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Abstract

The rising prevalence and appeal of designer benzodiazepines (DBZDs) pose a significant public health concern. To
evaluate this threat, the biological activity/potency of DBZDs was examined through in silico studies. To gain a deeper
understanding of their pharmacology, we employed the Monte Carlo optimization conformation-independent method
as a tool for developing QSAR models. These models were built using optimal molecular descriptors derived from both
SMILES notation and molecular graph representations. The resulting QSAR model demonstrated robustness and a high
degree of predictability, proving to be very reliable. The newly discovered molecular fragments used in the comput-
er-aided design of the new compounds were believed to have caused the increase and decrease of the studied activity.
Molecular docking studies were used to make the final assessment of the designed inhibitors and excellent correlation
with the results of QSAR modeling was observed. This discovery paves the way for the swift prediction of binding activity
for emerging benzodiazepines, offering a faster and more cost-effective alternative to traditional in vitro/in vivo analyses.
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1. Introduction

Everyday prescriptions involve benzodiazepines, as
well as their derivatives, in the form of anxiolytic, anti-in-
somnia and anti-convulsant drugs for the purpose of tack-
ling a multitude of medical conditions by acting on the
gamma-aminobutyric acid type A (GABA,) receptor.!
Gamma-aminobutyric acid (GABA) is the endogenous
neurotransmitter for the GABA, receptor and its binding
reduces cell excitability.? Much lower cellular excitability is
effected by benzodiazepines that potentiates GABA, re-
ceptor’s response to GABA. In physiological terms, this
leads to relaxation and sedation.! In such instances, the
medical benefit of benzodiazepines is visible, since their
anxiolytic effects lessen agitation and stress in patients.
Nevertheless, owing to the psychoactive effects of the
mentioned, there is a long abuse history of benzodiaze-

pines, and they are frequently illegally secured.!~> Recent-
ly, the black market has had a steady supply of benzodiaz-
epines. They are either licensed as prescription drugs in
countries which are not their original home country, or are
newly-synthesized and they are called ‘new psychoactive
substances’ (NPS).® Most of the benzodiazepines that
have appeared in this manner have not been subjected to
regular pharmaceutical trials. For this reason, their effects
can vary greatly and their activity may prove to be ex-
tremely hazardous.!? Even though the use of benzodiaze-
pines is quite safe if they are taken as prescribed, simulta-
neous use of benzodiazepines and opioids (whether abused
or prescribed) can cause respiratory depression and even
lead to death.!"!> Numerous side effects may occur if ben-
zodiazepines are not carefully monitored and if they are
not prescribed. Such side-effects include dependency and
tolerance in the event that the medication is taken long-
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term. Furthermore, sudden withdrawal can lead to medi-
cal problems, such as insomnia and anxiety.!>!* A certain
number of overdose cases, driving under the influence of
drugs (DUID) and hospital admissions have already been
reported with regard to the use of NPS benzodiaze-
pines.!>"17 One of the most prominent issues is that illegal
benzodiazepines are not controlled at all and represent a
safety hazard. In addition, in the event that the trend of
their abuse gets increasingly big, the situation might be
even more worrying.

