to the reduction
of sphingomyelin (SM) accumulation due to SMS defi-
ciency.!%-1% Based on these findings, SMS2 emerges as a
potential therapeutic target for atherosclerosis, and the
development of future anti-atherosclerotic drugs may be
connected to the use of selective SMS2 inhibitors. How-
ever, it's important to note that the limited number of
reported SMS2 inhibitors is partly attributed to experi-
mental challenges, hindering their exploration as potential
anti-atherosclerotic agents.

The process of drug discovery and development is
often exceptionally time-consuming, as it relies on various
time and resource constraints. To address this challenge,
chemoinformatic studies are employed. Chemoinformat-
ics, which involves in silico methods, offers a wide range
of applications, including the identification of novel lead
compounds and the optimization of the pharmacological
activity or pharmacokinetic properties of existing chemical
compounds with known biological activities.!*!> Among
the various chemoinformatic methods, Quantitative Struc-
ture-Activity Relationship (QSAR) has emerged as the
most prominent and widely used approach. In contempo-
rary QSAR studies, models are constructed by employing
diverse molecular descriptors derived from specific mole-
cule structures, each with its own strengths and limitations.
These models are then expressed as mathematical equa-
tions that establish a relationship between the biological
activities of the studied molecules and their chemical char-
acteristics, as represented by the molecular descriptors.!6-18

In this research, a variety of in silico methods were
employed to identify new compounds with the potential
to inhibit sphingomyelin synthase 2 (SMS2). The study de-
veloped QSAR models based on the following approaches:
conformation-independent molecular descriptors, utiliz-
ing both SMILES notation and local graph invariants, in
conjunction with the Monte Carlo optimization method;
2D molecular descriptors, with the aid of a genetic algo-
rithm and multiple linear regression; and 3D field contri-
bution. One of the primary objectives of the study was to
identify molecular fragments or structural features that
lead to SMS2 inhibition effects and to assess the correla-
tions between these different methods. The research suc-
cessfully identified fragments present in small molecules
that are relevant to ligand-receptor interactions, which can
potentially be applied in the design and development of
anti-atherosclerotic agents.

2. Materials and Methods

In this study, a dataset comprising 51 molecules
known to exhibit inhibitory effects on SMS2 was collect-
ed from the scientific literature.'*?° The general chemi-
cal structures of these molecules are illustrated in Figure

1. The activities of these molecules, quantified as pICs,
values, were used as the dependent variables in the anal-
ysis. The SMILES notation for all the molecules used in
the study, along with their corresponding pICs, values, is
provided in Table S1 within the Supplementary Material.
To ensure the robustness of the analysis, the dataset was
randomly divided into three sets: a training set consisting
of 38 compounds (75%) and a test set comprising 13 com-
pounds (25%). The normality of the activity distribution
for all the dataset splits was assessed following the meth-
odology described in a published reference.?!
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Figure 1. General chemical structures of used molecules for QSAR
models development.

2. 1. QSAR Modeling Utilizing the Monte
Carlo Optimization Method

The Monte Carlo optimization method was em-
ployed to develop a conformation-independent QSAR
model using a hybrid approach that incorporates both
molecular graph and SMILES notation-based descriptors.
The molecular graph-based descriptors included local
graph invariants based on fundamental graph concepts
like paths and walks, with their detailed mathematical
definitions available in the literature.?? The optimal top-
ological descriptors from the molecular graph-based ap-
proach comprised Morgan extended connectivity indices
of increasing orders (ECO), valence shells of range 2 and
3 (s2, s3), path numbers of length 2 and 3 (p2, p3), the
count of carbon atom neighbors (Number Of Carbon),
and the count of non-carbon atom neighbors (Number of
Non Carbon). In contrast, SMILES notation-based mo-
lecular descriptors offer a mechanistic interpretation, as
they are related to molecular fragments. The numerical
value of each SMILES notation descriptor for a molecule
contributes to the molecule's correlation weight (DCW).
This DCW is mathematically defined as the sum of all the
defined SMILES descriptor correlation weights (CW), in
accordance with Equation 1.

