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Abstract
Sphingomyelin synthase 2 (SMS2) has emerged as a promising target for atherosclerosis threatment. However, the avail-
ability of selective SMS2 inhibitors and their associated pharmacological properties remains limited. This research pa-
per explores various QSAR modeling techniques applied to a range of compounds acting as SMS2 inhibitors. Multiple 
distinct QSAR modeling methodologies were employed, including conformation-independent, GA-MLR and 3D based 
QSAR modeling, and their mutual correlations were investigated, Various statistical methods were applied to assess the 
quality, robustness, and predictive capacity of these developed models, yielding favorable results. Furthermore, molec-
ular fragments derived from SMILES notation descriptors, which account for the observed changes in the evaluated 
activity, were defined. The methodology presented in this research holds potential for identifying novel agents for ather-
osclerosis treatment by targeting sphingomyelin synthase 2.
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1. Introduction

Sphingomyelin (SM) is a major phospholipid in the 
circulatory system, and scientific literature indicates that 
human plasma SM levels are an independent risk factor 
for coronary heart disease.1–3 Moreover, in patients with 
acute coronary syndrome, the measurement of human 
plasma SM levels can serve as a valuable prognostic tool.3 
Studies have demonstrated that control mice exhibit ap-
proximately one-fourth the plasma SM levels compared to 
apoE KO mice, and this increase in plasma SM levels may 
be associated with the development of atherosclerosis in 
these animals.4,5 Additionally, SM has been shown to have 

significant effects on the metabolism of apoB-containing 
lipoproteins, and a deficiency in SM could potentially re-
duce the atherogenic properties of the mice.6,7

Inhibition of serine palmitoyltransferase (SPT), the 
initial enzyme involved in sphingomyelin (SM) biosynthe-
sis, has been shown to reduce SM levels in mouse models.8,9 
However, it is worth noting that this approach may lead to 
various off-target side effects because the entire de novo 
synthesis pathway of sphingolipids can be affected by the in-
hibition of SPT. As an alternative strategy to lower SM levels, 
inhibiting sphingomyelin synthase (SMS) is considered.

Scientific literature suggests that the overexpres-
sion of sphingomyelin synthase (SMS) promotes the ac-
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cumulation of atherogenic lipoproteins and increases the 
atherogenic potential. Conversely, in a mouse model, the 
alleviation of atherosclerosis is linked to the reduction 
of sphingomyelin (SM) accumulation due to SMS defi-
ciency.10–13 Based on these findings, SMS2 emerges as a 
potential therapeutic target for atherosclerosis, and the 
development of future anti-atherosclerotic drugs may be 
connected to the use of selective SMS2 inhibitors. How-
ever, it's important to note that the limited number of 
reported SMS2 inhibitors is partly attributed to experi-
mental challenges, hindering their exploration as potential 
anti-atherosclerotic agents.

The process of drug discovery and development is 
often exceptionally time-consuming, as it relies on various 
time and resource constraints. To address this challenge, 
chemoinformatic studies are employed. Chemoinformat-
ics, which involves in silico methods, offers a wide range 
of applications, including the identification of novel lead 
compounds and the optimization of the pharmacological 
activity or pharmacokinetic properties of existing chemical 
compounds with known biological activities.14,15 Among 
the various chemoinformatic methods, Quantitative Struc-
ture-Activity Relationship (QSAR) has emerged as the 
most prominent and widely used approach. In contempo-
rary QSAR studies, models are constructed by employing 
diverse molecular descriptors derived from specific mole-
cule structures, each with its own strengths and limitations. 
These models are then expressed as mathematical equa-
tions that establish a relationship between the biological 
activities of the studied molecules and their chemical char-
acteristics, as represented by the molecular descriptors.16–18

In this research, a variety of in silico methods were 
employed to identify new compounds with the potential 
to inhibit sphingomyelin synthase 2 (SMS2). The study de-
veloped QSAR models based on the following approaches: 
conformation-independent molecular descriptors, utiliz-
ing both SMILES notation and local graph invariants, in 
conjunction with the Monte Carlo optimization method; 
2D molecular descriptors, with the aid of a genetic algo-
rithm and multiple linear regression; and 3D field contri-
bution. One of the primary objectives of the study was to 
identify molecular fragments or structural features that 
lead to SMS2 inhibition effects and to assess the correla-
tions between these different methods. The research suc-
cessfully identified fragments present in small molecules 
that are relevant to ligand-receptor interactions, which can 
potentially be applied in the design and development of 
anti-atherosclerotic agents.

