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Abstract
The objective of this research was to create a 3D-QSAR CoMFA model for a set of twenty-five neuraminidase inhibitors 
containing thiazolidine-4-carboxylic acid derivatives and to identify a new potent neuraminidase inhibitor for the treat-
ment of influenza. The statistical parameters of the generated model are excellent: Q2 = 0.708, R2 = 0.997. The external 
validation results were (r2

0 = 0.922, K= 1.016, R2
pred = 0.674, r2

m= 0.778) indicating that the constructed model has good 
predictive power. Based on the contour map of the CoMFA model, we were able to propose six novel compounds with 
higher neuraminidase inhibitory activity than the most active compound. The six proposed molecules were submitted 
to molecular docking to analyse the bindings formed between the newly designed molecules and the neuraminidase. All 
of the proposed molecules were found to be more stable on the active site of neuraminidase than the reference molecule 
(1SJ). SwissADME was used to estimate the pharmacokinetic properties of each proposed molecule, while ProToxII 
and VEGA QSAR were used to investigate any potential toxicity. Finally, a reaction mechanism for synthesizing the six 
proposed compounds was described, which could potentially be explored further in the search for novel neuraminidase 
inhibitors. In conclusion, this study has identified potential candidates for the development of more effective neuramini-
dase inhibitors for the treatment of influenza.

Keywords: thiazolidine-4-carboxylic acid, Neuraminidase, influenza, 3D-QSAR, CoMFA, Molecular Docking, ADMET 
study.

1. Introduction
Influenza is a respiratory disease caused by the Orth-

omyxoviridae virus family. Every year, influenza viruses 
generate seasonal epidemics that mostly affect the adult 
population. 10–30% of sick people are hospitalized, and 
3–15% die.1 Influenza symptoms include a sudden onset of 
high temperature, aching muscles, headache, severe ex-
haustion, a nonproductive cough, a sore throat, and a run-
ny nose.2 The variation of influenza viruses can develop in 
a pandemic, posing a major danger to public health.3 Neu-
raminidase (NA) is a glycoprotein located in the envelope 
of the influenza virus that plays a critical role in the pro-
cess of infecting and spreading amongst human host cells.4 
Neuraminidase is an important target of drug design for 
the treatment of influenza infections because to its in-
volvement in viral propagation and it’s largely preserved 

active site.5 Neuraminidase inhibitors (NAI) represent the 
only extensively approved class of antiviral medications 
used for the treatment and prevention of seasonal influen-
za.6 Oseltamivir is widely utilized, whereas Zanamivir, Per-
amivir, and Laninamivir are used in fewer nations concur-
rently.7 NAIs are the most often given anti-influenza 
medications nowadays, they have been shown to be bene-
ficial in speeding viral clearance, lowering clinical disease 
duration, and decreasing hospital stay and death.8

Computer-Aided Drug Design (CADD) is the pro-
cess of using computer methods and resources to design 
and identify novel potential pharmaceutical drugs.9 A 
QSAR is simply a mathematical equation that is derived 
from a set of molecules with a known activity using com-
putational techniques. A variety of statistical approaches 
and computed molecular descriptors may be employed to 
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identify the exact form of the relationship between struc-
ture and activity, and this relationship is subsequently em-
ployed to predict the activity of new compounds.10,11 
QSAR investigations are based on the notion that changes 
in bioactivity are related with structural and molecular 
variation in a group of molecules.12 The three-dimensional 
quantitative structure-activity relationship is one of the 
most successful and valuable strategies for the develop-
ment and design of potent medications(3D-QSAR).13

The goals of this research are to develop new neurami-
nidase inhibitors for the treatment of influenza. In a 
3D-QSAR study based on a series of biologically active thi-
azolidine-4-carboxylic acid derivatives, we used compara-
tive molecular field analysis (CoMFA) to find a statistically 
significant relationship between the three-dimensional 
structure of the molecules and their biological activity. After 
designing these molecules, we performed a docking study to 
arrange them in the active site of neuraminidase based on 
their stability. To identify the molecules with the best phar-
macological properties, the compounds identified were also 
subjected to in silico absorption, distribution, metabolism, 
elimination, and toxicity (ADMET) property testing. We 
used ProToxII to assess the potential toxicity of all proposed 
molecules. Finally, we provided a reaction mechanism for 
the synthesis of each of these proposed compounds for fu-
ture research into neuraminidase inhibitors.

