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Abstract
The pathogenesis of essential hypertension, congestive heart failure, and reno-vascular hypertension is related to angio-
tensin II. This study presents QSAR modeling for a set of compounds acting as angiotensin II receptor antagonists based 
on the Monte Carlo optimization with molecular graph-based and SMILES notation based descriptors. Conformation 
independent QSAR models were developed for three random splits. Various statistical approaches were used to assess 
the statistical quality of the developed models, and the obtained results were very good. This study used a novel statistical 
metric known as the index of ideality of correlation for the final assessment of the model, and the results that were ob-
tained suggested that the model was good. Also, molecular fragments which account for the increases and/or decreases of 
a studied activity were defined and then used for the computer-aided design of new compounds as potential angiotensin 
II receptor antagonists. The final assessment of the designed inhibitors, was performed with the use of molecular dock-
ing studies, highlighting exceptional correlation with the QSAR modeling results. The methodology which is presented 
in this research can be applied for seeking new agents for cardiovascular disorders treatment by angiotensin II receptor 
antagonism.
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1. Introduction
The pathogenesis of essential hypertension, conges-

tive heart failure, and reno-vascular hypertension is related 
to angiotensin II associated with renin-angiotensin system 
(RAS), because (RAS) has important role in the regulation 
of cardiovascular homeostasis and electrolyte/fluid balance 
in both normotensive and hypertensive subjects.1–3 This 
effect of angiotensin II could be associated with the medi-
ation through selective membrane bound angiotensin II re-
ceptors type 1 (AT1) and type 2 (AT2) and this feature can 

be used for the treatment of above stated conditions with 
the application of of angiotensin-converting enzyme (ACE) 
inhibitors. RAS a major target for drug discovery programs 
in the pharmaceutical industry was established after clinical 
success of ACE inhibitors as therapeutics used for the treat-
ment of hypertension and congestive heart failure.4–6 Unfor-
tunately the application of ACE inhibitors leads to occasion-
al side effects, like angioneurotic edema and dry cough.7–9 
These side effects are related to the increase of bradykinin 
and substance P concentration, caused by the inhibition of 
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these peptides degradation.10,11 To overcome this issue the 
alternative route has been suggested that will have the direct 
mode of intervening in the RAS with minimal potential side 
effect based on inhibition of the interactions of the primary 
effector hormone angiotensin II at the receptor level.12–14 In 
light of the given facts, there is still a need to develop a re-
liable QSAR model for angiotensin II receptor antagonism 
that can be used to develop therapeutics for the treatment of 
hypertension and congestive heart failure.

A Monte Carlo optimization method in which the 
studied activity is treated as a random event has emerged as 
a promising approach in QSAR modeling in recent years. 
This method is based on the conformation-independent 
approach with optimal descriptors based on topological 
molecular features and molecules in the Simplified Molec-
ular Input Line Entry System (SMILES) notation.15–17 One 
of the primary advantages of the described method over 
more commonly used ones is its simplicity and efficien-
cy. Also, this method can determine molecular fragments 
(calculated as SMILES notation descriptors) that have an 
influence on studied activity and that can be associated 
with the chemical structures of studied compounds. The 
main aim of this research is the development of a confor-
mation-independent QSAR model based on the Monte 
Carlo optimization method for the angiotensin II receptor 
antagonism. Further, one of the main aims of this research 
was to define SMILES notation descriptors associated with 
molecular fragments that have both positive and negative 
influences on angiotensin II receptor antagonism. Molec-
ular docking studies were used as the “final validator” of 
the established QSAR models and designed molecules an-
tagonism potential

2. Materials and Methods
2. 1. �Development and Validation of QSAR 

Models

As the first step in developing appropriate QSAR 
models, molecules obtained from literaturewere drawn us-
ing ACD/ChemSketch software v.11.0 and converted into 

the SMILES notation using the same software.18,19 Chem-
ical structures of compounds used for QSAR modeling 
with their SMILES notation are presented in Supporting 
Information and their general structures in Figure 1.