2. Materials and Methods
In this study, a dataset comprising 51 molecules 

known to exhibit inhibitory effects on SMS2 was collect-
ed from the scientific literature.19,20 The general chemi-
cal structures of these molecules are illustrated in Figure 

1. The activities of these molecules, quantified as pIC50 
values, were used as the dependent variables in the anal-
ysis. The SMILES notation for all the molecules used in 
the study, along with their corresponding pIC50 values, is 
provided in Table S1 within the Supplementary Material. 
To ensure the robustness of the analysis, the dataset was 
randomly divided into three sets: a training set consisting 
of 38 compounds (75%) and a test set comprising 13 com-
pounds (25%). The normality of the activity distribution 
for all the dataset splits was assessed following the meth-
odology described in a published reference.21

Figure 1. General chemical structures of used molecules for QSAR 
models development.

2. 1. �QSAR Modeling Utilizing the Monte 
Carlo Optimization Method
The Monte Carlo optimization method was em-

ployed to develop a conformation-independent QSAR 
model using a hybrid approach that incorporates both 
molecular graph and SMILES notation-based descriptors. 
The molecular graph-based descriptors included local 
graph invariants based on fundamental graph concepts 
like paths and walks, with their detailed mathematical 
definitions available in the literature.22 The optimal top-
ological descriptors from the molecular graph-based ap-
proach comprised Morgan extended connectivity indices 
of increasing orders (EC0), valence shells of range 2 and 
3 (s2, s3), path numbers of length 2 and 3 (p2, p3), the 
count of carbon atom neighbors (Number Of Carbon), 
and the count of non-carbon atom neighbors (Number of 
Non Carbon). In contrast, SMILES notation-based mo-
lecular descriptors offer a mechanistic interpretation, as 
they are related to molecular fragments. The numerical 
value of each SMILES notation descriptor for a molecule 
contributes to the molecule's correlation weight (DCW). 
This DCW is mathematically defined as the sum of all the 
defined SMILES descriptor correlation weights (CW), in 
accordance with Equation 1.

DCW(T,Nepoch) = zCW(ATOMPAIR) + 
xCW(NOSP) + yCW(BOND) + 
tCW(HALO) + rCW(HARD) + αΣCW(Sk) + 	 (1)

βΣCW(SSk) + γΣCW(SSSk)
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In Equation 1, the variables z, x, y, t, α, β and γ de-
note either the value 1 (indicating "yes") or 0 (indicating 
"no"). These values determine whether the correspond-
ing SMILES descriptor is utilized in the model's develop-
ment. The symbol Sk specifies the SMILES atom with one 
SMILES notation symbol (or two inseparable ones) and is 
linked to the local descriptors. are additionally construct-
ed as linear combinations of two and three SMILES atoms, 
represented by the SSk and SSSk symbols, respectively. The 
second category of optimal descriptors in accordance with 
SMILES notation is the global descriptor, which pertains 
to the overall characteristics of the studied molecule. The 
study utilized the following global SMILES notation-based 
descriptors: ATOMPAIR, HALO, BOND, NOSP and 
HARD, all defined based on the methodology published 
in reference.23 The development of the QSAR model in this 
study involved a combination of both SMILES notation 
(both local and global) and local graph invariant descrip-
tors. This approach enabled the calculation of the DCW 
for the molecules as per Equation 2.

DCW(T,Nepoch) = ΣCW(Sk) + ΣCW(SSk) +
ΣCW(SSSk) + ΣCW(EC0k) + ΣCW(PT2k) + 
ΣCW(PT3k) + ΣCW(VS2k) + ΣCW(VS3k) + � (2)

ΣCW(NNCk)				  

In addition to the previously defined symbols Sk, SSk 
and SSSk, Equation 2 incorporates the following symbols: 
The Morgan connectivity index of zero order (the hydro-
gen-suppressed graph was used in this research) – EC0k, 
paths of length of 2 and 3 – PT2k and PT3k, valence shell 2 
and 3 – VS2k, and VS3k, and Nearest Neighbors – NNCk.22 
The molecular descriptors mentioned above were all com-
puted using the CORAL software (CORrelation and Log-
ic), which can be accessed at http://www.insilico.eu/coral. 
Once an optimal descriptor is identified through the appli-
cation of the Monte Carlo method, each descriptor is as-
signed a numerical value known as the correlation weight 
(CW). The Monte Carlo method accomplishes this by 
generating suitable random numbers and observing how 
this fractional number corresponds to a specific proper-
ty or properties. The CW value is then randomly assigned 
to the descriptors based on the SMILES notation for each 
individual Monte Carlo run and for a specified endpoint.