Benzodiazepines represent a diverse group of psy-
choactive compounds whose central structural compo-
nent consists of a diazepine ring and a benzene ring. There
is a multitude of derivatives, including imidazo-benzodi-
azepines, thienotriazolobenzodiazepines and triazoloben-
zodiazepines. Correlating molecular structure to biologi-
cal activity is attempted through the use of the quantitative
structure-activity relationship (QSAR), frequently with
the use of a various molecular descriptors, such as elec-
tronic, topological, physiochemical and steric properties.'8
Commonly, a set of compounds with a known biological
activity is used for the purpose of attaining a ‘training’ da-
taset and creating a model. Afterwards, the model may be
utilized for predicting the unknown biological activity
possessed by compounds having a similar structure or for
exploring the key structural features for the relevant bio-
logical activity in question. There have been numerous
reasons for the use of QSAR, such as the pharmacological
interpretation of drug-related deaths and developing com-
pounds in the pharmaceutical industry.'*-2! Over the re-
cent years, an approach in which the studied activity is
treated as a random event has showed promise in QSAR
modeling: the Monte Carlo optimization method. The
mentioned method relies on the approach which is of con-
formation-independent nature, where the optimal de-
scriptors are based on topological molecular features and
the molecules in the Simplified Molecular Input Line En-
try System (SMILES) notation.?2-2* The simplicity and ef-
ficiency of the method described are the primary advan-
tages over more commonly used methods. What is more,
molecular fragments (calculated as SMILES notation de-
scriptors) with an impact on studied activity and which
can be associated with the studied compounds’ chemical
structures can also be determined with the use of this
method. When it comes to the applications with regard to
new psychoactive substances, the application of QSAR’s
predictive power has mainly been aimed at cannabinoid
binding to CB1 and CB2 receptors.?>~2” However, its use
has also been to examine the biological activity of hallu-
cinogenic phenylalkylamines, as well as the binding of
tryptamines, phenylalkylamines and LSD to the 5-HT2,
receptor and the selectivity of methcathinone for norepi-
nephrine (NAT), dopamine (DAT) and serotonin trans-
porters (SERT).?8-30 At present, a great many novel benzo-
diazepines have not been analyzed, and their
physicochemical and biological properties have not been

determined, since this would entail making a considerable
investment, both in terms of money and time. This is pre-
cisely why a quick and economical method is desirable for
predicting their properties.

Predicting the absorption rate, clearance, bioavaila-
bility, half-life and distribution volume for a group of ben-
zodiazepines has previously been the application of QSAR
to benzodiazepines. This study included phenazepam, a
benzodiazepine which appeared as an NPS in 2007.31:3
Over the years, after the publication of this study, other
benzodiazepines (such as etizolam) appeared solely as new
psychoactive substances. Also, QSAR methodology has
been applied for the purpose of modeling the post-mor-
tem redistribution of benzodiazepines, in which case a
good model was obtained (R? = 0.98), where energy, ioni-
zation and molecular size were discovered to have a signifi-
cant impact.>® In an attempt to predict how toxic these
compounds are, the toxicity of benzodiazepines to their
structure has been correlated with the use of quantitative
structure-toxicity relationships (QSTR).3* In recent years,
a study concluded that identifying the structural frag-
ments responsible for toxicity (the presence of hydrazone
substitutions and amine, as well as saturated heterocyclic
ring systems resulting in greater toxicity) was possible
with the use of QSTR, and that the information could po-
tentially be used in order to create new, less toxic benzodi-
azepines for medical purposes. Correlating the benzodiaz-
epine structure to GABA, receptor binding and tearing
apart the complex relationship between various substitu-
ents, as well as their effect on activity have been achieved
with the use of different QSAR models, though no one has
specifically attempted to predict the binding values for the
benzodiazepines which represent new psychoactive sub-
stances.?>36 The main aim of this study is the development
of QSAR models for predicting GABA, receptor binding
of newly emerging benzodiazepines.

2. Materials and Methods

The studied activity is expressed as the logarithm of
the reciprocal of concentration (log 1/c), with “c” repre-
senting the molar inhibitory concentration (ICs;) required
to displace 50% of [3H]-diazepam from synaptosomal
preparations in the cerebral cortex of rats.’”* The primary
objective of this study is to construct a QSAR model capa-
ble of predicting the potential biological activity of new-
ly-appearing benzodiazepines. The ultimate aim is to en-
hance our comprehension of these substances and
consequently reduce their potential harm more rapidly
than through traditional in vitro/in vivo testing methods.