As the dependent variable for the development of the 
QSAR model, we used the inhibitor activities rabbit uter-
ine membrane AT1 (IC50) converted to -log10(IC50) and 
given as pIC50 and this numerical values are presented in 
Table S1, Supplementary material. After we finished con-
structing the appropriate database, we made three differ-
ent random splits of the main molecule database into two 
sets-the training set, which included 56 compounds (75%), 
and the test set with 19 compounds (25%), and we checked 
the normality of the activity distribution according to pub-
lished method.20 To establish conformation-independent 
QSAR models we applied software called CORAL (COR-
relation and Logic, http://www.insilico.eu/coral) based on 
the Monte Carlo method and its algorithm, which treats 
the pertinent activity as a random event. We took into 
consideration two types of molecular descriptors based 
on the molecular graph and SMILES notation. Based on 
molecular graphs, invariants were defined as local graph 
invariants: Morgan extended connectivity index of in-
creasing order (EC0), path numbers of length 2 and 3 (p2, 
p3), valence shells of range 2 and 3 (s2, s3), and the Code 
of Nearest Neighbors (NNCk). In recent years, Simplified 
Molecular Input-Line Entry System (SMILES) notation 
has become one of the most convenient representations, 
especially used in chemoinformatics because SMILES no-
tation is considered as a very convenient alternative to the 
molecular graph. This fact is very appealing for medici-
nal chemistry since correlating molecular fragments with 
molecular graph-based descriptors can be quite challeng-
ing. For QSAR modeling, SMILES notation can be used 
to define molecular optimal descriptors (DCW), where 
DCW can be calculated as a function of SMILES notation 
according to Equation 1.

DCW(T,Nepoch) = ΣCW(Sk) + ΣCW(SSk) + 
ΣCW(SSSk) + ΣCW(EC0k) + ΣCW(PT2k) + 	 (1)
ΣCW(PT3k) + ΣCW(VS2k) + ΣCW(VS3k) + 
ΣCW(NNCk)

Figure 1. General chemical structures of molecules used for QSAR models development.
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� (3)

� (4)

� (5)

In this research, we used all SMILES notation based 
descriptors: local, global, and HARD-index. One of the 
main features of the developed QSAR model with the ap-
plication of the Monte Carlo method is that we calculate 
correlation weight (CW), a numerical value for each used 
optimal descriptor.17 The manner in which this process is 
achieved is based on generating suitable random numbers 
and observing how that fraction of numbers obeys some 
property or properties, in which CW values are randomly 
assigned to all used optimal descriptors, both molecular 
graph and SMILES notation based descriptors, in each in-
dependent Monte Carlo run. The Monte Carlo optimiza-
tion process is applied further to calculate the numerical 
data for the correlation weights, which give the maximal 
value of the correlation coefficient between studied ac-
tivity and used optimal descriptors. For this purpose, the 
Monte Carlo method uses two parameters: threshold (T) 
and the number of epochs (Nepoch). For the development 
of QSAR models, we used values of 0–10 for T and 0–70 
for Nepoch, from which the search for the most predictive 
combination of T and Nepoch was concluded according to 
published methodology.15–27 The development of a robust 
model capable of predicting the properties of new mole-
cules in an objective, reliable, and precise manner is the 
main goal of any QSAR modeling process. We used the 
following methods to determine the goodness of the estab-
lished QSAR models: internal validation using the train-
ing set, external validation using the validation set, and 
data randomization (Y-scrambling test). This was done by 
using statistical parameters such as the correlation coeffi-
cient (r2), cross-validated correlation coefficient (q2), stan-
dard error of estimation (s), mean absolute error (MAE), 
Fischer ratio (F), root-mean-square error (RMSE), Rm