DCW(T,Nepoch) = zZCW(ATOMPAIR) +
xCW(NOSP) + yCW(BOND) +
tCW(HALO) + rCW(HARD) + aZCW(S,) +
BECW(SS) + YZCW(SSS,)

(1)
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In Equation 1, the variables z, x, y, t, a, p and y de-
note either the value 1 (indicating "yes") or 0 (indicating
"no"). These values determine whether the correspond-
ing SMILES descriptor is utilized in the model's develop-
ment. The symbol S, specifies the SMILES atom with one
SMILES notation symbol (or two inseparable ones) and is
linked to the local descriptors. are additionally construct-
ed as linear combinations of two and three SMILES atoms,
represented by the SS; and SSS; symbols, respectively. The
second category of optimal descriptors in accordance with
SMILES notation is the global descriptor, which pertains
to the overall characteristics of the studied molecule. The
study utilized the following global SMILES notation-based
descriptors: ATOMPAIR, HALO, BOND, NOSP and
HARD, all defined based on the methodology published
in reference.? The development of the QSAR model in this
study involved a combination of both SMILES notation
(both local and global) and local graph invariant descrip-
tors. This approach enabled the calculation of the DCW
for the molecules as per Equation 2.

DCW/(T,Npocn) = ECW(S,) + ZCW(SS,) +
SCW(SSS,) + SCW(ECO,) + SCW(PT2,) +
SCW(PT3,) + SCW(VS2,) + SCW(VS3,) +
SCW(NNCy)

2)

In addition to the previously defined symbols Sy, SS
and SSSy, Equation 2 incorporates the following symbols:
The Morgan connectivity index of zero order (the hydro-
gen-suppressed graph was used in this research) - ECOy,
paths of length of 2 and 3 - PT2, and PT3y, valence shell 2
and 3 - VS2y, and VS3,, and Nearest Neighbors - NNC,.?
The molecular descriptors mentioned above were all com-
puted using the CORAL software (CORrelation and Log-
ic), which can be accessed at http://www.insilico.eu/coral.
Once an optimal descriptor is identified through the appli-
cation of the Monte Carlo method, each descriptor is as-
signed a numerical value known as the correlation weight
(CW). The Monte Carlo method accomplishes this by
generating suitable random numbers and observing how
this fractional number corresponds to a specific proper-
ty or properties. The CW value is then randomly assigned
to the descriptors based on the SMILES notation for each
individual Monte Carlo run and for a specified endpoint.

The optimization process of the Monte Carlo method
involves performing numerical calculations to determine
the correlation weights that yield the maximum correla-
tion coefficient value between the optimal descriptor and
a given endpoint. When utilizing this method for creating
a QSAR model, it's essential to consider two key parame-
ters. Threshold is a coefficient used to categorize a range of
molecular features, which encompass both SMILES-based
indices and SMILES-based molecular fragments. These
features are derived from SMILES notation and sorted into
two categories: a) active ones (in this case, the modeling
process involves the correlation weight); and b) rare ones

(in this case, the modeling process omits the correlation
weight).

The process is executed as follows: If a particular mo-
lecular feature (X) extracted from the SMILES notation of
molecules in the training set occurs fewer than T times,
then the molecule descriptor X is excluded from the model
construction. Consequently, the numerical value for this
feature (the correlation weight of X, CW(X)) is set to zero,
categorizing it as "rare." All other molecular features that
occur more frequently are considered "active” and can be
employed in the model-building process. Nepyocn, repre-
senting the epoch number in Monte Carlo optimization, is
crucial for achieving the highest statistical quality within
the training set. When an unlimited number of epochs is
employed, the training set attains the maximum correla-
tion coefficient through the mentioned Monte Carlo op-
timization. However, it's important to note that the maxi-
mum correlation coefficient between the endpoint for the
external test set and the optimal descriptor is achieved
with a specific, finite number of epochs. The calculations
favor this specific epoch number, as it offers excellent pre-
dictive potential for the obtained model, provided that the
number of epochs reaches this value. However, it's worth
noting that an increase in the threshold (T) results in a de-
crease in the correlation coeflicient within the training set.
Nonetheless, it is important to highlight that there exists a
threshold value that maximizes the correlation coeflicient
of the test set. From a practical perspective, the mentioned
threshold is the preferred choice. Furthermore, defining
optimal values for both the threshold (T) and the Mon-
te Carlo optimization epoch number (Nepoch), is essential
for constructing a robust QSAR model. This construction
involves the utilization of both SMILES notation and opti-
mal descriptors based on the molecular graph, as outlined
in reference.”