To establish relevant QSAR models, the initial step
involved acquiring molecules from the literature sourc-
es.>”3 These molecules were subsequently rendered as
graphical representations using ACD/ChemSketch soft-
ware v.11.0, and were then transformed into the SMILES
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notation using the same software. The Supporting Infor-
mation section provides the chemical structures of the
compounds utilized in QSAR modeling, along with their
corresponding SMILES notation. The dependent variable
used for QSAR model was the relationship between GAB-
AA receptor binding and the structure of characterized
benzodiazepines, expressed as the logarithm of the recip-
rocal of concentration (log 1/c). The numerical values pre-
sented in Table S1 of the Supplementary material corre-
spond to these data. After completing the construction of
the appropriate database, it was divided into two sets
through three different main molecule random splits. The
first set was the training set, comprising 63 compounds
(75%), while the second set was the test set, containing 21
compounds (25%). Subsequently, the distribution activity
normality was assessed using the method outlined in pub-
lished literature.?>?* The CORAL (CORrelation and Logic,
http://www.insilico.eu/coral) software was employed to
create conformation-independent QSAR models using the
Monte Carlo method and its algorithm, which treats the
relevant activity as a random event. Two types of molecu-
lar descriptors, based on the SMILES notation and the mo-
lecular graph, were considered. Invariants were established
as local graph invariants using the molecular graphs, spe-
cifically path numbers of length 2 and 3 (p2, p3), Morgan
extended connectivity index of increasing order (ECO0), the
Code of Nearest Neighbors (NNCk) and the valence shells
within the range of 2 and 3 (s2, s3). In recent years, the
Simplified Molecular Input-Line Entry System (SMILES)
notation, particularly in chemoinformatics, since the
SMILES notation has emerged as the most convenient rep-
resentation, especially in the field of chemoinformatics. In
the realm of medicinal chemistry this is particularly ad-
vantageous, as establishing correlations between molecu-
lar fragments and descriptors based on the molecular
graph can be quite challenging. In the realm of QSAR
modeling, one can establish molecular optimal descriptors
(DCW) by utilizing the SMILES notation, and these DCW
descriptors can be computed as a result of applying Equa-
tion 1 to the SMILES notation.

DCW(T’Nepoch)SMILES = ZCW(ATOMPAIR) +
YCW(NOSP) + ZCW(BOND) + XCW(HALO) + (1)
SCW(HARD) + SCW(S,) + SCW(SS}) + SCW(SSS,)

This research employed SMILES notation-based de-
scriptors, encompassing global, local, and HARD-index
descriptors. An essential aspect of the developed QSAR
model is the calculation of the correlation weight (CW) for
each optimal descriptor used, which is accomplished
through the application of the Monte Carlo method.?*2*
This process can be accomplished by generating suitable
random numbers and observing how the distribution of
these numbers adheres to specific properties or criteria. In
this procedure, CW values are assigned randomly to all the
optimal descriptors, including both SMILES nota-

tion-based descriptors and molecular graph-based ones,
during each independent Monte Carlo run. Subsequently,
the Monte Carlo optimization process is employed to com-
pute the numerical data for correlation weights. These
weights are instrumental in achieving the highest possible
correlation coefficient between the optimal descriptors
used and the target activity under study. The Monte Carlo
method employs two parameters to attain this objective:
the number of epochs (Nepoch) and the threshold (T). For
the construction of QSAR models, a range of values was
used, specifically 0 to 10 for T and 0 to 70 for Nepoch. The
determination of the most effective combination of T and
Nepoch, based on predictive performance, was conducted
following the methodology outlined in published litera-
ture. 2324

The primary objective in any QSAR modeling pro-
cess is to create a robust model capable of accurately, con-
sistently, and objectively predicting the properties of new
molecules. The effectiveness of the established QSAR
models was assessed using the following methods: internal
validation through the training set, external validation us-
ing the validation set, and data randomization through the
Y-scrambling test. This was accomplished by utilizing var-
ious statistical parameters to assess the quality of the mod-
els. These parameters include the correlation coefficient
(r2), cross-validated correlation coeflicient (q2), mean ab-
solute error (MAE), standard error of estimation (s), root-
mean-square error (RMSE), the Fischer ratio (F), Rm2,
and MAE-based metrics.>*~** Recently, a new criterion
called the Index of Ideality of Correlation (IIC) has been
introduced to evaluate the predictive potential of QSAR
models. The IIC takes into account both the correlation
coefficient and the distribution of data points relative to
the diagonal line in the coordinate space of observed ver-
sus calculated values of the studied endpoint. The IIC is
calculated using Equations 2-5 as the final estimator for
the QSAR model's performance.*4-46

A= observed; — calculated,, (2)

With data available for all Ay for the test set, in the
test set, it is possible to calculate the sum of negative and
positive values of A, akin to the calculation of the mean
absolute error (MAE):

— 1 N
MAEtest = TNZkzllAkl Ak< 0, (3)
"N is the number of A, < 0

+ 1 «'N
MAE est = 535 Zpoq| Bkl D= 0,
*N is the number of A= 0

(4)

min( “MAEtest. * MAEtest) (5)
max( “MAEpgst, "TMAE¢est)

HCrost = Trest

Molegro Virtual Docker (MVD) software was used
to perform molecular docking studies on geometrically

Antovicet al.: Development of QSAR Model Based on Monte Carlo ...