2. Materials and Methods
2. 1. Experimental Databases

A set of twenty-five thiazolidine-4-carboxylic acid 
derivatives reported by Asadollah, M et al and Yu. L et al 
were chosen for molecular modelling studies.14,15 Thiazo-
lidine-4-carboxylic acid is a cyclic sulfur amino acid with a 
molecular structure similar to proline, hence the name thi-
oproline. The thiazolidine-4-carboxylic acid sulfhydryl 
group is essential in metabolism as an antioxidant protec-
tor and in detoxification processes.16 Inhibitory activity 
was provided as IC50 values, which were then converted to 
pIC50 values [pIC50 = –log (IC50)] and used in 3D-QSAR 
experiments. All experimental data were divided into two 
categories: a training set for model generation and a test 
set for external evaluation of model accuracy, the training 
set contains twenty molecules and the test set contains five 
molecules. The variability of bioactivity rates and biologi-
cal properties was also taken into account when randomly 
partitioning the training and test sets.17 (Table 1).

2. 2. Structure Preparation and Alignment
The SYBYL-X 2.0 software suite (Certara Enhances 

SYBYL-X Drug Design and Discovery Software Suite) was 
used to construct and optimise the structures of the twen-
ty-five compounds with energy minimization.18 The tripos 
standard force field was used, and a condition of 0.01 kcal/

(mol) in Gasteiger-Hückel charge atomic partial was estab-
lished. The tripos standard force field was used, and a con-
dition of 0.01 kcal/(mol) in Gasteiger-Hückel charge atom-
ic partial was established.19,20 Molecular alignment is the 
most sensitive component, and it has a significant impact 
on 3D-QSAR models.21 The structures that have been min-
imised and aligned are used to create the 3D-QSAR model.

2. 3. Generation of 3D-QSAR by CoMFA
Our goal was to develop a predictive 3D-QSAR 

model using comparative molecular field analysis (CoM-
FA). The CoMFA method is a useful 3D-QSAR tool that 
has been used successfully in several medicinal chemistry 
studies. One of the significant advantages of this approach 
is its immediate application in the examination of any 
structure-dependent biological characteristics.22 The 
CoMFA theory states that differences in a target property 
between chemicals are frequently associated with changes 
in the noncovalent fields that surround those structures. 
These fields, which are the electrostatic (Coulombic) and 
steric (Lennard-Jones) fields, are computed at regular in-
tervals within a predetermined area.23 Steric and electro-
static descriptors were generated using a tripos force field 
and an ordered divergence grid of 2 Å with a cutoff energy 
value of 30 kcal/mol.24 All other parameters have been re-
set to their default settings.

2. 4. PLS analysis and Validations
PLS regression is a well-established multivariate 

method that has been widely used in a variety of chemical 
fields.25 A PLS model was built for the training set, and the 
model was validated using the remaining test set. To be 
trustworthy and predictive, 3D-QSAR models should be 
validated by producing correct predictions for external da-
ta sets that were not used in the model's development.10 
PLS can assess complex structure-activity data more real-
istically and efficiently determine how molecular structure 
affects biological activity.26 As a result, we estimate the 
mode's predictive power using external validation. A 
QSAR model is predictive, according to Golbraikh and 
Tropsha, if the following conditions are met.27

�R2
pred > 0.6,    [r2 – r2

0] / r2 < 0.1,    [r2 – r’20] / r2 < 0,   
and    
0.85 <k < 1.15 or 0.85 <k’ < 1.15

Roy and Paul developed the term r2
m to verify the 

external predictability of the chosen model.27 An r2
m value 

greater than 0.5 may be interpreted as indicating good ex-
ternal predictability.