The optimization process of the Monte Carlo method 
involves performing numerical calculations to determine 
the correlation weights that yield the maximum correla-
tion coefficient value between the optimal descriptor and 
a given endpoint. When utilizing this method for creating 
a QSAR model, it's essential to consider two key parame-
ters. Threshold is a coefficient used to categorize a range of 
molecular features, which encompass both SMILES-based 
indices and SMILES-based molecular fragments. These 
features are derived from SMILES notation and sorted into 
two categories: a) active ones (in this case, the modeling 
process involves the correlation weight); and b) rare ones 

(in this case, the modeling process omits the correlation 
weight). 

The process is executed as follows: If a particular mo-
lecular feature (X) extracted from the SMILES notation of 
molecules in the training set occurs fewer than T times, 
then the molecule descriptor X is excluded from the model 
construction. Consequently, the numerical value for this 
feature (the correlation weight of X, CW(X)) is set to zero, 
categorizing it as "rare." All other molecular features that 
occur more frequently are considered "active" and can be 
employed in the model-building process. Nepoch, repre-
senting the epoch number in Monte Carlo optimization, is 
crucial for achieving the highest statistical quality within 
the training set. When an unlimited number of epochs is 
employed, the training set attains the maximum correla-
tion coefficient through the mentioned Monte Carlo op-
timization. However, it's important to note that the maxi-
mum correlation coefficient between the endpoint for the 
external test set and the optimal descriptor is achieved 
with a specific, finite number of epochs. The calculations 
favor this specific epoch number, as it offers excellent pre-
dictive potential for the obtained model, provided that the 
number of epochs reaches this value. However, it's worth 
noting that an increase in the threshold (T) results in a de-
crease in the correlation coefficient within the training set. 
Nonetheless, it is important to highlight that there exists a 
threshold value that maximizes the correlation coefficient 
of the test set. From a practical perspective, the mentioned 
threshold is the preferred choice. Furthermore, defining 
optimal values for both the threshold (T) and the Mon-
te Carlo optimization epoch number (Nepoch), is essential 
for constructing a robust QSAR model. This construction 
involves the utilization of both SMILES notation and opti-
mal descriptors based on the molecular graph, as outlined 
in reference.23 

Monte Carlo method simulations are carried out 
using iterative algorithms to uncover the distribution of 
an unknown probabilistic entity. In the Monte Carlo op-
timization process, the epoch number is still a part of the 
equation for a specific target function within the training 
set. The initial step involves setting the CW (SA) for each 
SMILES SA attribute, with all CW values commencing at 
1±0.01×Rnd (where Rnd is a random value generator with 
a range between 0 and 1). The usual sequential order of 
attribute numbers is replaced with a random sequence. 
The subsequent step involves evaluating the initial value of 
the target function and making further adjustments to the 
correlation weights. After this, the relevant steps must be 
reiterated in the Monte Carlo optimization process for all 
the non-rare attributes, as specified in references.23,24 The 
linear regression approach is used to compute the QSAR 
model (utilizing the training set) as indicated in Equation 
3. This is achieved when the numerical data regarding the 
correlation weights are derived from the model, leading to 
favorable statistical results for the test set. In this specif-
ic study, the search for the optimal combination of T and 
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Nepoch was carried out within the ranges of 1–5 for T and 
0–50 for Nepoch.

Ac = C0 + C1×DCW(T,Nepoch)� (3)

2. 2. ��QSAR Modeling Using Genetic 
Algorithm in Conjunction with Multiple 
Linear Regression
In this section, 2D descriptors were calculated using 

PaDEL.25 Descriptors with low variance were eliminated 
from the initial descriptor pool, and further reduction of 
descriptors was conducted based on filtering using high 
pairwise correlation coefficients. The QSARINS program 
(QSAR-INSUBRIA) available at www.qsar.it was em-
ployed for various descriptor reductions and for the de-
velopment of QSAR models.26,27 After reducing the num-
ber of descriptors, they were scaled, and suitable QSAR 
models were created using the genetic algorithm (GA) 
optimization method, following the same molecule split-
ting approach as used in conformation-independent mod-
eling.28,29 Within the QSARINS program, the genetic al-
gorithm (GA) is combined with multiple linear regression 
(MLR) as the fitness evaluator.30,31 For the development of 
QSAR models, the following parameters were adjusted ac-
cording to the total number of features in the model: the 
number of variables in GA optimization was set to 4, the 
number of GA iterations (generations per size) was set to 
500, the population size (the number of models on which 
GA evolves) was set to 10, and random mutations for gen-
erating a diverse pool of descriptors (mutation rate) were 
set at a 20% mutation rate. 