Acta Chim. Slov. 2023, 70, 634-641

optimized ligands using MMFf94 force field. The target of
these docking studies was the CryoEM structure of human
full-length alphalbeta3gamma2L GABA(A)R in complex
with diazepam (Valium) (PDB: 6HUP). MVD uses a rigid
receptor structure and a flexible ligand structure for dock-
ing studies. It accounts for both hydrophilic and hydro-
phobic interactions, with a particular focus on van der
Waals and steric interactions. This includes the identifica-
tion of hydrogen bonds between the amino acids in the
studied ligands and the active site. These interactions can
be quantified using scoring functions, which are calculated
numerical values that correlate with relevant binding ener-
gies.” As a general rule, for most enzymes, the stronger
the interaction between the receptor and the ligand, the
higher the inhibition. Therefore, the numerical values ob-
tained for scoring functions can be used to assess the po-
tential inhibitory effect of the studied ligands.** To esti-
mate inhibitory potential, the following scoring functions
were calculated and used: Pose energy, MolDock, and Re-
rank Score. A published methodology was used to validate
the entire molecular docking protocol.***° Discovery Stu-
dio Client v20.1.0.19 was used to display two-dimensional
representations of the interactions between the studied
molecules and the amino acids in the dopamine transport-
er active site.

3. Results and Discussion

A pivotal aspect to consider is the applicability do-
main (AD), which is determined based on the criteria
mentioned.’®>! To establish the AD, we applied the meth-

9.5 2.5

odology outlined in published literature and found that all
the molecules encompassed by this study fell within the
defined AD range, with no outliers detected.?* Table S2
displays the values of statistical metrics used by the au-
thors to assess the quality of the developed QSAR models
for the studied activity. The results suggest that the method
employed was effective in creating a QSAR model with
strong reproducibility, as confirmed by the concordance
correlation coefficient. The predictability of the established
QSAR model was subsequently assessed using the values
provided in Table S2, confirming the model's validity. Ad-
ditionally, the model's validity was affirmed through the
utilization of MAE-based metrics. The ultimate assess-
ment of the developed QSAR models was carried out for
both the test set and the training set, utilizing the Ideality
of Correlation Index. The resulting values indicate that the
developed QSAR models exhibit a strong predictive capa-
bility. Figure 1 displays the graphical representation of the
best-developed QSAR model, which achieved the highest
r? value across all three splits and was determined through
the best Monte Carlo optimization run. Furthermore, a
Y-randomization approach was implemented, involving
the randomization of Y values in 1000 trials and across ten
distinct runs, to assess the robustness of the developed
QSAR models. Additionally, a Y-randomization procedure
was employed, involving the randomization of Y values in
1000 trials and across ten separate runs to evaluate the ro-
bustness of the developed QSAR models. The values pro-
vided in Table S3 demonstrate that there was no chance
correlation present in the developed models. In terms of
the statistical results, the most favorable QSAR model was
derived from the first split.
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Figure 1. Graphical presentation of the best Monte Carlo optimization runs (the highest value for r?) for the developed QSAR models.
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Mathematical expressions for the best QSAR mod-
els, as determined by the test set r? values across all splits,
are provided in Equations 6-8.

Split 1: log(1/c) = 2.2950(+0.024) +

0.0484(+0.0002)xDCW(1,12) ©)
Split 2: log(1/c) = 2.1642(+0.030) + @)
0.0504(+0.0002)xDCW(1,20)
Split 3: log(1/c) = —1.2010(+0.048) + ®)

0.0700(+£0.0004)xDCW(1,20)

Equations 6-8 highlight that the optimal values for T
and Neyoc, for Split 1 are 1 and 12, respectively. Similarly,
for Split 2, the preferred values for T and N, are 1 and
20, respectively. Lastly, for Split 3, the recommended val-
ues for T and N0, are also 1 and 20, respectively.