The 3D-QSAR model was also validated using a 
Y-randomization test, which eliminates chance correla-
tions between dependent and independent variables.28 If 
the randomised models' correlation coefficient values R2 
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and Q2 are less than the original non-randomized model's 
R2 and Q2, we can be confident that the QSAR models are 
robust and not the result of random correlation.29

2. 5. Molecular Docking
Molecular docking is a computational tool for deter-

mining the structure of a protein-ligand interaction auto-
matically.30 The true docking process, on the other hand, is 
so adaptable that receptors and ligands must adjust their 
conformation to match each other well.31 This technique 
has been widely used in the drug design research sector in 
recent years, and it also significantly increases efficiency 
and lowers research costs.32 One of the most famous mo-
lecular docking software packages, AutoDock Vina, com-
bines a fast stochastic conformational search method with 
accurate and well-rated force-field-based and empirical 
scoring systems.33,34 The structure of neuraminidase was 
obtained from the RCSB database (PDB Id: 4ks2) Influenza 
neuraminidase in complex with an antiviral compound 
(1SJ)35 as shown in the figure 1. In 1999, the Food and Drug 
Administration (FDA) approved Oseltamivir (italique) as a 
neuraminidase inhibitor.36 As a second reference ligand, we 
docked Oseltamivir into the neuraminidase protein pocket. 
The receptors were then processed with UCSF Chimera 
1.16 to remove non-standard residues before being docked 
using AutoDock Vina 1.1.2.37 The AUTOGRID system, 
which calculates ligand binding energy with their receptor, 
was used to define the three-dimensional grid.38 The active 
site is located at coordinates (x = –23.4893 Å, y = 20.7720 
Å, and z = –9.6124 Å), and the grid size is x = 26.4819, y = 
25.6602, and z = 24.2547. The docking results were visual-
ised using the Biovia discovery studio visualizer.39

2. 6. Prediction of ADMET Properties
Following the molecular docking of the designed 

compounds for influenza neuraminidase inhibition, the 

absorption, distribution, metabolism, and elimination are 
estimated using the SwissADME web server.40 Further-
more, the ProToxII-II and VEGA QSAR platforms were 
used to assess potential toxicity.41,42

Table 1. A Tabular analysis of relationship between structures of 
compounds and experimental Activity.

Compound	 R1	 R2	 pIC50

01	 C6H5–	 H	 4.672
02	 (2-OH)C6H5–	 H	 4.695
03	 (2-COOH)C6H5–	 H	 4.742
04	 (4-CN)C6H5–	 H	 4.631
05	 (2-NO2)C6H5–	 H	 4.648
06	 (2-OH, 3-CH3O)C6H5–	 H	 4.91
07	 C4H3O–	 H	 4.366
08	 C6H5–	 ClCH2CO–	 5.123
09	 (2-OH)C6H5–	 ClCH2CO–	 5.234
10	 (2-COOH)C6H5–	 ClCH2CO–	 4.971
11	 (4-CN)C6H5–	 ClCH2CO–	 5.063
12	 (2-NO2)C6H5–	 ClCH2CO–	 5.116
13	 (2-OH, 3-CH3O)C6H5–	 ClCH2CO–	 5.101
14	 C4H3O–	 ClCH2CO–	 4.889
15	 C6H5–	 PhCH2CO–	 5.917
16	 (2-OH)C6H5–	 PhCH2CO–	 6.187
17	 (2-COOH)C6H5–	 PhCH2CO–	 5.717
18	 (4-CN)C6H5–	 PhCH2CO–	 5.607
19	 (2-OH, 3-CH3O)C6H5–	 PhCH2CO–	 5.79
20	 C4H3O–	 PhCH2CO–	 5.539
21	 C6H5–	 NH2CH2CO–	 6.276
22	 (2-OH)C6H5–	 NH2CH2CO–	 6.678
23	 (2-COOH)C6H5–	 NH2CH2CO–	 6.553
24	 (2-OH, 3-CH3O)C6H5–	 NH2CH2CO–	 6.854
25	 C4H3O–	 NH2CH2CO–	 6.009

Fig. 1. Binding interaction illustration of Neuraminidase in complex with 1SJ.
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3. Results and Discussions
3. 1. Molecular Alignment of Dataset

Molecular alignment is one of the most important 
factors influencing the performance of 3D-QSAR ap-
proaches.43 The database was aligned for this phase using 
SYBYL-X 2.0 software, with the most active compound 
(compound 24, pIC50 = 6.780) serving as the structural 
template for the other compounds' alignment. Figure 2 
shows the alignment of all molecules in the database 
(training and test set).