2. 3. 3D Field-based QSAR Model
Before creating the 3D-based QSAR model, geome-

try optimization was performed on all the molecules using 
the MMFF94 force field, utilizing Marvin sketch software 
(Marvin 6.1.0, 2013, ChemAxon). The split that yielded the 
highest r2 for the conformation-independent model was 
employed to divide the molecules into the training and test 
sets for QSAR model development. The following parame-
ters were utilized in model construction: a maximum of 6 
PLS (Partial Least Squares) factors, steric and electrostatic 
force fields limited to 30.0 kcal/mol, a grid spacing of 1.0 
Å with a 3.0 Å extension beyond the training set limits, 
and elimination of all variables with a standard deviation 
less than 0.01. The primary software used for developing 
the 3D field-based QSAR model was Schrodinger Maestro 
Version 11.5.011.

2. 4. �Validation of the Developed QSAR 
Models 
Various validation metrics were employed to assess 

the quality of the developed conformation-independent 

and 2D-based QSAR models. These metrics included the 
determination of the squared correlation coefficient. (r2), 
the root-mean-squared-error (RMSE), leave-one-out and 
leave-many-out cross-validation coefficients, the F-value, 
the mean absolute error (MAE), and y-scrambling, as refer-
enced.32–35 To further validate the developed QSAR mod-
els, the following statistical metrics were employed: Rm

2 and 
MAE-based metrics, the correlation coefficient (CCC), and 
the index of the ideality of correlation (IIC), as described.36 
The applicability domain (AD) is a pivotal aspect of any 
QSAR model and must be established before utilizing the 
model.37,38 In this study, a literature-derived AD method 
was employed to define applicability domains for confor-
mation-independent QSAR models.39 It is essential to de-
fine the applicability domain (AD) for prediction purposes 
before making use of any QSAR model. Furthermore, es-
tablishing the applicability domain (AD) is an essential and 
integral component of a pertinent, sturdy, trustworthy, and 
valid QSAR model. In this study, the AD for the developed 
QSAR models was determined by examining the "statisti-
cal defects" of conformation-independent molecular de-
scriptors, specifically d(A), which had been previously em-
ployed in the construction of QSAR models.23,24,36 These 
calculations were carried out using the CORAL software, 
following the procedures outlined in Equation 4. 

� (4)

In the equation above, P(Atrain) and P(Acalib) denote 
the probabilities of a conformation-independent attribute 
or descriptor (A) in the training and test sets, respective-
ly. Meanwhile, N(Atrain) and N(Acalib) represent the 
frequency of occurrence of a conformation-independent 
attribute or descriptor (A) in the training set and the test 
set, respectively. The statistical SMILES defect (D) is the 
cumulative sum of the defects, d(A), of all the attributes 
found in the SMILES notation of the molecules. It is com-
puted according to Equation 5. 

� (5)

A molecule is labeled as an outlier if it falls outside 
the defined applicability domain (AD), which happens 
when its D exceeds 2 times Dav, where Dav represents the 
average D calculated for the relevant set (whether it's the 
training or test set) in which the molecule is located. The 
AD for the GA-MLR QSAR models was established using 
a distance-based approach, and the outliers were detected 
using the Williams plot, which plots standardized residu-
als against leverages.