2, 
and MAE-based metrics.20–25 Recently, the so-called In-
dex of Ideality of Correlation (IIC) has been suggested 
as a novel criterion for the estimation of the predictive 
potential of QSAR models, considering not only the cor-
relation coefficient but also the arrangement of the cluster 
of dots-images relative to the diagonal, in coordinates ob-
served-calculated values of the studied endpoint, and we 
calculated IIC according to Equations 2–5 as the QSAR 
model final estimator.25–27

� (2)

Having data on all Δk for the test set, one can calcu-
late sum of negative and positive values of Δk similar to 
mean absolute error (MAE):

2. 2. Molecular Docking Studies

Molegro Virtual Docker (MVD) software was used 
for docking studies with geometrically optimized ligands 
using MMFF94 force field implemented in Marvin sketch 
(Marvin 6.1.0, 2013, ChemAxon) software. As the target 
for docking studies crystal structure of the angiotensin II 
type 2 receptoror (AT2R) (PDB: 7jni) was used. For, MVD 
rigid receptor structure and flexible structure for ligands 
was used for prerfoming docking studies. MVD yields 
both hydrophobic (mostly related to steric and Van der 
Waals interactions) and hydrophilic interactions, includ-
ing identification of hydrogen bonds between amino acids 
from the active site and studied ligands. These interactions 
can be quantified through “scoring” functions, calculated 
numerical values related to relevant binding energies.28 
For most enzymes there is rule of thumb, the higher the 
interaction between receptor and ligand is the higher in-
hibition is achieved, so for this reason obtained numerical 
values for “scoring” functions could be used to assess the 
potential inhibition effect of studied ligands29. In this re-
search following “scoring” functions were calculated and 
used further for inhibitory potential estimation: VdW, Ste-
ric, Hbond, NoHbond, Pose energy, Electro, ElectroLong, 
MolDock, and Rerank Score, and complete molecular 
docking protocol was validated according to published 
methodology.31,32 Maestro Version 11.1.012, release 2017-
1 was used for showing two-dimensional representations 
of the interactions between the studied molecules and the 
amino acids angiotensin II type 2 receptoror active site.

3. Results and Discussion
The applicability domain (AD) is a fundamental 

characteristic based on which the selection of molecules 
is done.32–34 For defining AD we apply published method-
ology and we determined that all molecules in this study 
were within the range of AD defined and we did not identi-
fy any outliers17. Using the Least Squares method, the best 
developed QSAR models for the studied activity, regarding 
T and Nepoch values, are presented in the form of Eq. 6–8.

Split 1: pIC50 = 1.9668(± 0.0410) + 
0.0580(± 0.0004)×DCW(4,11) � (6)

Split 2: pIC50 = 2.0290(± 0.0447) + 
0.1134(± 0.0009)×DCW(4,12) � (7)
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Split 3: pIC50 = 2.1274(± 0.0486) + 
0.0659(± 0.0006)×DCW(1,7)� (8)

The values of the statistical metrics that helped us to 
determine the quality of the developed QSAR models for 
angiotensin II antagonism are available in Table 1. They 
indicate that the applied method was capable of establish-
ing a QSAR model with good reproducibility, which we 
tested using the concordance correlation coefficient. We 
evaluated the predictability of the developed QSAR model 
using values presented in Table 1, and the developed mod-
el was proved valid. In addition, the model was classified 
as valid using MAE-based metrics. We performed the fi-
nal evaluation of the developed QSAR models both for the 
training and the test set using the index of ideality of cor-
relation and obtained values that suggest that developed 
QSAR models have a high predictive potential. Further, 
we applied Y-randomization, which implied scrambling 
of Y values in 1000 trials in ten separate runs, to assess 
the sturdiness of the developed QSAR models.20 The ob-
tained values presented in Table 2 indicate that there was 
no correlation by chance among the developed models. In 
regards to obtained values for statistical methods, we ob-
tained the best QSAR model from the first split.

