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Abstract

The pathogenesis of essential hypertension, congestive heart failure, and reno-vascular hypertension is related to angio-
tensin II. This study presents QSAR modeling for a set of compounds acting as angiotensin II receptor antagonists based
on the Monte Carlo optimization with molecular graph-based and SMILES notation based descriptors. Conformation
independent QSAR models were developed for three random splits. Various statistical approaches were used to assess
the statistical quality of the developed models, and the obtained results were very good. This study used a novel statistical
metric known as the index of ideality of correlation for the final assessment of the model, and the results that were ob-
tained suggested that the model was good. Also, molecular fragments which account for the increases and/or decreases of
a studied activity were defined and then used for the computer-aided design of new compounds as potential angiotensin
II receptor antagonists. The final assessment of the designed inhibitors, was performed with the use of molecular dock-
ing studies, highlighting exceptional correlation with the QSAR modeling results. The methodology which is presented
in this research can be applied for seeking new agents for cardiovascular disorders treatment by angiotensin II receptor

antagonism.
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1. Introduction

The pathogenesis of essential hypertension, conges-
tive heart failure, and reno-vascular hypertension is related
to angiotensin II associated with renin-angiotensin system
(RAS), because (RAS) has important role in the regulation
of cardiovascular homeostasis and electrolyte/fluid balance
in both normotensive and hypertensive subjects.!”> This
effect of angiotensin II could be associated with the medi-
ation through selective membrane bound angiotensin II re-
ceptors type 1 (AT1) and type 2 (AT2) and this feature can

be used for the treatment of above stated conditions with
the application of of angiotensin-converting enzyme (ACE)
inhibitors. RAS a major target for drug discovery programs
in the pharmaceutical industry was established after clinical
success of ACE inhibitors as therapeutics used for the treat-
ment of hypertension and congestive heart failure.*-¢ Unfor-
tunately the application of ACE inhibitors leads to occasion-
al side effects, like angioneurotic edema and dry cough.”~®
These side effects are related to the increase of bradykinin
and substance P concentration, caused by the inhibition of
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these peptides degradation.!®!! To overcome this issue the
alternative route has been suggested that will have the direct
mode of intervening in the RAS with minimal potential side
effect based on inhibition of the interactions of the primary
effector hormone angiotensin II at the receptor level.'>"!4 In
light of the given facts, there is still a need to develop a re-
liable QSAR model for angiotensin II receptor antagonism
that can be used to develop therapeutics for the treatment of
hypertension and congestive heart failure.

A Monte Carlo optimization method in which the
studied activity is treated as a random event has emerged as
a promising approach in QSAR modeling in recent years.
This method is based on the conformation-independent
approach with optimal descriptors based on topological
molecular features and molecules in the Simplified Molec-
ular Input Line Entry System (SMILES) notation.!>~!” One
of the primary advantages of the described method over
more commonly used ones is its simplicity and efficien-
cy. Also, this method can determine molecular fragments
(calculated as SMILES notation descriptors) that have an
influence on studied activity and that can be associated
with the chemical structures of studied compounds. The
main aim of this research is the development of a confor-
mation-independent QSAR model based on the Monte
Carlo optimization method for the angiotensin II receptor
antagonism. Further, one of the main aims of this research
was to define SMILES notation descriptors associated with
molecular fragments that have both positive and negative
influences on angiotensin II receptor antagonism. Molec-
ular docking studies were used as the “final validator” of
the established QSAR models and designed molecules an-
tagonism potential

2. Materials and Methods

2. 1. Development and Validation of QSAR
Models

As the first step in developing appropriate QSAR
models, molecules obtained from literaturewere drawn us-
ing ACD/ChemSketch software v.11.0 and converted into

the SMILES notation using the same software.!®!° Chem-
ical structures of compounds used for QSAR modeling
with their SMILES notation are presented in Supporting
Information and their general structures in Figure 1.