3. Results and Discussion
Table 1 provides the numerical values of all the met-

rics utilized to assess the quality of the developed confor-
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mation-independent QSAR models created through the 
Monte Carlo optimization method. The results indicate 
that the Monte Carlo optimization method yielded QSAR 
models with strong predictive capabilities and satisfactory 
reproducibility. Based on the applied metrics, the most fa-
vorable QSAR model was achieved with the second split, 
featuring a T value of 4 and an Nepoch of 15. No outliers 
were identified, as the methodology applied for the ap-
plicability domain (AD) indicated that all molecules fell 
within the defined AD. Figure 2 illustrates a graphical 

representation of the best-performing QSAR model (the 
one with the highest obtained r2 value) for all three splits 
in the best Monte Carlo optimization run. The concord-
ance correlation coefficient (CCC) was employed to vali-
date the QSAR models obtained, particularly with respect 
to their reproducibility. The results indicated that all the 
models exhibited high reproducibility. Additionally, the 
results for the MAE-based metric were noted as "GOOD," 
further confirming the validity of the developed QSAR 
model.

Table 1. The statistical quality of the developed conformational-independent QSAR models for sphingomyelin synthase 2 inhibition

	 Training set	 Test set

		  r2	 CCC	 IIC	 q2	 s	 MAE	 F	 r2	 CCC	 IIC	 q2	 s	 MAE	 F
Split 1	 1 run	 0.9087	 0.9522	 0.8579	 0.8959	 0.363	 0.308	 358	 0.8907	 0.9364	 0.9438	 0.8453	 0.368	 0.324	 90
	 2 run	 0.8742	 0.9329	 0.8415	 0.8597	 0.426	 0.346	 250	 0.8711	 0.9175	 0.9333	 0.8071	 0.395	 0.306	 74
	 3 run	 0.8934	 0.9437	 0.7652	 0.8776	 0.392	 0.32	 302	 0.8763	 0.9292	 0.9361	 0.8133	 0.395	 0.309	 78
	 Av	 0.8921	 0.9429	 0.8215	 0.8777	 0.394	 0.325	 303	 0.8794	 0.9277	 0.9377	 0.8219	 0.386	 0.313	 81
Split 2	 1 run	 0.9098	 0.9528	 0.8584	 0.8958	 0.341	 0.277	 363	 0.9496	 0.9415	 0.9744	 0.9315	 0.401	 0.311	 207
	 2 run	 0.9152	 0.9557	 0.8581	 0.9026	 0.331	 0.273	 388	 0.9433	 0.9518	 0.9712	 0.9151	 0.372	 0.313	 183
	 3 run	 0.9092	 0.9525	 0.8582	 0.8949	 0.342	 0.272	 361	 0.9427	 0.9396	 0.9708	 0.9196	 0.408	 0.338	 181
	 Av	 0.9114	 0.9537	 0.8582	 0.8978	 0.338	 0.274	 371	 0.9452	 0.9443	 0.9721	 0.9221	 0.394	 0.321	 190
Split 3	 1 run	 0.9203	 0.9585	 0.7766	 0.9084	 0.337	 0.272	 416	 0.8612	 0.9223	 0.928	 0.8226	 0.431	 0.303	 68
	 2 run	 0.8927	 0.9433	 0.7649	 0.8797	 0.391	 0.296	 300	 0.8526	 0.9213	 0.9232	 0.8076	 0.433	 0.304	 64
	 3 run	 0.8706	 0.9308	 0.8398	 0.8526	 0.429	 0.342	 242	 0.8622	 0.9246	 0.9284	 0.8173	 0.411	 0.277	 69
	 Av	 0.8945	 0.9442	 0.7938	 0.8802	 0.386	 0.303	 319	 0.8587	 0.9227	 0.9265	 0.8185	 0.425	 0.295	 67

r2 – Correlation coefficient;   CCC – Concordance correlation coefficient;   IIC – Index of ideality of correlation;   q2 – Cross-validated correlation 
coefficient;   s – Standard error of estimation;   MAE – Mean absolute error;   F – Fischer ratio;   Av – Average value for statistical parameters obtained 
from three independent Monte Carlo optimization runs

Figure 2. Above) Graphical presentation of the best Monte Carlo optimization runs (the highest value for r2) for the developed QSAR models; Bel-
low) Diff. – Difference between experimental and calculated values for pIC50.
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The robustness of the developed QSAR models was 
assessed using Y-randomization, where Y values were 
shuffled in 1000 trials for ten separate runs. The outcomes, 
as presented in Table S2, suggest that the developed QSAR 
models do not rely on accidental correlations. The final 
assessment of the quality of the developed QSAR models 
was conducted using the calculated index of the ideality 
of correlation (IIC), and the results strongly suggest that 
the developed QSAR models possess a high predictive po-
tential.

The mathematical formulations for the top-perform-
ing QSAR models, as determined by the test set r2 values 
for all the splits, are provided in Equations 6–8. 