Table 2. Y-randomization of the best QSAR models (best optimiza-
tion run) for three independent splits

	 Split 1	 Split 2	 Split 3	
	 Training	 Test	 Training	 Test	 Training	 Test

0	 0.8234	 0.8909	 0.8951	 0.8231	 0.8485	 0.8813
1	 0.0054	 0.0403	 0.0025	 0.06	 0.0822	 0.0027
2	 0.0849	 0	 0.0002	 0.0066	 0.0027	 0.0496
3	 0.0005	 0.0001	 0.0027	 0.0009	 0.0054	 0
4	 0.0004	 0.0031	 0.0681	 0.0193	 0.0054	 0.0725
5	 0.0059	 0.0299	 0.0146	 0.081	 0.0424	 0.0866
6	 0.0347	 0.0086	 0.0013	 0.099	 0.0027	 0.0041
7	 0.0068	 0.013	 0.0065	 0.1115	 0.0033	 0.0056
8	 0.0145	 0.0756	 0.0076	 0.0792	 0.0596	 0.0048
9	 0.0002	 0.0128	 0.0048	 0.1635	 0.0213	 0.0021
10	 0.0003	 0.0141	 0.0182	 0.0039	 0.0004	 0.0255
Rr

2	 0.0154	 0.0198	 0.0127	 0.0625	 0.0225	 0.0254
CRp

2	 0.8157	 0.881	 0.8887	 0.7912	 0.8371	 0.8685
CRp

2 = R × (R2–Rr
2)1/2 should be > 0.5

Also, we observed that the best model was obtained 
with a T value of 4, whereas the best Nepoch value amount-
ed to 11. The best Monte Carlo optimization runs (the 
highest value for r2) for the developed QSAR models for 
all splits are shown in Figure 2 in the form of graphical 
representations.

Determining molecular fragments, defined as the 
SMILES notation optimal descriptors having a positive 
and negative influence on the examined activity, was Ta
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among the main goals of this research.17,29,35–38 Table S2 
(Supplementary Material) contains the full list of molecu-
lar descriptors, which are based both on the SMILES no-
tation and the molecular graph. The calculation example 
of molecule’s both summarized correlation weight (DCW) 
and studied activity (pED50) is presented in Table 3, where 
molecular graph-based descriptors were omitted with the 
aim of achieving an easier interpretation.

According to the published methodology we classi-
fied obtained SAKs as promoters of angiotensin II receptor 
antagonism.17,31,32–35 In Table 4 we enlisted selected SAKs 
with their mechanistic interpretation while the complete 
list is given in Table S2 (Supporting Information). We pre-
sented the analysis of molecular fragments’ contribution 
to angiotensin II receptor antagonism in Figure 3. In pre-
sented Figure, green color indicate groups that have pos-
itive, while red color indicate groups that have negative 
influence on corneal permeability. As already stated each 
SAK contributes with its CW value.

The computer-aided design of five new potential 
antagonists whose structures presented in Figure 4 was 
generated from the conformational-independent results 
obtained from developed QSAR models. The template 
molecule was molecule A, a molecule taken from initial 
data base, since it is one of the least chemically exploited 
molecules. Table 4 contains the list of all the designed mol-
ecules, as well as their calculated values for the pIC50.

Based on the obtained results from QSAR model-
ling, the SMILES notation descriptors associated with 
molecular fragments with a positive impact on pIC50 for 

angiotensin II receptor antagonism activity and that yield 
increase in its activity are: “C............” – carbon atom or 
a methyl group, and “O............” – oxygen atom or a hy-
droxyl group, where both fragments with positive impact 
on pIC50 numerical value and whose addition lead to the 
increase of calculated pIC50 values for molecule A1 in 
comparison to calculated pEC50 values for template mol-
ecule A; also molecule A1 had additional fragments relat-
ed to molecular branching – “(...........” and “(...C......” both 
promoters of pIC50 increase; further molecular branching 
was obtained with molecule A2 with further addition of 
“C............”, “(...........” and “(...C......” fragments that lead to 
further increase of pIC50 numerical value. In molecules 
A3 and A4 oxygen atom was changed with nitrogen atom 

Figure 2. Graphical presentation of the best Monte Carlo optimization runs (the highest value for r2) for the developed QSAR models.