3. 2. 3D‑QSAR Model and Validations

The comparative molecular field method is used to 
establish a quantifiable link between the 3D structure of 
the compounds and their biological activity. Table 2 shows 
the statistical results of the PLS analysis for the CoMFA 
model. This CoMFA model has an extremely high R2 val-
ue of 0.997, the optimal number of components of 5, and 
an F-value of 883.433. Furthermore, the built model had a 
cross validated coefficient of Q2 of 0.708, with a very small 
standard error of estimation (SEE) of 0.050. The significant 
R2 and Q2 values, as well as the low SEE value, suggest that 

the CoMFA model developed is stable and has excellent 
predictive power.

Second, Table 3 shows the results of the CoMFA 
model's external validation. A high R2pred value greater 
than 0.6 indicates that the CoMFA model has good predic-
tive power, and an R2m value of 0.778 indicates that the 
model has good predictive ability. Also, all values of r2

0 
and r’20 are close to r2, [r2–r2

0]/r2 and [r2–r’20]/r2 have val-
ues much less than 0.1.

The Y-randomization test was performed fifty times to 
confirm the robustness of the CoMFA model. Table S1, shows 

the results of the Y-randomization test. The results show that 
the Q2 and R2 values obtained by the fifty random variations 
are lower than the values obtained by the original models. 
These findings show that the built model is reliable and did 
not result from random correlation of the training set.

TThe PLS results and the external validation show 
that the CoMFA model is reliable and statistically signifi-
cant. The actual and predicted pIC50 values, as well as the 
residual values determined by the CoMFA model, are 
shown in Table S2. Figure 3 depicts the excellent correla-
tion between actual and predicted activity, demonstrating 
the 3D-QSAR model's superior predictive ability.

Table 3. Assessing the predictive performance by statistical parameters of external validation for the comparative molecular 
field analysis (CoMFA) model.

R2
pred	 r2	 r2

0	 r’20	 K	 K’	 [r2–r2
0]/r2	 [r2–r’20]/r2	 r2

m

0.674	 0.957	 0.922	 0.955	 1.016	 0.982	 0.036	 0.001	 0.778

Table 2. Statistical parameters of partial Least Squares (PLS) analysis on the comparative molecular field analysis 
(CoMFA) model.

Model	 Q2	 R2	 SEE	 F	 N	                        Fraction	
						      Steric	 Electrostatic

CoMFA	 0.708	 0.997	 0.050	 883.433	 5	 0.412	 0.588

Fig. 2. The alignment of all molecules in the database (left: training set; right: test set).
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3. 3. CoMFA Contour Map
The collected data were used to illustrate the favour-

able and unfavourable regions during which the structural 
changes of the compound result in an increase or decrease 
in biological activity for this critical phase. The steric and 
electrostatic contour maps generated by CoMFA model-
ling for the most active compound are shown in Figure 4. 
The green contours represent areas where bulky groups 
have a positive influence on neuraminidase inhibitory ac-
tivity, whereas the yellow contours represent areas where 
bulky groups have a negative influence on inhibitory activ-
ity. Steric contour maps show the spatial volume of substi-
tuted groups in a variety of locations. Because of the pres-
ence of bulky groups in advantageous locations, it is 
possible that the steric effect influences the inhibitory ac-
tivity of compounds 22, 23, and 24.

Blue and green regions are favorable for inhibitory 
activity, red and yellow green regions are unfavorable for 
inhibitory activity.

The blue contours indicate locations where electron-
egative groups positively influence neuraminidase inhibi-

tory activity, whereas the red contours indicate locations 
where electronegative groups negatively influence inhibi-
tory activity. The contour map shows the presence of two 
large blue contour maps located between the nitrogen and 
sulfur atoms of the thiazolidine ring, as well as medi-
um-sized contours near the aromatic ring. This helps to 
explain the higher activity of compound 24 with a meth-
oxy group near the aromatic ring and the thiazolidine's 
NH2CH2CO- radical. This demonstrates that electronega-
tive groups in these zones enhance the inhibitory activity 
of influenza virus. From these observations, it can be ex-
plained why the inhibitory activity of the best compounds 
to inhibit the vital function of neuraminidase.