As the dependent variable for the development of the
QSAR model, we used the inhibitor activities rabbit uter-
ine membrane AT1 (ICs) converted to -log10(ICs,) and
given as pICs, and this numerical values are presented in
Table S1, Supplementary material. After we finished con-
structing the appropriate database, we made three differ-
ent random splits of the main molecule database into two
sets-the training set, which included 56 compounds (75%),
and the test set with 19 compounds (25%), and we checked
the normality of the activity distribution according to pub-
lished method.?’ To establish conformation-independent
QSAR models we applied software called CORAL (COR-
relation and Logic, http://www.insilico.eu/coral) based on
the Monte Carlo method and its algorithm, which treats
the pertinent activity as a random event. We took into
consideration two types of molecular descriptors based
on the molecular graph and SMILES notation. Based on
molecular graphs, invariants were defined as local graph
invariants: Morgan extended connectivity index of in-
creasing order (ECO0), path numbers of length 2 and 3 (p2,
p3), valence shells of range 2 and 3 (s2, s3), and the Code
of Nearest Neighbors (NNCKk). In recent years, Simplified
Molecular Input-Line Entry System (SMILES) notation
has become one of the most convenient representations,
especially used in chemoinformatics because SMILES no-
tation is considered as a very convenient alternative to the
molecular graph. This fact is very appealing for medici-
nal chemistry since correlating molecular fragments with
molecular graph-based descriptors can be quite challeng-
ing. For QSAR modeling, SMILES notation can be used
to define molecular optimal descriptors (DCW), where
DCW can be calculated as a function of SMILES notation
according to Equation 1.

DCW(T’Nepoch) = ZCW(Sk) + ZCW(SSk) +
YCW(SSSy) + ZCW(ECO0y) + ZCW(PT2y) + (1)
SCW(PT3,) + SCW(VS2,) + SCW(VS3,) +
SCW(NNG,)
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Figure 1. General chemical structures of molecules used for QSAR models development.
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In this research, we used all SMILES notation based
descriptors: local, global, and HARD-index. One of the
main features of the developed QSAR model with the ap-
plication of the Monte Carlo method is that we calculate
correlation weight (CW), a numerical value for each used
optimal descriptor.!” The manner in which this process is
achieved is based on generating suitable random numbers
and observing how that fraction of numbers obeys some
property or properties, in which CW values are randomly
assigned to all used optimal descriptors, both molecular
graph and SMILES notation based descriptors, in each in-
dependent Monte Carlo run. The Monte Carlo optimiza-
tion process is applied further to calculate the numerical
data for the correlation weights, which give the maximal
value of the correlation coefficient between studied ac-
tivity and used optimal descriptors. For this purpose, the
Monte Carlo method uses two parameters: threshold (T)
and the number of epochs (Nepoh). For the development
of QSAR models, we used values of 0-10 for T and 0-70
for Nepoch, from which the search for the most predictive
combination of T and Nep,¢, Was concluded according to
published methodology.'>*” The development of a robust
model capable of predicting the properties of new mole-
cules in an objective, reliable, and precise manner is the
main goal of any QSAR modeling process. We used the
following methods to determine the goodness of the estab-
lished QSAR models: internal validation using the train-
ing set, external validation using the validation set, and
data randomization (Y-scrambling test). This was done by
using statistical parameters such as the correlation coeffi-
cient (r?), cross-validated correlation coefficient (g?), stan-
dard error of estimation (s), mean absolute error (MAE),
Fischer ratio (F), root-mean-square error (RMSE), R 2,
and MAE-based metrics.?>->> Recently, the so-called In-
dex of Ideality of Correlation (IIC) has been suggested
as a novel criterion for the estimation of the predictive
potential of QSAR models, considering not only the cor-
relation coeflicient but also the arrangement of the cluster
of dots-images relative to the diagonal, in coordinates ob-
served-calculated values of the studied endpoint, and we
calculated IIC according to Equations 2-5 as the QSAR
model final estimator.2>-27

Ay= observed;, — calculated,, (2)
Having data on all A for the test set, one can calcu-

late sum of negative and positive values of Ay similar to
mean absolute error (MAE):