The primary objective of this study is to create de-
pendable QSAR models capable of predicting the correla-
tion between GABA, receptor binding and the structure
of characterized benzodiazepines, represented as the loga-
rithm of the reciprocal of concentration (log 1/c). The
quality of predictability is assessed through the application
of a range of statistical parameters. The calculations for the
conformation-independent models, constructed based on
the optimal descriptors derived from SMILES notation in-
variants and a local graph, were executed using the Monte
Carlo optimization method. The utilization of various sta-
tistical techniques enabled the evaluation of the resilience
and predictive capability of the created QSAR models. The
strong applicability of these models is evident from the nu-
merical values employed to validate them. The molecular
fragments employed in the QSAR modeling, categorized
as SMILES notation fragments with either a positive or
negative effect, were successfully identified using the Mon-
te Carlo optimization method. These findings are detailed
in Table S4 in the Supplementary material. An illustration

Figure 2. Contribution of Molecular Fragments to Benzodiazepines
Binding Activity (Green - Increase, Red — Decrease).

of the calculation for both the summarized correlation
weight (DCW) and the studied activity (pICs,) of a mole-
cule is provided in Table S5. For ease of interpretation, the
molecular graph-based descriptors were excluded. Addi-
tionally, a graphical representation of the chosen molecu-
lar fragments is depicted in Figure 2.

Based on the results obtained from the QSAR mode-
ling studies, the molecular fragments that exert an influ-
ence on the studied activity are: “O.........” and “O...-......7
- both a regular oxygen atom and an oxygen atom carry-
ing a negative charge positively influence the studied activ-
ity. Moreover, fragments associated with a negative charge
also contribute significantly to this impact, “-........... , also
has positive impact on studied activity; “=........ )
“O...=......7 - the presence of a double bond, as well as a
double bond on an oxygen atom, both exert a positive im-
pact on the studied activity, but fragment “N...=......” asso-
ciated to double bond on nitrogen atom has negative im-
pact on the studied activity; While a regular nitrogen atom

»

associated with the “N........... fragment has negative im-
pact but nitrogen with positive charge, “N...+......” frag-
ment, a nitrogen atom with a positive charge exerts a pos-
itive influence on the studied activity - “+.......7;
Molecular branching in the form of a simple molecular
feature associated with the molecular fragment "(............ !
and molecular branching on a nitrogen atom, "N...(.......,
both have a negative impact. However, molecular branch-
ing on a carbon atom, "C...(.......", has a positive impact on
the studied activity; Furthermore, additional molecular
branching on a carbon atom, defined as "(...C...(..." and
"C...(...(...," has a positive impact. Likewise, a regular car-
bon atom or a methyl group, defined as "C........... ", and two
carbon atoms or an ethyl group, defined as "C...C.......", also
have a positive impact on the studied activity; conversely, a
single aromatic carbon atom, defined by the molecular
fragment "c........... ", negatively affects the activity. Howev-
er, the presence of two or three connected aromatic carbon
atoms, defined by the molecular fragments "c...c......." and
“c...c...c...”, positively influences the studied activity.
Obtained molecular fragment were further used for
the Computer-Aided Design (CAD) of higher/lower activ-
ity compounds and summarized results are presented in
Figure 3, where conformational-independent results in the
CAD process generated the design of six novel potential
inhibitors (structures presented in Figure 3). CAD process
started with addition of methy group in ortho and para
position which yield molecules A1l and A2, both having
additional molecular fragment “C...........7, SMILES nota-
tion descriptor, in comparison to molecule A. Additional-
ly, molecules Al and A2 have molecular branching on
benzene ring with carbon atom involved, in comparison to
molecule A, defined with molecular fragments - “c...(......J,
"C...(es e (] e Cunl” and “c..Cl(..7 These frag-
ments have positive impact on studied activity so calculat-
ed values for pICs, for molecules Al and A2 were 7.4308
and 7.5591, respectively, both higher in comparison to

"
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pICs, for molecules A (7.2771). Molecules A3, A4, A5 and
A6 have added hydroxyl group or chlorine atom in ortho
and para position respectively. All molecules have added
appropriate molecular fragments “O...........J, “Cl............ "
both with positive impact on studied activity. Like mole-
cules Al and A2, molecules A3, A4, A5 and A6 have mo-
lecular branching on benzene ring defined with “c...(....... >
Addition of above stated fragments yield to the increase of
calculated pICs, for molecules A3, A4, A5 and A6 in com-

parison to molecule A.