3. 4. �Design for New Neuraminidase 
Inhibitors
This study's primary goal is to develop new anti-in-

fluenza thiazolidine inhibitors. The CoMFA model con-
tour map analysis provides useful information on struc-
tural properties for improving neuraminidase inhibitory 

Fig. 3. The plot of the correlation between the experimental and predicted activity using 3D-QSAR model of training and test set.

Fig. 4. CoMFA contour plot of compound binding to target: Visualization of (A) Steric and (B) Electrostatic Fields.
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activity. Figure 5 depicts the collection of all orientations 
obtained from the CoMFA contour map, which proved to 
be a dependable and effective optimization strategy for the 
design of novel thiazolidines with high predicted inhibito-
ry activity. Using a comparative molecular field, we created 
six (Th1-Th6) novel anti-influenza thiazolidine deriva-
tives. Six molecules were optimised and aligned, with the 
most active compound acting as a structural template. Ta-
ble 5 summarises the chemical structures and predicted 
pIC50 values of the novel compounds proposed. All six 
proposed compounds have higher predictive pIC50 values 
than the most active molecule (predictive pIC50 = 6,780 
for the most active compound). These molecules can be 
thoroughly investigated. Finally, as shown in figures 6 and 
7, we proposed a reaction mechanism for synthesising 
these new molecules.

Fig. 5. Structural characteristics derived from CoMFA contour 
Map: Analysis of favorable and unfavorable regions for inhibitory 
activity. Blue and green regions are favorable for inhibitory activity, 
red and yellow green regions are unfavorable for inhibitory activity.

Fig. 6. Proposed reaction: General form and chemical equations.

3. 5. Molecular Docking
We performed molecular docking for the six designat-

ed molecules (Th1-Th6) to gain a better understanding of 
how the molecules obtained by 3D-QSAR inhibit the vital 
function of influenza virus neuraminidase, as well as the 
binding energy and types of interactions. Furthermore, we 

docked Oseltamivir (italique) with neuraminidase to get a 
better estimate of the inhibitory efficacy of the proposed 
compounds (as another reference molecule). The docking 
modelling results for all proposed molecules and the neu-
raminidase inhibitor are presented in Table 7, and their types 
of interactions with the neuraminidase active site are shown 
in Figure 8. The results show that the designed compounds 
have binding affinity values ranging from –6.6 to –7.5 kcal/
mol, while the binding affinity value of the reference com-
pound (1SJ) is –6.6 kcal/mol, and the binding affinity value 
of Oseltamivir into neuraminidase is –6.6 kcal/mol. The in-
teraction of the reference molecule (1SJ) and Oseltamivir 
with the active site of neuraminidase is depicted in Figure 9. 

Table 4. Structures and pIC50 values of novel molecules predicted 
by the CoMFA model.

Compound	 Chemical	 pIC50 predictive
	 structures	 CoMFA

Th1		  7.036

Th2		  7.638

Th3		  7.090

Th4		  7.211

Th5		  7.347

Th6		  7.223



339Acta Chim. Slov. 2023, 70, 333–344

Bourougaa et al.:   Comparative Molecular Field Analysis (CoMFA), Molecular   ...

Th1, Th2, Th4, Th5, and Th6 have lower binding affinities 
than the reference molecule, indicating that this molecule is 
significantly more stable in the active site of neuraminidase. 
All of the molecules, including the reference compound, in-
teracted with the amino acids Glu119, Asp151, Glu276 and 
Glu277 via Salt Bridge and Attractive Charge interactions.

We observed a similarity of interaction for the two 
molecules with the highest binding affinity (Th2 and Th6), 
which interact with the amino acids Glu119, Trp178, 
Asp227, Glu277, and Tyr406. The reference molecule only 
interacts with the active site via a conventional hydrogen 

bond formed by the amino acids Asp151, Glu276 and 
Tyr406. It should be noted that conventional hydrogen 
bond interaction with the amino acids Glu119, Trp178, 
and Asp227 is critical for inhibiting the vital function of 
neuraminidase. The designed molecules Th1, Th2, Th4, 
Th5, and Th6 demonstrate significant binding to the active 
site of neuraminidase, confirming the 3D-QSAR model's 
good predictive power. Finally, our findings regarding the 
interactions between the six proposed molecules and the 
active site of neuraminidase agree with the findings of 
Gracy Fathima Selvaraj et al.44

Fig. 7. Proposed general mechanism for synthesizing the six compounds: Insights into reaction pathways and synthetic strategies.
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Table 5. Binding interactions and affinity values of six neuraminidase inhibitors within the active site.