2. 2. Molecular Docking Studies

Molegro Virtual Docker (MVD) software was used
for docking studies with geometrically optimized ligands
using MMFF94 force field implemented in Marvin sketch
(Marvin 6.1.0, 2013, ChemAxon) software. As the target
for docking studies crystal structure of the angiotensin II
type 2 receptoror (AT2R) (PDB: 7jni) was used. For, MVD
rigid receptor structure and flexible structure for ligands
was used for prerfoming docking studies. MVD yields
both hydrophobic (mostly related to steric and Van der
Waals interactions) and hydrophilic interactions, includ-
ing identification of hydrogen bonds between amino acids
from the active site and studied ligands. These interactions
can be quantified through “scoring” functions, calculated
numerical values related to relevant binding energies.?®
For most enzymes there is rule of thumb, the higher the
interaction between receptor and ligand is the higher in-
hibition is achieved, so for this reason obtained numerical
values for “scoring” functions could be used to assess the
potential inhibition effect of studied ligands®. In this re-
search following “scoring” functions were calculated and
used further for inhibitory potential estimation: VAW, Ste-
ric, Hbond, NoHbond, Pose energy, Electro, ElectroLong,
MolDock, and Rerank Score, and complete molecular
docking protocol was validated according to published
methodology.?"*2 Maestro Version 11.1.012, release 2017-
1 was used for showing two-dimensional representations
of the interactions between the studied molecules and the
amino acids angiotensin II type 2 receptoror active site.

3. Results and Discussion

The applicability domain (AD) is a fundamental
characteristic based on which the selection of molecules
is done.*?-34 For defining AD we apply published method-
ology and we determined that all molecules in this study
were within the range of AD defined and we did not identi-
fy any outliers'”. Using the Least Squares method, the best
developed QSAR models for the studied activity, regarding
T and Nep,, values, are presented in the form of Eq. 6-8.

Split 1: pICs, = 1.9668(+ 0.0410) + .
0.0580( 0.0004)xDCW (4,11) ©)

Split 2: pICsq = 2.0290(+ 0.0447) + ;
0.1134(+ 0.0009)xDCW(4,12) )

"MAE o5 = =%, 010l A< 0, "N is the number of A< 0 (3)

*MAE o5 = 7= Bpmy |0k A2 0, *N is the number of > 0

min( "MAE;est, TMAE¢gst)
max( “MAEesy, TMAE;o5)

[Ceost = Trese X

(4)

(5)
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Table 1. The statistical quality of the developed QSAR models for angiotensin II receptor antagonism

Test set

Training set

MAE

0.315

IIC
0.7842
0.8292
0.8551
0.8228
0.7551
0.7752
0.7742
0.7682
0.8558
0.8158
0.8297
0.8338

CCC
0.9175
0.9347
0.9438
0.9320
0.8960
0.9055
0.9072
0.9029
0.9382
0.9189
0.9254
0.9275

MAE
0.294
0.284
0.288

IIC
0.7902
0.8012
0.8119
0.8011
0.8775
0.8593
0.8852
0.8740
0.8353
0.8712
0.8290
0.8452

CCC
0.7774
0.7278
0.8449
0.7834
0.8773
0.8678
0.9461
0.8971
0.8576
0.8136
0.9174
0.8629

91

0.402
0.375
0.362
0.380
0.450

0.9104
0.9176
0.9217
0.9166
0.8940
0.9036
0.9020
0.9000
0.9046
0.8784
0.8896
0.8909

0.8421
0.8755
0.8909
0.8695
0.8029
0.8200
0.8231
0.8153
0.8813
0.8465
0.8578
0.8620

222

0.388

0.8917
0.8978
0.9032
0.8976
0.9406
0.9298
0.9446
0.9383
0.9180
0.9369
0.9140
0.9230

0.8046
0.8145
0.8234
0.8142
0.8878
0.8688
0.8951
0.8839
0.8485
0.8814
0.8417
0.8572

1 run
2 run
3 run
Av

Split 1

119

0.281

237
252
237
427
358
461

0.378

139

0.268
0.288
0.352
0.362
0.359
0.358

0.368
0.378
0.292
0.315

116

0.289

69

0.230

1 run
2 run
3 run

Av

Split 2

77
79
75
12
94
10

0.283
0.290
0.288
0.287

0.450
0.424
0.441
0.335
0.375
0.360
0.357

415
302
401
287

0.239
0.216
0.228
0.297
0.259
0.300
0.285

0.296
0.360

0.319
0.368
0.349

0.282

1 run
2 run
3 run

Av

Split 3

108

330

r? - Correlation coefficient q? - Cross-validated correlation coefficient CCC - Concordance correlation coefficient IIC - Index of ideality of correlation s - Standard error of estimation

