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Abstract
The rising prevalence and appeal of designer benzodiazepines (DBZDs) pose a significant public health concern. To 
evaluate this threat, the biological activity/potency of DBZDs was examined through in silico studies. To gain a deeper 
understanding of their pharmacology, we employed the Monte Carlo optimization conformation-independent method 
as a tool for developing QSAR models. These models were built using optimal molecular descriptors derived from both 
SMILES notation and molecular graph representations. The resulting QSAR model demonstrated robustness and a high 
degree of predictability, proving to be very reliable. The newly discovered molecular fragments used in the comput-
er-aided design of the new compounds were believed to have caused the increase and decrease of the studied activity. 
Molecular docking studies were used to make the final assessment of the designed inhibitors and excellent correlation 
with the results of QSAR modeling was observed. This discovery paves the way for the swift prediction of binding activity 
for emerging benzodiazepines, offering a faster and more cost-effective alternative to traditional in vitro/in vivo analyses. 
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1. Introduction
Everyday prescriptions involve benzodiazepines, as 

well as their derivatives, in the form of anxiolytic, anti-in-
somnia and anti-convulsant drugs for the purpose of tack-
ling a multitude of medical conditions by acting on the 
gamma-aminobutyric acid type A (GABAA) receptor.1 
Gamma-aminobutyric acid (GABA) is the endogenous 
neurotransmitter for the GABAA receptor and its binding 
reduces cell excitability.2 Much lower cellular excitability is 
effected by benzodiazepines that potentiates GABAA re-
ceptor’s response to GABA. In physiological terms, this 
leads to relaxation and sedation.1 In such instances, the 
medical benefit of benzodiazepines is visible, since their 
anxiolytic effects lessen agitation and stress in patients. 
Nevertheless, owing to the psychoactive effects of the 
mentioned, there is a long abuse history of benzodiaze-

pines, and they are frequently illegally secured.1–5 Recent-
ly, the black market has had a steady supply of benzodiaz-
epines. They are either licensed as prescription drugs in 
countries which are not their original home country, or are 
newly-synthesized and they are called ‘new psychoactive 
substances’ (NPS).6–9 Most of the benzodiazepines that 
have appeared in this manner have not been subjected to 
regular pharmaceutical trials. For this reason, their effects 
can vary greatly and their activity may prove to be ex-
tremely hazardous.10 Even though the use of benzodiaze-
pines is quite safe if they are taken as prescribed, simulta-
neous use of benzodiazepines and opioids (whether abused 
or prescribed) can cause respiratory depression and even 
lead to death.11,12 Numerous side effects may occur if ben-
zodiazepines are not carefully monitored and if they are 
not prescribed. Such side-effects include dependency and 
tolerance in the event that the medication is taken long-
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term. Furthermore, sudden withdrawal can lead to medi-
cal problems, such as insomnia and anxiety.13,14 A certain 
number of overdose cases, driving under the influence of 
drugs (DUID) and hospital admissions have already been 
reported with regard to the use of NPS benzodiaze-
pines.15–17 One of the most prominent issues is that illegal 
benzodiazepines are not controlled at all and represent a 
safety hazard. In addition, in the event that the trend of 
their abuse gets increasingly big, the situation might be 
even more worrying.