Ligand	 Binding affinity (Kcal/mol)	 Conventional Hydrogen Bond	 Salt Bridge	 Attractive Charge

Th1	 –7.1	 Asp151	 Glu277	 Asp151, Glu276, Glu277
Th2	 –7.5	 Asp277, Trp178, Glu277, Tyr406	 Glu277	 Asp151, Glu276, Glu277
Th3	 –6.6	 Glu276, Glu277, Tyr347, Tyr406	 Asp151, Glu277	 Glu119, Asp151, Glu277
Th4	 –7.0	 Asp151, Glu277, Tyr406	 –	 –
Th5	 –6.9	 Ala246, Tyr406	 Asp151, Glu119, Glu277	 Asp151, Glu119, Glu277
Th6	 –7.5	 Glu119, Trp178,Tyr406	 Glu277	 Asp151, Glu277
1SJ ref	 –6.6	 Asp151, Glu276, Tyr406	 Glu277	 Glu277
Oseltamivir	 –6.6	 Tyr406	 –	 Asp151, Glu119, Glu277

Fig. 8. Insights into ligand binding modes: Interactions of six designed compounds with neuraminidase active site.
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3.6 ADMET and Bioavailability Prediction
This study was conducted to determine the critical 

pharmacokinetic parameters for the six designated mole-
cules. The results obtained by SwissADME are shown in 
Table S3. All the molecules have LogP values between 
–1.30 and 0.06, these values indicate that all the molecules 
designed have good permeability towards biological mem-
branes. For aqueous solubility, the six molecules have Log 
S values between –1 and 0, which means that all the mole-
cules are easily soluble in aqueous media, according to 
these two parameters all the compounds have a good dis-
tribution. The six designed molecules (Th1–Th6) were es-
timated in silico using the five rules of Lipinski. It was that 
all molecules follows the Lipinski's rule. For the interac-
tions with hepatic cytochrome P450, we did not record any 
interaction with them, which means that both molecules 
have a good metabolism. Another important parameter to 
quantify the pharmacokinetics of these designated mole-
cules is the bioavailability score, the six molecules have the 
same bioavailability score (0.55), this value indicates that 
all the molecules will reach the blood circulation by the 
oral route (That is, both molecules are well absorbed.). For 
elimination, due to the aqueous solubility of six proposed 
compounds, they are readily eliminated renally. Also good 
LogKp (skin permeation) values between –10.94 and 
–8.55. Finally, all the proposed molecules are moderately 
easy to synthesize (the six molecules have synthetic acces-
sibility values lower than 4.75).

For a quick assessment of drug-likeness, a bioavaila-
bility radar is provided. The Bioavailability radar takes into 
account six physicochemical properties. Lipophilicity, size, 
polarity, solubility, flexibility, and saturation are the pa-
rameters involved. For all molecules to be drug-like com-
pounds, the bioavailability radar graph must be contained 
within a pink area. If the graph is in this pink area, the 
molecule has a drug-like compound. The bioavailability 
radar plots of the six compounds are shown in Figure 10. 
Th2 and Th4 are pharmaceutical candidates. Although 
there is a small deviation from area at the point of polar 

feature, Th1, Th3, Th5, and Th6 molecules are on the verge 
of being considered as drug candidates. These findings in-
dicate that all molecules have very good bioavailability 
profiles.

We calculated the potential toxicity of these new 
molecules. Table S4, displays the ProToxII results. We 
found no evidence of toxicity caused by the designed com-
pounds, whether it was Hepatotoxicity, Carcinogenicity, 
Immunotoxicity, Mutagenicity, or Cytotoxicity. With 
LD50 predictive values ranging from 230 to 8000 mg/kg 
and toxicity classes ranging from 2 to 4. We conclude that 
the molecules proposed using 3D QSAR are both safe and 
pharmacologically active.