Monte Carlo method simulations are carried out
using iterative algorithms to uncover the distribution of
an unknown probabilistic entity. In the Monte Carlo op-
timization process, the epoch number is still a part of the
equation for a specific target function within the training
set. The initial step involves setting the CW (SA) for each
SMILES SA attribute, with all CW values commencing at
1+0.01xRnd (where Rnd is a random value generator with
a range between 0 and 1). The usual sequential order of
attribute numbers is replaced with a random sequence.
The subsequent step involves evaluating the initial value of
the target function and making further adjustments to the
correlation weights. After this, the relevant steps must be
reiterated in the Monte Carlo optimization process for all
the non-rare attributes, as specified in references.?>?* The
linear regression approach is used to compute the QSAR
model (utilizing the training set) as indicated in Equation
3. This is achieved when the numerical data regarding the
correlation weights are derived from the model, leading to
favorable statistical results for the test set. In this specif-
ic study, the search for the optimal combination of T and
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Nepoch Was carried out within the ranges of 1-5 for T and
0-50 for Nepoch-

Ac = Cy+ C;XxDCW(T,Npon) 3)

2.2. QSAR Modeling Using Genetic
Algorithm in Conjunction with Multiple
Linear Regression

In this section, 2D descriptors were calculated using
PaDEL.%® Descriptors with low variance were eliminated
from the initial descriptor pool, and further reduction of
descriptors was conducted based on filtering using high
pairwise correlation coefficients. The QSARINS program
(QSAR-INSUBRIA) available at www.gsar.it was em-
ployed for various descriptor reductions and for the de-
velopment of QSAR models.?**” After reducing the num-
ber of descriptors, they were scaled, and suitable QSAR
models were created using the genetic algorithm (GA)
optimization method, following the same molecule split-
ting approach as used in conformation-independent mod-
eling.2#?° Within the QSARINS program, the genetic al-
gorithm (GA) is combined with multiple linear regression
(MLR) as the fitness evaluator.®*! For the development of
QSAR models, the following parameters were adjusted ac-
cording to the total number of features in the model: the
number of variables in GA optimization was set to 4, the
number of GA iterations (generations per size) was set to
500, the population size (the number of models on which
GA evolves) was set to 10, and random mutations for gen-
erating a diverse pool of descriptors (mutation rate) were
set at a 20% mutation rate.

2. 3. 3D Field-based QSAR Model

Before creating the 3D-based QSAR model, geome-
try optimization was performed on all the molecules using
the MMFF94 force field, utilizing Marvin sketch software
(Marvin 6.1.0, 2013, ChemAxon). The split that yielded the
highest r? for the conformation-independent model was
employed to divide the molecules into the training and test
sets for QSAR model development. The following parame-
ters were utilized in model construction: a maximum of 6
PLS (Partial Least Squares) factors, steric and electrostatic
force fields limited to 30.0 kcal/mol, a grid spacing of 1.0
A with a 3.0 A extension beyond the training set limits,
and elimination of all variables with a standard deviation
less than 0.01. The primary software used for developing
the 3D field-based QSAR model was Schrodinger Maestro
Version 11.5.011.

2. 4. Validation of the Developed QSAR
Models

Varjous validation metrics were employed to assess
the quality of the developed conformation-independent

and 2D-based QSAR models. These metrics included the
determination of the squared correlation coefficient. (r?),
the root-mean-squared-error (RMSE), leave-one-out and
leave-many-out cross-validation coefficients, the F-value,
the mean absolute error (MAE), and y-scrambling, as refer-
enced.>?-3° To further validate the developed QSAR mod-
els, the following statistical metrics were employed: R;;2and
MAE-based metrics, the correlation coefficient (CCC), and
the index of the ideality of correlation (IIC), as described.3®
The applicability domain (AD) is a pivotal aspect of any
QSAR model and must be established before utilizing the
model.”8 In this study, a literature-derived AD method
was employed to define applicability domains for confor-
mation-independent QSAR models.* It is essential to de-
fine the applicability domain (AD) for prediction purposes
before making use of any QSAR model. Furthermore, es-
tablishing the applicability domain (AD) is an essential and
integral component of a pertinent, sturdy, trustworthy, and
valid QSAR model. In this study, the AD for the developed
QSAR models was determined by examining the "statisti-
cal defects” of conformation-independent molecular de-
scriptors, specifically d(A), which had been previously em-
ployed in the construction of QSAR models.?*?*36 These
calculations were carried out using the CORAL software,
following the procedures outlined in Equation 4.