Benzodiazepines represent a diverse group of psy-
choactive compounds whose central structural compo-
nent consists of a diazepine ring and a benzene ring. There 
is a multitude of derivatives, including imidazo-benzodi-
azepines, thienotriazolobenzodiazepines and triazoloben-
zodiazepines. Correlating molecular structure to biologi-
cal activity is attempted through the use of the quantitative 
structure-activity relationship (QSAR), frequently with 
the use of a various molecular descriptors, such as elec-
tronic, topological, physiochemical and steric properties.18 
Commonly, a set of compounds with a known biological 
activity is used for the purpose of attaining a ‘training’ da-
taset and creating a model. Afterwards, the model may be 
utilized for predicting the unknown biological activity 
possessed by compounds having a similar structure or for 
exploring the key structural features for the relevant bio-
logical activity in question. There have been numerous 
reasons for the use of QSAR, such as the pharmacological 
interpretation of drug-related deaths and developing com-
pounds in the pharmaceutical industry.19–21 Over the re-
cent years, an approach in which the studied activity is 
treated as a random event has showed promise in QSAR 
modeling: the Monte Carlo optimization method. The 
mentioned method relies on the approach which is of con-
formation-independent nature, where the optimal de-
scriptors are based on topological molecular features and 
the molecules in the Simplified Molecular Input Line En-
try System (SMILES) notation.22–24 The simplicity and ef-
ficiency of the method described are the primary advan-
tages over more commonly used methods. What is more, 
molecular fragments (calculated as SMILES notation de-
scriptors) with an impact on studied activity and which 
can be associated with the studied compounds’ chemical 
structures can also be determined with the use of this 
method. When it comes to the applications with regard to 
new psychoactive substances, the application of QSAR’s 
predictive power has mainly been aimed at cannabinoid 
binding to CB1 and CB2 receptors.25–27 However, its use 
has also been to examine the biological activity of hallu-
cinogenic phenylalkylamines, as well as the binding of 
tryptamines, phenylalkylamines and LSD to the 5-HT2A 
receptor and the selectivity of methcathinone for norepi-
nephrine (NAT), dopamine (DAT) and serotonin trans-
porters (SERT).28–30 At present, a great many novel benzo-
diazepines have not been analyzed, and their 
physicochemical and biological properties have not been 

determined, since this would entail making a considerable 
investment, both in terms of money and time. This is pre-
cisely why a quick and economical method is desirable for 
predicting their properties.

Predicting the absorption rate, clearance, bioavaila-
bility, half-life and distribution volume for a group of ben-
zodiazepines has previously been the application of QSAR 
to benzodiazepines. This study included phenazepam, a 
benzodiazepine which appeared as an NPS in 2007.31,32 
Over the years, after the publication of this study, other 
benzodiazepines (such as etizolam) appeared solely as new 
psychoactive substances. Also, QSAR methodology has 
been applied for the purpose of modeling the post-mor-
tem redistribution of benzodiazepines, in which case a 
good model was obtained (R2 = 0.98), where energy, ioni-
zation and molecular size were discovered to have a signifi-
cant impact.33 In an attempt to predict how toxic these 
compounds are, the toxicity of benzodiazepines to their 
structure has been correlated with the use of quantitative 
structure-toxicity relationships (QSTR).34 In recent years, 
a study concluded that identifying the structural frag-
ments responsible for toxicity (the presence of hydrazone 
substitutions and amine, as well as saturated heterocyclic 
ring systems resulting in greater toxicity) was possible 
with the use of QSTR, and that the information could po-
tentially be used in order to create new, less toxic benzodi-
azepines for medical purposes. Correlating the benzodiaz-
epine structure to GABAA receptor binding and tearing 
apart the complex relationship between various substitu-
ents, as well as their effect on activity have been achieved 
with the use of different QSAR models, though no one has 
specifically attempted to predict the binding values for the 
benzodiazepines which represent new psychoactive sub-
stances.35,36 The main aim of this study is the development 
of QSAR models for predicting GABAA receptor binding 
of newly emerging benzodiazepines.

2. Materials and Methods
The studied activity is expressed as the logarithm of 

the reciprocal of concentration (log 1/c), with “c” repre-
senting the molar inhibitory concentration (IC50) required 
to displace 50% of [3H]-diazepam from synaptosomal 
preparations in the cerebral cortex of rats.37,38 The primary 
objective of this study is to construct a QSAR model capa-
ble of predicting the potential biological activity of new-
ly-appearing benzodiazepines. The ultimate aim is to en-
hance our comprehension of these substances and 
consequently reduce their potential harm more rapidly 
than through traditional in vitro/in vivo testing methods.