MAE - Mean absolute error F - Fischer ratio Av - Average value for statistical parameters obtained from three independent Monte Carlo optimization runs

Split 3: pICs, = 2.1274(+ 0.0486) + .
0.0659(+ 0.0006)xDCW(1,7) (8)

The values of the statistical metrics that helped us to
determine the quality of the developed QSAR models for
angiotensin II antagonism are available in Table 1. They
indicate that the applied method was capable of establish-
ing a QSAR model with good reproducibility, which we
tested using the concordance correlation coefficient. We
evaluated the predictability of the developed QSAR model
using values presented in Table 1, and the developed mod-
el was proved valid. In addition, the model was classified
as valid using MAE-based metrics. We performed the fi-
nal evaluation of the developed QSAR models both for the
training and the test set using the index of ideality of cor-
relation and obtained values that suggest that developed
QSAR models have a high predictive potential. Further,
we applied Y-randomization, which implied scrambling
of Y values in 1000 trials in ten separate runs, to assess
the sturdiness of the developed QSAR models.?’ The ob-
tained values presented in Table 2 indicate that there was
no correlation by chance among the developed models. In
regards to obtained values for statistical methods, we ob-
tained the best QSAR model from the first split.

Table 2. Y-randomization of the best QSAR models (best optimiza-
tion run) for three independent splits

Split 1 Split 2 Split 3
Training Test Training Test Training Test

0.8234 0.8909 0.8951  0.8231 0.8485 0.8813
0.0054 0.0403  0.0025  0.06 0.0822  0.0027
0.0849 0 0.0002  0.0066 0.0027  0.0496
0.0005 0.0001  0.0027  0.0009 0.0054 O

0.0004 0.0031 0.0681  0.0193 0.0054 0.0725
0.0059 0.0299 0.0146  0.081 0.0424 0.0866
0.0347 0.0086 0.0013  0.099 0.0027 0.0041
0.0068 0.013 0.0065  0.1115 0.0033  0.0056
0.0145 0.0756  0.0076  0.0792 0.0596  0.0048
0.0002 0.0128 0.0048  0.1635 0.0213  0.0021
0.0003 0.0141 0.0182  0.0039 0.0004 0.0255
R?2 0.0154 0.0198 0.0127  0.0625 0.0225 0.0254
csz 0.8157 0.881 0.8887  0.7912 0.8371  0.8685

O 0 N QN Ul v W~ O

—
o

“Ry?= R x (R2-R;A)!? should be > 0.5

Also, we observed that the best model was obtained
with a T value of 4, whereas the best N, value amount-
ed to 11. The best Monte Carlo optimization runs (the
highest value for r?) for the developed QSAR models for
all splits are shown in Figure 2 in the form of graphical
representations.

Determining molecular fragments, defined as the
SMILES notation optimal descriptors having a positive
and negative influence on the examined activity, was
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Figure 2. Graphical presentation of the best Monte Carlo optimization runs (the highest value for r?) for the developed QSAR models.

among the main goals of this research.!72%35-38 Table S2
(Supplementary Material) contains the full list of molecu-
lar descriptors, which are based both on the SMILES no-
tation and the molecular graph. The calculation example
of molecule’s both summarized correlation weight (DCW)
and studied activity (pEDsy) is presented in Table 3, where
molecular graph-based descriptors were omitted with the
aim of achieving an easier interpretation.

According to the published methodology we classi-
fied obtained SAgs as promoters of angiotensin II receptor
antagonism.!7-31:32735 T Table 4 we enlisted selected SAgs
with their mechanistic interpretation while the complete
list is given in Table S2 (Supporting Information). We pre-
sented the analysis of molecular fragments’ contribution
to angiotensin II receptor antagonism in Figure 3. In pre-
sented Figure, green color indicate groups that have pos-
itive, while red color indicate groups that have negative
influence on corneal permeability. As already stated each
SAk contributes with its CW value.

The computer-aided design of five new potential
antagonists whose structures presented in Figure 4 was
generated from the conformational-independent results
obtained from developed QSAR models. The template
molecule was molecule A, a molecule taken from initial
data base, since it is one of the least chemically exploited
molecules. Table 4 contains the list of all the designed mol-
ecules, as well as their calculated values for the pICs,.