Figure 3. Molecular fragments contribution to angiotensin II recep-
tor antagonism (green – increase, red – decrease).
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leading to switching of “O............” and “(...O......” frag-
ments with “N............” and “(...N......” both with pIC50 
numerical value increase feature. Both molecules A3 and 
A4 have higher value for pIC50 in comparison to molecule 
A pIC50 numerical value. Since fragments “O............” and 
“(...O......” have higher numerical values for CW in com-
parison to “N............” and “(...N......” CW numerical val-
ues, calculated values for molecules A1 and A2 pIC50 were 
higher in comparison to molecules A3 and A4 pIC50 val-
ues. Molecule A5 has additional “O...C...(...”, “O...=...C...”, 
“O...C.......” fragments, all promoters of pIC50 increase, in 

comparison to molecule A, leading to pIC50 numerical 
value increase.

To assess the developed QSAR models' predictability 
and to validate them further, all designed molecules and 
template molecule A were subjected to molecular docking 
studies with angiotensin II type 2 receptoror. Numerical 
values for all calculated “scoring” functions are presented 
in Table 6. When the assessment of the inhibitory poten-
cy is made different scoring functions should be taken 
into consideration, since they are related to different li-
gand-amino acids interactions. According to obtained re-

Table 3. Example of DCW calculation

SMILES notation: O=C(O)c1ccccc1c1ccc(cc1)n1c(CO)c(nc1CCC)CO
DCW: 63.10893
Ac(calc.): 5.6237

O...........	 0.3453	 c...........	 –0.0995	 c...(.......	 0.3361	 c...c...(...	 –0.8827
=...........	 0.1241	 1...........	 0.2002	 C...(.......	 2.0522	 c...c...1...	 0.1897
C...........	 0.905	 C...........	 0.905	 O...C.......	 –0.6716	 c...1...(...	 0.1978
(...........	 –0.9914	 C...........	 0.905	 O...(.......	 1.0042	 n...(...1...	 0.4829
O...........	 0.3453	 C...........	 0.905	 c...(.......	 0.3361	 1...n...(...	 0.9117
(...........	 –0.9914	 (...........	 –0.9914	 c...(.......	 0.3361	 n...1...c...	 0.2376
c...........	 –0.0995	 C...........	 0.905	 n...(.......	 0.1064	 1...c...(...	 –1.0596
1...........	 0.2002	 O...........	 0.3453	 n...c.......	 0.2222	 c...(...C...	 0.6814
c...........	 –0.0995	 O...=.......	 –0.2385	 c...1.......	 –0.927	 O...C...(...	 0.3324
c...........	 –0.0995	 C...=.......	 –1.4962	 C...1.......	 0.4536	 C...O...(...	 –0.5291
c...........	 –0.0995	 C...(.......	 2.0522	 C...C.......	 0.2526	 c...(...O...	 –0.2309