To establish relevant QSAR models, the initial step 
involved acquiring molecules from the literature sourc-
es.37,38 These molecules were subsequently rendered as 
graphical representations using ACD/ChemSketch soft-
ware v.11.0, and were then transformed into the SMILES 
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notation using the same software. The Supporting Infor-
mation section provides the chemical structures of the 
compounds utilized in QSAR modeling, along with their 
corresponding SMILES notation. The dependent variable 
used for QSAR model was the relationship between GAB-
AA receptor binding and the structure of characterized 
benzodiazepines, expressed as the logarithm of the recip-
rocal of concentration (log 1/c). The numerical values pre-
sented in Table S1 of the Supplementary material corre-
spond to these data. After completing the construction of 
the appropriate database, it was divided into two sets 
through three different main molecule random splits. The 
first set was the training set, comprising 63 compounds 
(75%), while the second set was the test set, containing 21 
compounds (25%). Subsequently, the distribution activity 
normality was assessed using the method outlined in pub-
lished literature.23,24 The CORAL (CORrelation and Logic, 
http://www.insilico.eu/coral) software was employed to 
create conformation-independent QSAR models using the 
Monte Carlo method and its algorithm, which treats the 
relevant activity as a random event. Two types of molecu-
lar descriptors, based on the SMILES notation and the mo-
lecular graph, were considered. Invariants were established 
as local graph invariants using the molecular graphs, spe-
cifically path numbers of length 2 and 3 (p2, p3), Morgan 
extended connectivity index of increasing order (EC0), the 
Code of Nearest Neighbors (NNCk) and the valence shells 
within the range of 2 and 3 (s2, s3). In recent years, the 
Simplified Molecular Input-Line Entry System (SMILES) 
notation, particularly in chemoinformatics, since the 
SMILES notation has emerged as the most convenient rep-
resentation, especially in the field of chemoinformatics. In 
the realm of medicinal chemistry this is particularly ad-
vantageous, as establishing correlations between molecu-
lar fragments and descriptors based on the molecular 
graph can be quite challenging. In the realm of QSAR 
modeling, one can establish molecular optimal descriptors 
(DCW) by utilizing the SMILES notation, and these DCW 
descriptors can be computed as a result of applying Equa-
tion 1 to the SMILES notation. 

DCW(T,Nepoch)SMILES = ΣCW(ATOMPAIR) +  
ΣCW(NOSP) + ΣCW(BOND) + ΣCW(HALO) + � (1)
ΣCW(HARD) + ΣCW(Sk) + ΣCW(SSk) + ΣCW(SSSk) 

This research employed SMILES notation-based de-
scriptors, encompassing global, local, and HARD-index 
descriptors. An essential aspect of the developed QSAR 
model is the calculation of the correlation weight (CW) for 
each optimal descriptor used, which is accomplished 
through the application of the Monte Carlo method.23,24 
This process can be accomplished by generating suitable 
random numbers and observing how the distribution of 
these numbers adheres to specific properties or criteria. In 
this procedure, CW values are assigned randomly to all the 
optimal descriptors, including both SMILES nota-

tion-based descriptors and molecular graph-based ones, 
during each independent Monte Carlo run. Subsequently, 
the Monte Carlo optimization process is employed to com-
pute the numerical data for correlation weights. These 
weights are instrumental in achieving the highest possible 
correlation coefficient between the optimal descriptors 
used and the target activity under study. The Monte Carlo 
method employs two parameters to attain this objective: 
the number of epochs (Nepoch) and the threshold (T). For 
the construction of QSAR models, a range of values was 
used, specifically 0 to 10 for T and 0 to 70 for Nepoch. The 
determination of the most effective combination of T and 
Nepoch, based on predictive performance, was conducted 
following the methodology outlined in published litera-
ture.23,24