— |P(Atrain)*P(Atest)|
d(A) - N(Atrain)_N(Atrest) (4)

In the equation above, P(A.in) and P(A,;,) denote
the probabilities of a conformation-independent attribute
or descriptor (A) in the training and test sets, respective-
ly. Meanwhile, N(Atrain) and N(Acalib) represent the
frequency of occurrence of a conformation-independent
attribute or descriptor (A) in the training set and the test
set, respectively. The statistical SMILES defect (D) is the
cumulative sum of the defects, d(A), of all the attributes
found in the SMILES notation of the molecules. It is com-
puted according to Equation 5.

D = defect(SMILES) = ¥NA. d(A) (5)

A molecule is labeled as an outlier if it falls outside
the defined applicability domain (AD), which happens
when its D exceeds 2 times Dav, where Dav represents the
average D calculated for the relevant set (whether it's the
training or test set) in which the molecule is located. The
AD for the GA-MLR QSAR models was established using
a distance-based approach, and the outliers were detected
using the Williams plot, which plots standardized residu-
als against leverages.

3. Results and Discussion

Table 1 provides the numerical values of all the met-
rics utilized to assess the quality of the developed confor-
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Table 1. The statistical quality of the developed conformational-independent QSAR models for sphingomyelin synthase 2 inhibition

Training set Test set

r? CCC 1IIC q? s MAE F r? CCC 1IIC q? s MAE F

Splitl Irun 0.9087 0.9522 0.8579 0.8959 0.363  0.308 358 0.8907 0.9364 0.9438 0.8453 0.368 0.324 90
2run 0.8742 0.9329 0.8415 0.8597 0.426 0.346 250 0.8711 09175 0.9333 0.8071 0.395 0.306 74

3run 0.8934 0.9437 0.7652 0.8776 0.392 0.32 302 0.8763 0.9292 0.9361 0.8133 0.395 0.309 78

Av 0.8921 0.9429 0.8215 0.8777 0.394 0.325 303 0.8794 0.9277 0.9377 0.8219 0.386 0.313 81

Split2 Irun 0.9098 0.9528 0.8584 0.8958 0.341 0.277 363 0.9496 0.9415 0.9744 0.9315 0.401 0.311 207
2run 09152 0.9557 0.8581 0.9026 0.331 0.273 388 0.9433 09518 0.9712 0.9151 0.372 0.313 183

3run 09092 0.9525 0.8582 0.8949 0.342 0.272 361 0.9427 0.9396 0.9708 0.9196 0.408 0.338 181

Av 09114 0.9537 0.8582 0.8978 0.338 0.274 371 0.9452 0.9443 0.9721 0.9221 0.394 0.321 190

Split3 Irun 0.9203 0.9585 0.7766 0.9084 0.337 0.272 416 0.8612 0.9223 0.928 0.8226 0.431 0.303 68
2run 0.8927 0.9433 0.7649 0.8797 0.391 0.296 300 0.8526 0.9213 0.9232 0.8076 0.433 0.304 64

3run 0.8706 0.9308 0.8398 0.8526 0.429 0.342 242 0.8622 0.9246 0.9284 0.8173 0.411 0.277 69

Av 0.8945 0.9442 0.7938 0.8802 0.386  0.303 319 0.8587 0.9227 0.9265 0.8185 0.425 0.295 67

r? - Correlation coefficient; CCC - Concordance correlation coefficient; IIC - Index of ideality of correlation; - Cross-validated correlation
coefficient; s - Standard error of estimation; MAE — Mean absolute error; F - Fischer ratio; Av - Average value for statistical parameters obtained

from three independent Monte Carlo optimization runs

mation-independent QSAR models created through the
Monte Carlo optimization method. The results indicate
that the Monte Carlo optimization method yielded QSAR
models with strong predictive capabilities and satisfactory
reproducibility. Based on the applied metrics, the most fa-
vorable QSAR model was achieved with the second split,
featuring a T value of 4 and an Ny, of 15. No outliers
were identified, as the methodology applied for the ap-
plicability domain (AD) indicated that all molecules fell
within the defined AD. Figure 2 illustrates a graphical