Split 1: pIC50 = –1.1653(±0.0716) + 
0.0290(±0.0003)×DCW(3,7) 			   (6)

Split 2: pIC50 = –1.6041(±0.0810) + 
0.0400(± 0.0005)×DCW(4,15) 		  (7)

Split 3: pIC50 = –1.8678(±0.0950) + 
0.0359(±0.0005)×DCW(2,7)			   (8)

The equations (Eq. 6–8) show that for split 1, the 
preferred values for T and Nepoch are 3 and 7, respective-
ly. For split 2, the preferred values are 4 for T and 15 for 
Nepoch, while for split 3, the preferred values are 2 for T 
and 7 for Nepoch. Equation 9 represents the mathematical 
equation that characterizes the developed QSAR models 
generated through GA-MLR modeling for all the splits. 
A graphical representation of this equation is provided 
in the supplementary material. The numerical values for 
all the calculated statistical parameters suggest that the 
developed QSAR models exhibit satisfactory predictive 
potential and robustness in terms of prediction. The sta-

tistical parameters used for the fitting criteria were as 
follows:

R2 : 0.9543; R2
adj: 0.9472; R2-R2

adj : 0.0071; LOF : 
0.1176; Kxx : 0.5102; ΔK : 0.0554; RMSE : 0.2526; MAE : 
0.1882; RSS : 2.4253; CCC tr: 0.9766; s: 0.2753; F: 134 The 
statistical parameters used for internal validation criteria 
were as follows: Q2

loo : 0.9341; R2-Q2
loo : 0.0202; RMSE: 

0.3035; MAE : 0.2257; PRESS : 3.5003; CCC : 0.9664; 
Q2

LMO : 0.9234. The statistical parameters used for ex-
ternal validation criteria were as follows: RMSE: 0.6506; 
MAE: 0.5620; PRESS: 5.5020; R2 : 0.6316; CCC : 0.7916; 
r2m aver.: 0.6047; Δr2m : 0.0353. The model development 
included the consideration of the following molecular de-
scriptor: Eta_D_beta_A, which represents the ETA aver-
age measure of electronic features; C-040 – Atom-centred 
fragments R-C(=X)-X / R-C#X / X=C=X; SsssCH – Sum 
of sssCH E-states; SaaN – Sum of aaN E-states; MLogP – 
Mannhold LogP.

pIC50 = 3.4370 + 3.3715×Eta_D_beta_A – 
1.4345×C-040 + 1.5324×SsssCH + � (9)
0.2257×SaaN + 0.4852× MLogP

The 3D QSAR model exhibited a test set correlation 
coefficient of 0.9392, with a standard deviation of 0.2967. 
Additionally, the training set correlation coefficient for the 
3D QSAR model was 0.6843, with a standard deviation of 
0.2824. These values collectively indicate that the mod-
el demonstrates good predictability. The results derived 
from the 3D QSAR model provide the following Gaussian 
field fraction contributions: 0.4240 for steric interactions, 
0.0825 for electrostatic interactions, 0.2815 for hydropho-
bic interactions, 0.1971 for hydrogen bond acceptor inter-

Figure 3. 3D QSAR model fields (fields are shown as surfaces). A) Steric – favourable regions (green); B) Hydrophobic – favoured (yellow) and 
disfavoured (white); C) Electrostatic – favoured electropositive (blue) and disfavoured electronegative (red); D) Hydrogen bond acceptor – favoured 
(red) and disfavoured (magenta); E) Hydrogen bond donor – favoured (purple) and disfavoured (cyan).
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actions, and 0.0149 for hydrogen bond donor interactions. 
These results suggest that steric interactions, followed by 
hydrophobic interactions, exert the most significant in-
fluence on the studied activity, particularly with regard to 
the increase in the size of substituent groups. In contrast, 
electrostatic and hydrogen bond donor interactions have 
the least impact. The surfaces representing the fields ob-
tained for the developed 3D QSAR model are depicted in 
Figure 3.

One of the main objectives of this research was to 
identify the molecular fragments defined as optimal de-
scriptors in the SMILES notation that have both positive 
and negative impacts on the studied activity, as refer-
enced.23,24,40–43 The comprehensive list of calculated mo-
lecular descriptors, based on both the SMILES notation 
and the molecular graph, can be found in Table S3 (Sup-
plementary material). For clarity, an example of the calcu-
lation for the molecule's summarized correlation weight 
(DCW) and the studied activity (pIC50) is provided in Ta-
ble 2, with the molecular graph-based descriptors omitted 
to facilitate interpretation. Additionally, a graphical rep-
resentation of the molecular fragments for the same mole-
cule is presented in Figure 4.