The primary objective in any QSAR modeling pro-
cess is to create a robust model capable of accurately, con-
sistently, and objectively predicting the properties of new 
molecules. The effectiveness of the established QSAR 
models was assessed using the following methods: internal 
validation through the training set, external validation us-
ing the validation set, and data randomization through the 
Y-scrambling test. This was accomplished by utilizing var-
ious statistical parameters to assess the quality of the mod-
els. These parameters include the correlation coefficient 
(r2), cross-validated correlation coefficient (q2), mean ab-
solute error (MAE), standard error of estimation (s), root-
mean-square error (RMSE), the Fischer ratio (F), Rm2, 
and MAE-based metrics.39–43 Recently, a new criterion 
called the Index of Ideality of Correlation (IIC) has been 
introduced to evaluate the predictive potential of QSAR 
models. The IIC takes into account both the correlation 
coefficient and the distribution of data points relative to 
the diagonal line in the coordinate space of observed ver-
sus calculated values of the studied endpoint. The IIC is 
calculated using Equations 2–5 as the final estimator for 
the QSAR model's performance.44–46

� (2)

With data available for all Δk for the test set, in the 
test set, it is possible to calculate the sum of negative and 
positive values of Δk akin to the calculation of the mean 
absolute error (MAE):

� (3)

� (4)

� (5)

Molegro Virtual Docker (MVD) software was used 
to perform molecular docking studies on geometrically 
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optimized ligands using MMFf94 force field. The target of 
these docking studies was the CryoEM structure of human 
full-length alpha1beta3gamma2L GABA(A)R in complex 
with diazepam (Valium) (PDB: 6HUP). MVD uses a rigid 
receptor structure and a flexible ligand structure for dock-
ing studies. It accounts for both hydrophilic and hydro-
phobic interactions, with a particular focus on van der 
Waals and steric interactions. This includes the identifica-
tion of hydrogen bonds between the amino acids in the 
studied ligands and the active site. These interactions can 
be quantified using scoring functions, which are calculated 
numerical values that correlate with relevant binding ener-
gies.47 As a general rule, for most enzymes, the stronger 
the interaction between the receptor and the ligand, the 
higher the inhibition. Therefore, the numerical values ob-
tained for scoring functions can be used to assess the po-
tential inhibitory effect of the studied ligands.24 To esti-
mate inhibitory potential, the following scoring functions 
were calculated and used: Pose energy, MolDock, and Re-
rank Score. A published methodology was used to validate 
the entire molecular docking protocol.48,49 Discovery Stu-
dio Client v20.1.0.19 was used to display two-dimensional 
representations of the interactions between the studied 
molecules and the amino acids in the dopamine transport-
er active site.

3. Results and Discussion
A pivotal aspect to consider is the applicability do-

main (AD), which is determined based on the criteria 
mentioned.50,51 To establish the AD, we applied the meth-

odology outlined in published literature and found that all 
the molecules encompassed by this study fell within the 
defined AD range, with no outliers detected.23 Table S2 
displays the values of statistical metrics used by the au-
thors to assess the quality of the developed QSAR models 
for the studied activity. The results suggest that the method 
employed was effective in creating a QSAR model with 
strong reproducibility, as confirmed by the concordance 
correlation coefficient. The predictability of the established 
QSAR model was subsequently assessed using the values 
provided in Table S2, confirming the model's validity. Ad-
ditionally, the model's validity was affirmed through the 
utilization of MAE-based metrics. The ultimate assess-
ment of the developed QSAR models was carried out for 
both the test set and the training set, utilizing the Ideality 
of Correlation Index. The resulting values indicate that the 
developed QSAR models exhibit a strong predictive capa-
bility. Figure 1 displays the graphical representation of the 
best-developed QSAR model, which achieved the highest 
r2 value across all three splits and was determined through 
the best Monte Carlo optimization run. Furthermore, a 
Y-randomization approach was implemented, involving 
the randomization of Y values in 1000 trials and across ten 
distinct runs, to assess the robustness of the developed 
QSAR models. Additionally, a Y-randomization procedure 
was employed, involving the randomization of Y values in 
1000 trials and across ten separate runs to evaluate the ro-
bustness of the developed QSAR models. The values pro-
vided in Table S3 demonstrate that there was no chance 
correlation present in the developed models. In terms of 
the statistical results, the most favorable QSAR model was 
derived from the first split.