representation of the best-performing QSAR model (the
one with the highest obtained r* value) for all three splits
in the best Monte Carlo optimization run. The concord-
ance correlation coefficient (CCC) was employed to vali-
date the QSAR models obtained, particularly with respect
to their reproducibility. The results indicated that all the
models exhibited high reproducibility. Additionally, the
results for the MAE-based metric were noted as "GOOD,"
further confirming the validity of the developed QSAR
model.
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Figure 2. Above) Graphical presentation of the best Monte Carlo optimization runs (the highest value for r?) for the developed QSAR models; Bel-
low) Diff. - Difference between experimental and calculated values for pICs,.
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The robustness of the developed QSAR models was
assessed using Y-randomization, where Y values were
shuffled in 1000 trials for ten separate runs. The outcomes,
as presented in Table S2, suggest that the developed QSAR
models do not rely on accidental correlations. The final
assessment of the quality of the developed QSAR models
was conducted using the calculated index of the ideality
of correlation (IIC), and the results strongly suggest that
the developed QSAR models possess a high predictive po-
tential.

The mathematical formulations for the top-perform-
ing QSAR models, as determined by the test set r? values
for all the splits, are provided in Equations 6-8.

Split 1: pICs, = ~1.1653(0.0716) +

0.0290(20.0003)xDCW(3,7) (©)
Split 2: pICs = ~1.6041(+0.0810) + )
0.0400(+ 0.0005)xDCW(4,15)

Split 3: pICs, = ~1.8678(+0.0950) + ®)

0.0359(+0.0005)xDCW(2,7)

The equations (Eq. 6-8) show that for split 1, the
preferred values for T and Nep,, are 3 and 7, respective-
ly. For split 2, the preferred values are 4 for T and 15 for
Nepoch» While for split 3, the preferred values are 2 for T
and 7 for Neyoch. Equation 9 represents the mathematical
equation that characterizes the developed QSAR models
generated through GA-MLR modeling for all the splits.
A graphical representation of this equation is provided
in the supplementary material. The numerical values for
all the calculated statistical parameters suggest that the
developed QSAR models exhibit satisfactory predictive
potential and robustness in terms of prediction. The sta-

tistical parameters used for the fitting criteria were as
follows:

R?: 0.9543; Rzadj: 0.9472; Rz-Rzadj : 0.0071; LOF :
0.1176; Kxx : 0.5102; AK : 0.0554; RMSE : 0.2526; MAE :
0.1882; RSS : 2.4253; CCC tr: 0.9766; s: 0.2753; F: 134 The
statistical parameters used for internal validation criteria
were as follows: Q?,, : 0.9341; R%-Q?,, : 0.0202; RMSE:
0.3035; MAE : 0.2257; PRESS : 3.5003; CCC : 0.9664;
Q%Mo ¢ 0.9234. The statistical parameters used for ex-
ternal validation criteria were as follows: RMSE: 0.6506;
MAE: 0.5620; PRESS: 5.5020; R? : 0.6316; CCC : 0.7916;
r’m et 0.6047; Ar’m : 0.0353. The model development
included the consideration of the following molecular de-
scriptor: Eta_D_beta_A, which represents the ETA aver-
age measure of electronic features; C-040 — Atom-centred
fragments R-C(=X)-X / R-C#X / X=C=X; SsssCH - Sum
of sssCH E-states; SaaN - Sum of aaN E-states; MLogP —
Mannhold LogP.

pICso = 3.4370 + 3.3715xEta_D_beta_A -
1.4345xC-040 + 1.5324xSsssCH + ©9)
0.2257xSaaN + 0.4852x MLogP

The 3D QSAR model exhibited a test set correlation
coefficient of 0.9392, with a standard deviation of 0.2967.
Additionally, the training set correlation coefficient for the
3D QSAR model was 0.6843, with a standard deviation of
0.2824. These values collectively indicate that the mod-
el demonstrates good predictability. The results derived
from the 3D QSAR model provide the following Gaussian
field fraction contributions: 0.4240 for steric interactions,
0.0825 for electrostatic interactions, 0.2815 for hydropho-
bic interactions, 0.1971 for hydrogen bond acceptor inter-

Figure 3. 3D QSAR model fields (fields are shown as surfaces). A) Steric - favourable regions (green); B) Hydrophobic - favoured (yellow) and
disfavoured (white); C) Electrostatic - favoured electropositive (blue) and disfavoured electronegative (red); D) Hydrogen bond acceptor - favoured
(red) and disfavoured (magenta); E) Hydrogen bond donor - favoured (purple) and disfavoured (cyan).
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Table 2. The example of DCW(4,15) calculation