c...........	 –0.0995	 O...(.......	 1.0042	 C...C.......	 0.2526	 (...c...(...	 0.3821
c...........	 –0.0995	 O...(.......	 1.0042	 C...(.......	 2.0522	 n...(...c...	 –6.9698
1...........	 0.2002	 c...(.......	 0.3361	 C...(.......	 2.0522	 c...n...(...	 1.5402
c...........	 –0.0995	 c...1.......	 –0.927	 O...C.......	 –0.6716	 n...c...1...	 –0.0889
1...........	 0.2002	 c...1.......	 –0.927	 O...=...C...	 0.4779	 c...1...C...	 0.1189
c...........	 –0.0995	 c...c.......	 –0.2115	 =...C...(...	 –0.5437	 C...C...1...	 –0.6848
c...........	 –0.0995	 c...c.......	 –0.2115	 O...(...C...	 0.4236	 C...C...C...	 –0.5269
c...........	 –0.0995	 c...c.......	 –0.2115	 (...O...(...	 0.1847	 C...C...(...	 0.3714
(...........	 –0.9914	 c...c.......	 –0.2115	 c...(...O...	 –0.2309	 C...(...C...	 0.3742
c...........	 –0.0995	 c...1.......	 –0.927	 1...c...(...	 –1.0596	 O...C...(...	 0.3324
c...........	 –0.0995	 c...1.......	 –0.927	 c...1...c...	 0.1224	 Cmax.1......	 –0.4456
1...........	 0.2002	 c...1.......	 –0.927	 c...c...1...	 0.1897	 Nmax.0......	 0.3887
(...........	 –0.9914	 c...1.......	 –0.927	 c...c...c...	 –0.5425	 Omax.4......	 –0.2055
n...........	 0.171	 c...c.......	 –0.2115	 c...c...c...	 –0.5425	 Smax.0......	 2.5295
1...........	 0.2002	 c...c.......	 –0.2115	 c...c...c...	 –0.5425	 NOSP01000000	 0.3921
c...........	 –0.0995	 c...(.......	 0.3361	 c...c...1...	 0.1897	 HALO00000000	 –5.5836
(...........	 –0.9914	 c...(.......	 0.3361	 c...1...c...	 0.1224	 BOND10000000	 1.7716
C...........	 0.905	 c...c.......	 –0.2115	 1...c...1...	 0.0916	 ++++N---O===	 9.883
O...........	 0.3453	 c...1.......	 –0.927	 c...1...c...	 0.1224	 ++++O---B2==	 1.4457
(...........	 –0.9914	 1...(.......	 –1.147	 c...c...1...	 0.1897	 ++++N---B2==	 1.2326
c...........	 –0.0995	 n...(.......	 0.1064	 c...c...c...	 –0.5425	 10001000000 	 0.2082
(...........	 –0.9914	 n...1.......	 –0.0595	 c...c...(...	 –0.8827		
n...........	 0.171	 c...1.......	 –0.927	 c...(...c...	 1.4185		
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sults for MolDock and ReRank “score” functions molecule 
with the potentially highest inhibitory activity is molecule 
A2 and this result is in correlation with the results from 
QSAR modeling. The molecule with the lowest values for 
MolDock and ReRank “score” functions was template mol-
ecule A, which is also in good correlation with the results 
obtained from QSAR modeling. The detailed definitions 
of other “scoring” functions and their potential impact on 
inhibitory activity can be found in the literature27.