Based on the obtained results from QSAR model-
ling, the SMILES notation descriptors associated with
molecular fragments with a positive impact on pICs, for

angiotensin II receptor antagonism activity and that yield
increase in its activity are: “C............ ” — carbon atom or
a methyl group, and “O...........] > - oxygen atom or a hy-
droxyl group, where both fragments with positive impact
on plICs, numerical value and whose addition lead to the
increase of calculated pICs, values for molecule Al in
comparison to calculated pECs, values for template mol-
ecule A; also molecule A1 had additional fragments relat-
ed to molecular branching - “(..........~ and “(...C.....” both
promoters of pICs, increase; further molecular branching
was obtained with molecule A2 with further addition of
I O 7 “(eveeeeene” and “(...C.....” fragments that lead to
further increase of pICs, numerical value. In molecules
A3 and A4 oxygen atom was changed with nitrogen atom

Figure 3. Molecular fragments contribution to angiotensin II recep-
tor antagonism (green - increase, red — decrease).
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Table 3. Example of DCW calculation

HO
o
- I~
\ / F OH
OH

SMILES notation: O=C(O)clccccclclece(ccl)nle(CO)c(nclCCC)CO

DCW: 63.10893
Ac(calc.): 5.6237

value increase.

0.3453 [ (oo 0.3361 c..Courlen -0.8827
0.1241 C.cvene 2.0522 c..c.l.. 0.1897
0.905 o..C.... -0.6716 c..l..(.. 0.1978
-0.9914 O...(eoenee 1.0042 n...(..1... 0.4829
0.3453 Cooelevennne 0.3361 L.n..(. 0.9117
-0.9914 Cooelevennne 0.3361 n..l..c. 0.2376
-0.0995 s T (R 0.1064 l...c.(eee -1.0596
0.2002 N...Covuune 0.2222 c...(...C... 0.6814
-0.0995 c.lo... -0.927 0O..C...(... 0.3324
-0.0995 C..l.. 0.4536 C...0...(... -0.5291
-0.0995 C..C... 0.2526 c...(.0... -0.2309
-0.0995 C..C.... 0.2526 (ceeCereeee 0.3821
-0.0995 Culnnn 2.0522 n...(..c... -6.9698
Lo 0.2002 C...levunee 2.0522 c.n...(... 1.5402
[ -0.0995 o..C.. -0.6716 n..c..l.. -0.0889
Lo, 0.2002 O..=.C.. 04779 c.l..C.. 0.1189
C... -0.0995 =.C..(.. -0.5437 C..C..1. -0.6848
[CR—— -0.0995 O..(..C.. 0.4236 C..C..C.. -0.5269
[ -0.0995 (..0...(... 0.1847 C..C..(... 0.3714
........... -0.9914 c.(..0...  -0.2309 C..(..C... 0.3742
-0.0995 L.c..(. -1.0596 0O..C...(... 0.3324
-0.0995 c.l..c. 0.1224 Cmax.1...... -0.4456
0.2002 c..c..l.. 0.1897 Nmax.0...... 0.3887
-0.9914 c.c..c..  -0.5425 Omax.4...... -0.2055
0.171 . C...C..C -0.5425 Smax.0...... 2.5295
0.2002 CoiCuiunes -0.2115 C...C..C -0.5425 NOSP01000000 0.3921
-0.0995 Cooslevinnn 0.3361 c.c..1 0.1897 HALO00000000 -5.5836
-0.9914 Cooellvenne 0.3361 c..l..c 0.1224 BOND10000000 1.7716
0.905 CoriCrrrne -0.2115 l..c.l.. 0.0916 ++++N---O=== 9.883
0.3453 c.lo... -0.927 c.l.c 0.1224 ++++0---B2== 1.4457
-0.9914 Lo -1.147 c..c.1 0.1897 ++++N---B2== 1.2326
-0.0995 s T (R 0.1064 C...C...C... -0.5425 10001000000 0.2082
-0.9914 n..l.... -0.0595 c..Coulen -0.8827
0.171 c.l... -0.927 T (o 1.4185
leading to switching of “O............ ” and “(...0....7 frag- comparison to molecule A, leading to pICs, numerical

numerical value increase feature. Both molecules A3 and
A4 have higher value for pICs, in comparison to molecule