H o} R R
NK A1 A2
—N

R R

R A3 A4
R
A5 HO
R
HO A6
Cl
Cl

Figure 3. Chemical structures of designed molecules.

Computational studies were performed using molec-
ular docking to evaluate the binding affinities of all de-
signed molecules and the template molecule A to the GAB-
A,. This was done to assess the predictive power of the
developed QSAR models and to further validate them. Ta-
ble 1 summarizes the calculated scoring functions for all
molecules. Various scoring functions can be used to repre-
sent different ligand-amino acid interactions. Therefore,
when assessing inhibitory potency, all scoring functions
must be considered. The results from the MolDock and Re-
Rank scoring functions show that all designed molecules
have the potential to be more active than the template mol-
ecule A, with molecule A6 having the highest predicted ac-
tivity. The energy scoring function results show that all de-
signed molecules have higher interaction energies with the
amino acids than molecule A, with molecule A6 also hav-

ing the highest energy. Overall, the results from the molec-
ular docking studies, as represented by the scoring function
values, correlate well with the QSAR modeling results. The
Supplementary Information figures show all the interac-
tions between the amino acids of the GABA , active site and
the selected molecules. They also depict hydrogen bonds
and hydrophilic and hydrophobic interactions within the
binding pocket in two dimensions. Figure 3 shows the
best-predicted poses of all the designed molecules within
the active site of the GABA 4.

Figure 4. The best calculated poses for all the designed molecules
within the active site of GABA

4. Conclusion

The effectiveness of the QSAR methodology, which
relies on the Monte Carlo optimization in conjunction
with molecular graph and SMILES notation descriptors,
has been showcased in this study. It has proven to be a val-
uable approach for establishing the relationship between
GABA , receptor binding and the structural characteristics
of characterized benzodiazepines. To construct the con-
formation-independent QSAR models presented here,
easily interpretable descriptors with a mechanistic inter-
pretation were employed successfully. Additionally, this
methodology has efficiently identified molecular frag-
ments, characterized as SMILES notation fragments in
QSAR modeling, that exhibit both positive and negative
effects on the studied activity. Subsequently, the developed

Table 1. The list of all the designed molecules with their SMILES notation, calculated activities and score values (kcal/mol) for all computer-aided

designed compounds

Molecule  SMILES notation pIC50 (calc.) Energy MolDock Score Rerank Score
A0 CCclcec2e(c1)C(=NCC(=0)N2)clcececl 7.2771 -96.9452 -93.7531 -69.8862
Al CCclcec2e(c1)C(=NCC(=0)N2)clcece(ecl)C 7.4308 -97.3104 -95.8847 -71.252
A2 CCclcec2e(c1)C(=NCC(=0)N2)clceee(cl)C 7.5591 -97.6046 -97.0659 -72.638
A3 CCclcec2e(c1)C(=NCC(=0)N2)clcec(ccl)O 7.5996 -97.3448 -95.7188 -71.8375
A4 CCclcec2e(c1)C(=NCC(=0)N2)clccec(cl)O 7.7038 -98.5056 -99.387 -62.6546
A5 CCclcec2e(c1)C(=NCC(=0O)N2)clcec(ecl)Cl 8.0723 -97.1929 -95.606 -71.5423
A6 CCclcec2e(c1)C(=NCC(=0)N2)clccee(cl)Cl 8.3195 -100.576 -96.6462 -75.8107
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QSAR models were used to design new compounds with
higher pIC50 values. Molecular docking studies were then
performed to validate the QSAR models and assess the po-
tential activity of the designed molecules. A good correla-
tion was observed between the calculated pIC50 values
from the QSAR models and the calculated binding ener-
gies from the molecular docking studies. Notably, this ap-
proach facilitates a swift overview of the dataset without
the need for complex calculations of molecular conforma-
tions. Consequently, it holds promise for future applica-
tions in rapidly and accurately assessing the relationship
between GABA, receptor binding and the structure of
novel benzodiazepines.
We have no conflict of interest to disclose.
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