Highest energy related to close electrostatic inter-
actions, calculated with Electro “scoring” function, is in-
dentified for molecules M2 and lowest for molecule M5. 
Further, both highest and lowest energies related to long 
electrostatic interactions, calculated with ElectroLong 
“scoring” function, were identified for same molecules as 
for Electro “scoring” function. Highest energy related to 
hydrogen bonds is indentified for molecules A4 and low-
est for molecule A5. Also same molecules had the highest 
and lowest energy related to the hydrogen bonding energy 
(protein-ligand) as calculated if the directionality of the 
hydrogen bond was not taken into account calculated with 
NoHBond90 “scoring” function. Highest energy related to 
steric interactions, calculated with Steric “scoring” func-
tion, is indentified for molecules A1 and lowest for mole-
cule A. For Van der Walls energies the highest values was 
calculated, with application of VdW “scoring” function, for 
molecule A4, and lowest for molecule A4. Highest energy 
from overall interactions between ligand and receptor, cal-
culated with Energy “scoring” function, was obtained for 
molecule A2 and lowest for molecule A.

All interactions between the selected molecules 
and amino acids from angiotensin II type 2 receptoror 
active site are identified and 2D representation of hydro-
gen bonds, hydrophobic, and hydrophilic interactions 
inside the binding pocket are presented in Figures in the 
Supplementary Information section, while the best-cal-
culated poses for all designed molecules inside the ac-
tive site of angiotensin II type 2 receptoror are presented 
in Figure 5. According to obtained results there are two 
clusters of molecules inside angiotensin II type 2 recep-
toror active site. Molecules A, A2, A4 and A5 (cluster 1) 
were docked in one part of active site, while molecules 
A1 and A3 (cluster 2) in other. Molecules from cluster 1 
had hydrogen bonds with amino acids ARG182, LYS215 

Table 4. Mechanistic interpretation of selected SAKs

SAk	 Increase

C...........	 Carbon atom

N...........	 Nitrogen atom

O...........	 Oxygen atom

(...(.......	�
(...........	
(...C...(...	 Branching in molecule as such, branching in 
(...N...(...	 molecule on either carbon, nitrogen or
N...(.......	 oxygen atom
(...O...(...	
C...(...C...	

O...C...(...	
O...=...C...	 Fragments associated with carboxyl group
O...C.......	

	 Decrease

1...........	 Presence of one or two rings in molecule
2...........	
C...(...1...	

O...=.......	 Oxygen atom with double bond
c...(.......	 Branching on benzyl group

Figure 4. Chemical structures of designed molecules.
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and ILE304, while molecules from cluster 1 had hydro-
gen bonds with amino acid PRO301. Also molecules 
from cluster 2 shown π-π interactions with amino acid 
TRP100.

4. Conclusion
Developing robust QSAR models for angiotensin 

II receptor antagonism that possess good predictability, 
which is determined by utilizing various statistical pa-
rameters, represents the main aim of this research. Cal-
culations of the conformation independent models, which 
were developed in accordance with the optimal descrip-
tors and derived from a local graph and the SMILES nota-
tion invariants, were performed by employing the Monte 
Carlo optimization method. Applying a range of statistical 
techniques yielded the evaluation of the developed QSAR 
models’ predictive potential and robustness. The high ap-
plicability of the developed QSAR models is displayed by 
the realized numerical values applied to validate the men-
tioned. The Monte Carlo optimization method successful-
ly determined molecular fragments, used in QSAR model-
ing as the SMILES notation fragments with a positive and 
negative effect on angiotensin II receptor antagonism and 
the mentioned were used for the computer-aided design 
of novel compounds with higher pIC50 values. The final 
validator of the developed QSAR model and the designed 
molecules’ potential inhibitory effect were the molecu-
lar docking studies, and the obtained results show good 
inter-correlation. In summary, new therapeutics for the 
treatment of hypertension and congestive heart failure can 
be sought by applying the methodology presented in this 
research.
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Povzetek
Patogeneza esencialne hipertenzije, kongestivnega srčnega popuščanja in renovaskularne hipertenzije je povezana z an-
giotenzinom II. Ta študija predstavlja modeliranje QSAR za nabor spojin, ki delujejo kot antagonisti receptorjev an-
giotenzina II, na podlagi optimizacije Monte Carlo z deskriptorji na osnovi molekularnih grafov in zapisov SMILES. 
Konformacijsko neodvisni modeli QSAR so bili razviti za tri naključne razdelitve. Za oceno statistične kakovosti razvitih 
modelov smo uporabili različne statistične pristope, dobljeni rezultati pa so bili zelo dobri. Za končno oceno modela smo 
uporabili novo statistično metriko, znano kot indeks idealnosti korelacije, in dobljeni rezultati kažejo, da je bil model 
dober. Prav tako so bili definirani molekularni fragmenti, ki so odgovorni za povečanja in/ali zmanjšanja proučevane 
aktivnosti, in nato uporabljeni za računalniško podprto načrtovanje novih spojin kot potencialnih antagonistov recep-
torjev angiotenzina II. Končna ocena načrtovanih zaviralcev je bila izvedena z uporabo študij molekularnega sidranja, 
ki poudarjajo izjemno visoko stopnjo korelacije z rezultati modeliranja QSAR. Metodologijo, ki je predstavljena v tej 
raziskavi, je mogoče uporabiti pri iskanju novih učinkovin za zdravljenje srčno-žilnih obolenj z antagonizmom recep-
torjev angiotenzina II.
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