Figure 1. Graphical presentation of the best Monte Carlo optimization runs (the highest value for r2) for the developed QSAR models.
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Mathematical expressions for the best QSAR mod-
els, as determined by the test set r2 values across all splits, 
are provided in Equations 6–8. 

�Split 1: �log(1/c) = 2.2950(±0.024) + 
0.0484(±0.0002)×DCW(1,12) � (6)

�Split 2: �log(1/c) = 2.1642(±0.030) + 
0.0504(±0.0002)×DCW(1,20)� (7)

Split 3: l�og(1/c) = –1.2010(±0.048) + 
0.0700(±0.0004)×DCW(1,20)�  (8)

Equations 6–8 highlight that the optimal values for T 
and Nepoch for Split 1 are 1 and 12, respectively. Similarly, 
for Split 2, the preferred values for T and Nepoch are 1 and 
20, respectively. Lastly, for Split 3, the recommended val-
ues for T and Nepoch are also 1 and 20, respectively.

The primary objective of this study is to create de-
pendable QSAR models capable of predicting the correla-
tion between GABAA receptor binding and the structure 
of characterized benzodiazepines, represented as the loga-
rithm of the reciprocal of concentration (log 1/c). The 
quality of predictability is assessed through the application 
of a range of statistical parameters. The calculations for the 
conformation-independent models, constructed based on 
the optimal descriptors derived from SMILES notation in-
variants and a local graph, were executed using the Monte 
Carlo optimization method. The utilization of various sta-
tistical techniques enabled the evaluation of the resilience 
and predictive capability of the created QSAR models. The 
strong applicability of these models is evident from the nu-
merical values employed to validate them. The molecular 
fragments employed in the QSAR modeling, categorized 
as SMILES notation fragments with either a positive or 
negative effect, were successfully identified using the Mon-
te Carlo optimization method. These findings are detailed 
in Table S4 in the Supplementary material. An illustration 

of the calculation for both the summarized correlation 
weight (DCW) and the studied activity (pIC50) of a mole-
cule is provided in Table S5. For ease of interpretation, the 
molecular graph-based descriptors were excluded. Addi-
tionally, a graphical representation of the chosen molecu-
lar fragments is depicted in Figure 2. 

Based on the results obtained from the QSAR mode-
ling studies, the molecular fragments that exert an influ-
ence on the studied activity are: “O...........” and “O...-.......” 
– both a regular oxygen atom and an oxygen atom carry-
ing a negative charge positively influence the studied activ-
ity. Moreover, fragments associated with a negative charge 
also contribute significantly to this impact, “-...........”, also 
has positive impact on studied activity; “=...........”, 
“O...=.......” – the presence of a double bond, as well as a 
double bond on an oxygen atom, both exert a positive im-
pact on the studied activity, but fragment “N...=.......” asso-
ciated to double bond on nitrogen atom has negative im-
pact on the studied activity; While a regular nitrogen atom 
associated with the “N...........” fragment has negative im-
pact but nitrogen with positive charge, “N...+.......” frag-
ment, a nitrogen atom with a positive charge exerts a pos-
itive influence on the studied activity – “+...........”; 
Molecular branching in the form of a simple molecular 
feature associated with the molecular fragment "(............" 
and molecular branching on a nitrogen atom, "N...(.......," 
both have a negative impact. However, molecular branch-
ing on a carbon atom, "C...(.......", has a positive impact on 
the studied activity; Furthermore, additional molecular 
branching on a carbon atom, defined as "(...C...(..." and 
"C...(...(...," has a positive impact. Likewise, a regular car-
bon atom or a methyl group, defined as "C...........", and two 
carbon atoms or an ethyl group, defined as "C...C.......", also 
have a positive impact on the studied activity; conversely, a 
single aromatic carbon atom, defined by the molecular 
fragment "c...........", negatively affects the activity. Howev-
er, the presence of two or three connected aromatic carbon 
atoms, defined by the molecular fragments "c...c......." and 
"c...c...c...", positively influences the studied activity. 