Based on the results obtained from QSAR mode-
ling, the SMILES notation reveals the following molecular 
fragments that influence pIC50 activity: “C............” – car-
bon atom or a methyl group; “O............” – oxygen atom or 
hydroxyl group; “C...C.......” – representing two connect-

ed carbon atoms or an ethyl group; “c...........”, “c...1.......”, 
“c...c.......”, “c...1...c...”, "c...c...1...", and “c...c...c...” – one ar-
omatic carbon atom, two or three linear combinations of 
aromatic carbon atoms; “O...C...” – referring to a methoxy 
group or two connected carbon and oxygen atoms; “c...1...
(...”, “c...(...1...”, “c...(...C...”, “c...C...(...”, “c...1...C...” – linked to 
the addition of at least one methyl group to benzene, result-
ing in branching; “(...(.......”, “(...........”, “(...C...(...” SMILES 

Table 2. The example of DCW(4,15) calculation

SMILES notation:
CN(C(=O)c1c(OCCCC2CCCCC2)c2ccccc2n(c1=O)C)Cc1cc(cc(c1)C(F)(F)F)C(F)(F)F

DCW = 113.53444
pIC50(calc.) = 3.7003

SA(CW)	 CW	 SA(CW)	 CW	 SA(CW)	 CW	 SA(CW)	 CW

10011001000	 –0.9	 2...n...(...	 0.7295	 c...c...(...	 0.4785	 N...(...C...	 0.1565
(...(.......	 –0.5175	 BOND10000	 2.2636	 C...C.......	 0.4516	 n...(...c...	 0.0245
(...........	 –0.2838	 C...(.......	 –0.5648	 c...c.......	 0.0705	 N...........	 –0.7298
(...C...(...	 –0.9619	 c...(.......	 0.1721	 c...C.......	 0.1702	 n...........	 0.0083
(...F...(...	 0.3981	 C...(...=...	 –0.8874	 C...c...1...	 0.311	 n...2.......	 –0.2463
++++F---B2==	 0.9554	 C...(...1...	 0.4141	 c...c...1...	 0.0902	 n...2...c...	 –0.8469
++++F---N===	 2.0554	 c...(...2...	 –4.0999	 C...C...2...	 –0.5719	 N...C.......	 0.238
++++F---O===	 2.0323	 C...(...C...	 0.0284	 c...c...2...	 –1.4034	 Nmax.1......	 2.2076
++++N---B2==	 2.413	 c...(...c...	 0.4344	 C...C...C...	 –2.8767	 NOSP110000	 6.3387
++++N---O===	 3.2561	 c...(...O...	 0.1071	 c...c...c...	 0.1149	 O...(.......	 –0.9913
++++O---B2==	 –1.8357	 C...........	 0.0043	 C...N...(...	 –0.9921	 O...(...C...	 0.675
=...(.......	 0.667	 c...........	 0.0275	 C...O...(...	 –0.7001	 O...........	 0.1213
=...........	 0.4955	 c...1...(...	 0.2445	 Cmax.2......	 –1.702	 O...=...(...	 –0.6294
=...1.......	 0.4017	 c...1.......	 0.192	 F...(...(...	 –0.8584	 O...=.......	 –0.8534
=...O...(...	 0.4016	 c...1...=...	 –0.8758	 F...(.......	 0.1322	 O...=...1...	 0.0153
1...(.......	 0.1372	 c...1...c...	 0.3067	 F...(...C...	 –0.8886	 O...C.......	 0.3938
1...........	 0.3516	 C...2...(...	 –0.7831	 F...(...F...	 –0.7542	 O...C...C...	 0.3251
1...c...(...	 0.0674	 C...2.......	 –0.8551	 F...........	 0.0899	 Omax.3......	 6.8713
2...(.......	 –4.0883	 c...2.......	 –2.6633	 HALO100000	 –0.7419	 Smax.0......	 4.2841
2...........	 –0.7638	 c...2...c...	 –1.7803	 N...(.......	 –0.5548
2...c...(...	 0.296	 c...C...(...	 –0.0875	 n...(.......	 0.6401