We estimated Mutagenicity (Ames test) model 
(CAESAR) 2.1.14, Developmental Toxicity (CAESAR) 
2.1.8, Skin Irritation (CONCERT/Kode) 1.0.0, Plasma 
Protein Binding (– LogK, IRFMN) 1.0.0, P-Glycoprotein 
activity model (NIC) 1.0.1, and finally total body elimina-
tion half-life (QSARINS) 1.0.1 using VEGA QSAR. All of 
the obtained results are shown in Table S5. All predictions 
show that the six designed compounds are not mutagenic 
or toxic to development. Aside from that, none of these 
molecules cause skin irritation or infection. All molecules 
had plasma protein binding values ranging from –0.3285 
to –0.0484. Furthermore, none of the six proposed com-
pounds interact with P-Glycoprotein, which is found on 
the surface of biological cells. Furthermore, because their 
total body elimination half-life ranges between 1.533 and 
2.837 hours, renal elimination of these molecules will be 
simple. The predicted toxicity study results show that all 
six proposed compounds are both safe and pharmacologi-
cally active.

4. Conclusion
A 3D-QSAR analysis of 25 thiazolidine-4-carboxylic 

acid derivatives was constructed in this study. This analysis 
was carried out by creating a 3D-QSAR model using the 

Fig. 9. Comparative analysis of ligand binding modes: Interactions of 1SJ (left) and Oseltamivir (right) with neuraminidase
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CoMFA methodology. The derived 3D-QSAR models 
were validated using an external validation technique. We 
proposed six novel compounds with predicted inhibitory 
activity (pIC50) greater than the most active compound 
based on the information provided by the contour maps. 
All of the proposed compounds are more stable in the ac-
tive site of neuraminidase than the reference molecule.
however, Oseltamivir (italique) is more stable in the active 
site of neuraminidase (as second reference molecule). The 
molecular docking analysis confirms the 3D QSAR mod-
el's excellent prediction ability. Furthermore, we investi-
gated the pharmacokinetic profile and potential toxicity of 
the six proposed compounds, and the results showed that 
each molecule follows Lipinski's rule and can be consid-
ered pharmacologically active and safe. We also presented 
a reaction mechanism for synthesizing these chemicals in 
order to conduct experimental research on their ability to 
suppress the critical function of neuraminidase and assess 
their efficacy in vitro and in vivo.
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Povzetek
Cilj te raziskave je bil ustvariti model 3D-QSAR CoMFA za nabor petindvajsetih zaviralcev nevraminidaze, ki vsebujejo 
derivate tiazolidin-4-karboksilne kisline, in identificirati nov močan zaviralec nevraminidaze za zdravljenje gripe. Statis-
tični parametri generiranega modela so odlični: Q2 = 0,708, R2 = 0,997. Rezultati zunanje validacije so bili (r2

0 = 0.922, 
K = 1.016, R2

pred = 0.674, r2
m = 0.778), kar kaže, da ima izdelani model dobro napovedno vrednost. Na podlagi konturne 

karte modela CoMFA smo predlagali šest novih spojin z večjo inhibitorno aktivnostjo za nevraminidazo kot najbolj 
aktivna spojina. Te spojine smo s tehniko molekulskega sidranja ugnezdili v nevraminidazo, da bi analizirali interakcije 
z aktivnim mestom encima. Ugotovili smo, da so vse predlagane molekule bolj stabilno ugnezdene v aktivno mesto 
nevraminidaze kot referenčna molekula (1SJ). Uporabili pa smo tudi tehniko SwissADME za oceno farmakokinetičnih 
lastnosti vsake predlagane molekule, medtem ko smo za raziskovanje morebitne toksičnosti uporabili tehniki ProToxII in 
VEGA QSAR. Na koncu opisujemo reakcijski mehanizem za sintezo šestih predlaganih spojin, ki bi ga lahko še dodatno 
proučili pri iskanju novih inhibitorjev nevraminidaze. Ta študija je identificirala potencialne kandidate za razvoj učinko-
vitejših zaviralcev nevraminidaze za zdravljenje gripe.
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