Obtained molecular fragment were further used for 
the Computer-Aided Design (CAD) of higher/lower activ-
ity compounds and summarized results are presented in 
Figure 3, where conformational-independent results in the 
CAD process generated the design of six novel potential 
inhibitors (structures presented in Figure 3). CAD process 
started with addition of methy group in ortho and para 
position which yield molecules A1 and A2, both having 
additional molecular fragment “C............”, SMILES nota-
tion descriptor, in comparison to molecule A. Additional-
ly, molecules A1 and A2 have molecular branching on 
benzene ring with carbon atom involved, in comparison to 
molecule A, defined with molecular fragments – “c...(.......”, 
"C...(.......", “c...c...(...”, “c...C.......” and “c...C...(...”. These frag-
ments have positive impact on studied activity so calculat-
ed values for pIC50 for molecules A1 and A2 were 7.4308 
and 7.5591, respectively, both higher in comparison to Figure 2. Contribution of Molecular Fragments to Benzodiazepines 

Binding Activity (Green – Increase, Red – Decrease).
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pIC50 for molecules A (7.2771). Molecules A3, A4, A5 and 
A6 have added hydroxyl group or chlorine atom in ortho 
and para position respectively. All molecules have added 
appropriate molecular fragments “O............”, “Cl............”, 
both with positive impact on studied activity. Like mole-
cules A1 and A2, molecules A3, A4, A5 and A6 have mo-
lecular branching on benzene ring defined with “c...(.......”. 
Addition of above stated fragments yield to the increase of 
calculated pIC50 for molecules A3, A4, A5 and A6 in com-
parison to molecule A.

Figure 3. Chemical structures of designed molecules.

Computational studies were performed using molec-
ular docking to evaluate the binding affinities of all de-
signed molecules and the template molecule A to the GAB-
AA. This was done to assess the predictive power of the 
developed QSAR models and to further validate them. Ta-
ble 1 summarizes the calculated scoring functions for all 
molecules. Various scoring functions can be used to repre-
sent different ligand-amino acid interactions. Therefore, 
when assessing inhibitory potency, all scoring functions 
must be considered. The results from the MolDock and Re-
Rank scoring functions show that all designed molecules 
have the potential to be more active than the template mol-
ecule A, with molecule A6 having the highest predicted ac-
tivity. The energy scoring function results show that all de-
signed molecules have higher interaction energies with the 
amino acids than molecule A, with molecule A6 also hav-

ing the highest energy. Overall, the results from the molec-
ular docking studies, as represented by the scoring function 
values, correlate well with the QSAR modeling results. The 
Supplementary Information figures show all the interac-
tions between the amino acids of the GABAA active site and 
the selected molecules. They also depict hydrogen bonds 
and hydrophilic and hydrophobic interactions within the 
binding pocket in two dimensions. Figure 3 shows the 
best-predicted poses of all the designed molecules within 
the active site of the GABAA.

Figure 4. The best calculated poses for all the designed molecules 
within the active site of GABAA.