Figure 4. Molecular fragments contribution to sphingomyelin syn-
thase 2 inhibition (green – increase, red – decrease).
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notation fragment associated with molecular branching: 
“F...........”, “c...F.......”, “F...c...1...” SMILES notation fragments 
associated with the addition of a fluorine atom to the ben-
zene ring. "N.........""— representing a nitrogen atom with 
a negative impact on studied activity, but N......."— denot-
ing a nitrogen atom involved in molecular branching has 
a positive impact. Similar to the aromatic carbon, the aro-
matic nitrogen atom, indicated by the "n..........." molecular 
descriptor, also exerts a positive influence on the studied 
activity. "N...C..."— the primary amine group contributes 
positively, while secondary and tertiary amines, indicated 
with branching as "C...N...", have a negative impact. "=....." 
– a double bond exerts a positive influence, but the double 
bond with the oxygen atom, represented as "O..=..," nega-
tively affects the studied activity. The presence of one ring, 
whether aromatic or aliphatic, positively impacts the stud-
ied activity. This molecular feature is defined by the follow-
ing molecular descriptors: “1...........”, “c...1.......”, “c...c...1...”, 
"C...(...1..."). Nevertheless, a further increase in the num-
ber of rings, whether aromatic or aliphatic, has a nega-
tive impact on the studied activity: “c...2.......”, "c...(...2..."), 
“c...2...c...”, “c...c...2...”, “2...........”, “C...2.......”, “C...C...2...”. 
Molecular branching as a feature and molecular branch-
ing with involved carbon atoms defined as “(...........”, “(...
(.......”, “C...(.......”, "(...C...(...")" have a negative impact on the 
studied activity. Both fluorine atoms ("F." and molecular 
branching involving fluorine atoms “F...(...(...”, “(...F...(...” 
and “F...(...F...” positively affect the studied activity.

4. Conclusion
The primary objective of this study was to create re-

liable QSAR models that demonstrate strong predictabili-
ty, assessed using a range of statistical parameters, for the 
inhibition of sphingomyelin synthase 2. The Monte Carlo 
optimization method was employed to compute confor-
mation-independent QSAR models. These models were 
built using optimal descriptors derived from both a local 
graph and SMILES notation invariants. A QSAR model 
was constructed using a genetic algorithm in conjunction 
with multiple linear regression, utilizing an extensive set of 
2D molecule descriptors. The assessment of the robustness 
and predictive capability of these developed QSAR models 
was achieved through the application of various statistical 
techniques. The numerical values derived to validate the 
developed QSAR models demonstrate their high applica-
bility. A field-based contribution approach was employed 
to establish the 3D QSAR model, and the results obtained 
revealed that the steric and hydrophobic parameters had 
the most significant impact on the inhibition activity. 
Molecular fragments, employed as SMILES notation frag-
ments in QSAR modeling, with both positive and negative 
effects on sphingomyelin synthase 2 inhibition were iden-
tified through the Monte Carlo optimization method. The 
methodology outlined in this study can be adapted to dis-

cover novel therapeutics for the treatment of atherosclero-
sis by targeting the inhibition of sphingomyelin synthase 2.
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Povzetek
Sfingomielin sintaza 2 (SMS2) se je izkazala kot obetavna trača cza zdravljenje ateroskleroze. Kljub temu pa je dostopnost 
selektivnih zaviralcev SMS2 in njihove povezane farmakološke lastnosti omejena. Ta članek raziskuje različne tehnike 
modeliranja, osnovane na kvantitativnem razmerju med strukturo in delovanjem (QSAR), ki so bile uporabljene na 
različnih spojinah, ki delujejo kot inhibitorji SMS2. Uporabili smo različne metodologije modeliranja QSAR, vključno s 
konformacijsko neodvisnim modeliranjem, GA-MLR in 3D modeliranjem QSAR, proučili pa smo tudi korelacije med 
njimi. Za oceno kakovosti, robustnosti in napovedne sposobnosti napravljenih modelov smo uporabili različne statis-
tične metode, pri čemer smo dosegli dobre rezultate. Poleg tega smo določili molekularne fragmente, pridobljene iz 
SMILES notacije deskriptorjev, ki upoštevajo opažene spremembe v ocenjeni aktivnosti. Metodologija, predstavljena v 
tej raziskavi, ima potencial za identifikacijo novih učinkovin za zdravljenje ateroskleroze z usmerjanjem na SMS2.
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