SMILES notation:
CN(C(=0)c1c(0OCCCC2CCCCC2)c2cccec2n(c1=0)C)Cclcc(cc(c1)C(F)(F)F)C(F)(F)F
DCW =113.53444
PICs¢(calc.) = 3.7003

SA(CW) Cw SA(CW) CwW SA(CW) Cw SA(CW) Cw
10011001000 -0.9 2..0...(... 0.7295 [ O 0.4785 N...(...C... 0.1565
(el -0.5175 BOND10000 2.2636 C..C...... 0.4516 0.0245
R -0.2838 C.ollovennn -0.5648 [ 0.0705 -0.7298
(...C...(C... -0.9619 Colovennn. 0.1721 c..Cu..n. 0.1702 0.0083
(.E..(.. 0.3981 C..(..=... -0.8874 C..c..l... 0.311 -0.2463
++++F---B2== 0.9554 C..(..1... 0.4141 c..c...l... 0.0902 n...2...C... -0.8469
++++F---N=== 2.0554 c.(..2.. -4.0999 C..C..2.. -0.5719 N...C....... 0.238
++++F---O=== 2.0323 C...(..C... 0.0284 c..c..2... -1.4034 Nmax.1...... 2.2076
++++N---B2== 2.413 c...(..c... 0.4344 C..C..C.. -2.8767 NOSP110000 6.3387
++++N---O=== 3.2561 c..(...0... 0.1071 C...C...C... 0.1149 O...Cooven. -0.9913
++++0---B2== -1.8357 Curreene 0.0043 C..N...(... -0.9921 0O...(...C... 0.675
C IO (S 0.667 Cuverrrnnnn 0.0275 C...0...(... -0.7001 O..ovvenee 0.1213
S 0.4955 c..l.(.. 0.2445 Cmax.2 -1.702 O..=..(.. -0.6294
=..l.... 0.4017 c.lo.... 0.192 E.(..(.. -0.8584 O..=..... -0.8534
=..0..( 0.4016 c.l..=.. -0.8758 E..C..... 0.1322 O..=...1... 0.0153
L.C. 0.1372 c.l..c. 0.3067 E.(..C -0.8886 O..C....... 0.3938
) DR 0.3516 C..2..(... -0.7831 F..(.E.. -0.7542 O..C..C.. 0.3251
1...c..(... 0.0674 C..2... -0.8551 | SRR 0.0899 Omax.3 6.8713
2 G -4.0883 [ -2.6633 HALO100000 -0.7419 Smax.0...... 4.2841
2o -0.7638 c...2..C.. -1.7803 N...(coueee -0.5548

2...Co.(.n 0.296 c...C...(... -0.0875 s O (RO 0.6401

actions, and 0.0149 for hydrogen bond donor interactions.
These results suggest that steric interactions, followed by
hydrophobic interactions, exert the most significant in-
fluence on the studied activity, particularly with regard to
the increase in the size of substituent groups. In contrast,
electrostatic and hydrogen bond donor interactions have
the least impact. The surfaces representing the fields ob-
tained for the developed 3D QSAR model are depicted in
Figure 3.

One of the main objectives of this research was to
identify the molecular fragments defined as optimal de-
scriptors in the SMILES notation that have both positive
and negative impacts on the studied activity, as refer-
enced.?>?440-43 The comprehensive list of calculated mo-
lecular descriptors, based on both the SMILES notation
and the molecular graph, can be found in Table S3 (Sup-
plementary material). For clarity, an example of the calcu-
lation for the molecule's summarized correlation weight
(DCW) and the studied activity (pIC50) is provided in Ta-
ble 2, with the molecular graph-based descriptors omitted
to facilitate interpretation. Additionally, a graphical rep-
resentation of the molecular fragments for the same mole-
cule is presented in Figure 4.

Based on the results obtained from QSAR mode-
ling, the SMILES notation reveals the following molecular
fragments that influence pICs, activity: “C............ 7 - car-
bon atom or a methyl group; “O............ ” — oxygen atom or
hydroxyl group; “C...C......” - representing two connect-

ozzp I Z

Figure 4. Molecular fragments contribution to sphingomyelin syn-
thase 2 inhibition (green - increase, red — decrease).