4. Conclusion
T﻿he effectiveness of the QSAR methodology, which 

relies on the Monte Carlo optimization in conjunction 
with molecular graph and SMILES notation descriptors, 
has been showcased in this study. It has proven to be a val-
uable approach for establishing the relationship between 
GABAA receptor binding and the structural characteristics 
of characterized benzodiazepines. To construct the con-
formation-independent QSAR models presented here, 
easily interpretable descriptors with a mechanistic inter-
pretation were employed successfully. Additionally, this 
methodology has efficiently identified molecular frag-
ments, characterized as SMILES notation fragments in 
QSAR modeling, that exhibit both positive and negative 
effects on the studied activity. Subsequently, the developed 

Table 1. The list of all the designed molecules with their SMILES notation, calculated activities and score values (kcal/mol) for all computer-aided 
designed compounds

Molecule	 SMILES notation	 pIC50 (calc.)	 Energy	 MolDock Score	 Rerank Score

A0	 CCc1ccc2c(c1)C(=NCC(=O)N2)c1ccccc1	 7.2771	 –96.9452	 –93.7531	 –69.8862
A1	 CCc1ccc2c(c1)C(=NCC(=O)N2)c1ccc(cc1)C	 7.4308	 –97.3104	 –95.8847	 –71.252
A2	 CCc1ccc2c(c1)C(=NCC(=O)N2)c1cccc(c1)C	 7.5591	 –97.6046	 –97.0659	 –72.638
A3	 CCc1ccc2c(c1)C(=NCC(=O)N2)c1ccc(cc1)O	 7.5996	 –97.3448	 –95.7188	 –71.8375
A4	 CCc1ccc2c(c1)C(=NCC(=O)N2)c1cccc(c1)O	 7.7038	 –98.5056	 –99.387	 –62.6546
A5	 CCc1ccc2c(c1)C(=NCC(=O)N2)c1ccc(cc1)Cl	 8.0723	 –97.1929	 –95.606	 –71.5423
A6	 CCc1ccc2c(c1)C(=NCC(=O)N2)c1cccc(c1)Cl	 8.3195	 –100.576	 –96.6462	 –75.8107
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QSAR models were used to design new compounds with 
higher pIC50 values. Molecular docking studies were then 
performed to validate the QSAR models and assess the po-
tential activity of the designed molecules. A good correla-
tion was observed between the calculated pIC50 values 
from the QSAR models and the calculated binding ener-
gies from the molecular docking studies. Notably, this ap-
proach facilitates a swift overview of the dataset without 
the need for complex calculations of molecular conforma-
tions. Consequently, it holds promise for future applica-
tions in rapidly and accurately assessing the relationship 
between GABAA receptor binding and the structure of 
novel benzodiazepines.
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Povzetek
Naraščajoča razširjenost in uporaba benzodiazepinov na črnem trgu predstavlja pomembno javnozdravstveno skrb. V 
tem delu uporabljamo in silico tehnike, s katereimi ocenjujemo biološko aktivnost takšnih benzodiazepinov. Da bi po-
globili razumevanje njihove farmakologije, smo uporabili metodo od konformacij neodvisne Monte Carlo optimizacije 
kot orodje za razvoj modelov QSAR. Ti modeli so bili zgrajeni z uporabo optimalnih molekulskih deskriptorjev, prido-
bljenih tako iz notacije SMILES kot tudi iz molekularnih grafov. Izdelani model QSAR je pokazal robustnost in visoko 
stopnjo napovedljivosti, kar kaže na njegovo zanesljivost. Novi molekularni fragmenti, odkriti pri računalniško podpr-
tem načrtovanju novih spojin, povzročijo povečanje in zmanjšanje aktivnosti. Za končno oceno zasnovanih inhibitorjev 
smo uporabili orodja molekularnega sidranja, pri čemer smo opazili odlično ujemanje z rezultati modeliranja QSAR. 
Študija odpira pot hitremu napovedovanju vezavne aktivnosti za nove benzodiazepine ter ponuja hitrejšo in stroškovno 
učinkovito alternativo tradicionalnim analizam in vitro/in vivo.
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