ed carbon atoms or an ethyl group; “c........... 5 “cndinld
“cConny “cliicl) "eec 1", and “c...c...c..” — one ar-
omatic carbon atom, two or three linear combinations of
aromatic carbon atoms; “O...C..” - referring to a methoxy
group or two connected carbon and oxygen atoms; “c...1...
(.5 % (1.7 % (CLT e Cl (W) el 1. CLLY - linked to
the addition of at least one methyl group to benzene, result-

ing in branching; “(...(......y “(coerenecsd 7 “(...C...(..7 SMILES
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notation fragment associated with molecular branching:
B S 5 “c..E..l “Ec..1..” SMILES notation fragments
associated with the addition of a fluorine atom to the ben-
zene ring. "N......... "'— representing a nitrogen atom with
a negative impact on studied activity, but N......."— denot-
ing a nitrogen atom involved in molecular branching has
a positive impact. Similar to the aromatic carbon, the aro-
matic nitrogen atom, indicated by the "n........... " molecular
descriptor, also exerts a positive influence on the studied
activity. "N...C..."— the primary amine group contributes
positively, while secondary and tertiary amines, indicated
with branching as "C...N...", have a negative impact. "=....."
- a double bond exerts a positive influence, but the double
bond with the oxygen atom, represented as "O..=..," nega-
tively affects the studied activity. The presence of one ring,
whether aromatic or aliphatic, positively impacts the stud-
ied activity. This molecular feature is defined by the follow-
ing molecular descriptors: “I..........7> “c...1......7 “c...c...1..)
"C...(...1..."). Nevertheless, a further increase in the num-
ber of rings, whether aromatic or aliphatic, has a nega-
tive impact on the studied activity: “c..2......7 "c...(..2..."),
‘.2l 2. i Lo“Cl2.. “ClClzll
Molecular branching as a feature and molecular branch-
ing with involved carbon atoms defined as “(..........7 “(...
(e “Cuiecenn 2 "(.Cu (") " have a negative impact on the
studied activity. Both fluorine atoms ("E" and molecular
branching involving fluorine atoms “E..(...(..75 “(..E..(.7

4. Conclusion

The primary objective of this study was to create re-
liable QSAR models that demonstrate strong predictabili-
ty, assessed using a range of statistical parameters, for the
inhibition of sphingomyelin synthase 2. The Monte Carlo
optimization method was employed to compute confor-
mation-independent QSAR models. These models were
built using optimal descriptors derived from both a local
graph and SMILES notation invariants. A QSAR model
was constructed using a genetic algorithm in conjunction
with multiple linear regression, utilizing an extensive set of
2D molecule descriptors. The assessment of the robustness
and predictive capability of these developed QSAR models
was achieved through the application of various statistical
techniques. The numerical values derived to validate the
developed QSAR models demonstrate their high applica-
bility. A field-based contribution approach was employed
to establish the 3D QSAR model, and the results obtained
revealed that the steric and hydrophobic parameters had
the most significant impact on the inhibition activity.
Molecular fragments, employed as SMILES notation frag-
ments in QSAR modeling, with both positive and negative
effects on sphingomyelin synthase 2 inhibition were iden-
tified through the Monte Carlo optimization method. The
methodology outlined in this study can be adapted to dis-

cover novel therapeutics for the treatment of atherosclero-
sis by targeting the inhibition of sphingomyelin synthase 2.
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Sfingomielin sintaza 2 (SMS2) se je izkazala kot obetavna traca cza zdravljenje ateroskleroze. Kljub temu pa je dostopnost
selektivnih zaviralcev SMS2 in njihove povezane farmakoloske lastnosti omejena. Ta c¢lanek raziskuje razli¢cne tehnike
modeliranja, osnovane na kvantitativnem razmerju med strukturo in delovanjem (QSAR), ki so bile uporabljene na
razli¢nih spojinah, ki delujejo kot inhibitorji SMS2. Uporabili smo razli¢ne metodologije modeliranja QSAR, vklju¢no s
konformacijsko neodvisnim modeliranjem, GA-MLR in 3D modeliranjem QSAR, proucili pa smo tudi korelacije med
njimi. Za oceno kakovosti, robustnosti in napovedne sposobnosti napravljenih modelov smo uporabili razli¢ne statis-
ticne metode, pri ¢emer smo dosegli dobre rezultate. Poleg tega smo dolo¢ili molekularne fragmente, pridobljene iz
SMILES notacije deskriptorjev, ki upostevajo opazene spremembe v ocenjeni aktivnosti. Metodologija, predstavljena v
tej raziskavi, ima potencial za identifikacijo novih u¢inkovin za zdravljenje ateroskleroze z usmerjanjem na SMS2.
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