To assess the developed QSAR models' predictability
and to validate them further, all designed molecules and

A pICsy numerical value. Since fragments “O...........” and template molecule A were subjected to molecular docking
“(...0.....7 have higher numerical values for CW in com- studies with angiotensin II type 2 receptoror. Numerical
parison to “N..........~ and “(..N.....” CW numerical val- values for all calculated “scoring” functions are presented

ues, calculated values for molecules A1 and A2 pIC;, were
higher in comparison to molecules A3 and A4 pIC50 val-
ues. Molecule A5 has additional “O...C...(..>, “O...=...C..,

in Table 6. When the assessment of the inhibitory poten-
cy is made different scoring functions should be taken
into consideration, since they are related to different li-
gand-amino acids interactions. According to obtained re-
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Table 4. Mechanistic interpretation of selected SAgs

SAy Increase
Cuere Carbon atom
N Nitrogen atom
O Oxygen atom
(e
[
(..C..( Branching in molecule as such, branching in
(.N...(C... molecule on either carbon, nitrogen or
N...(ooeee oxygen atom
(.0..(...
C..(..C...
0..C...(...
O..=..C...  Fragments associated with carboxyl group
O..C.......
Decrease
) SRR Presence of one or two rings in molecule
2
C..(.1
O..=c... Oxygen atom with double bond

Branching on benzyl group

sults for MolDock and ReRank “score” functions molecule
with the potentially highest inhibitory activity is molecule
A2 and this result is in correlation with the results from
QSAR modeling. The molecule with the lowest values for
MolDock and ReRank “score” functions was template mol-
ecule A, which is also in good correlation with the results
obtained from QSAR modeling. The detailed definitions
of other “scoring” functions and their potential impact on
inhibitory activity can be found in the literature?®’.

O

&

Figure 4. Chemical structures of designed molecules.

Highest energy related to close electrostatic inter-
actions, calculated with Electro “scoring” function, is in-
dentified for molecules M2 and lowest for molecule M5.
Further, both highest and lowest energies related to long
electrostatic interactions, calculated with ElectroLong
“scoring” function, were identified for same molecules as
for Electro “scoring” function. Highest energy related to
hydrogen bonds is indentified for molecules A4 and low-
est for molecule A5. Also same molecules had the highest
and lowest energy related to the hydrogen bonding energy
(protein-ligand) as calculated if the directionality of the
hydrogen bond was not taken into account calculated with
NoHBond90 “scoring” function. Highest energy related to
steric interactions, calculated with Steric “scoring” func-
tion, is indentified for molecules A1 and lowest for mole-
cule A. For Van der Walls energies the highest values was
calculated, with application of VAW “scoring” function, for
molecule A4, and lowest for molecule A4. Highest energy
from overall interactions between ligand and receptor, cal-
culated with Energy “scoring” function, was obtained for
molecule A2 and lowest for molecule A.

All interactions between the selected molecules
and amino acids from angiotensin II type 2 receptoror
active site are identified and 2D representation of hydro-
gen bonds, hydrophobic, and hydrophilic interactions
inside the binding pocket are presented in Figures in the
Supplementary Information section, while the best-cal-
culated poses for all designed molecules inside the ac-
tive site of angiotensin II type 2 receptoror are presented
in Figure 5. According to obtained results there are two
clusters of molecules inside angiotensin II type 2 recep-
toror active site. Molecules A, A2, A4 and A5 (cluster 1)
were docked in one part of active site, while molecules
A1l and A3 (cluster 2) in other. Molecules from cluster 1
had hydrogen bonds with amino acids ARG182, LYS215

(o]
OH

OH HO\)_&—OH
@]
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Table 5. The list of all designed molecules with their SMILES notation and calculated activities

Molecule SMILES Notation Ac(calc.)
A 0=C(0O)clccccclelece(cecl)nle(CO)c(nc1CCC)CO 5.6237
Al 0=C(O)clccceclclece(cel)nle(CO)e(ncl1C(CC)CO)CO 6.2100
A2 0=C(O)clccceclclece(cel)nle(CO)e(ncl1C(CC)C(C)O)CO 6.7472
A3 0=C(O)clccceclclece(cel)nlc(CO)e(ncl1 C(CC)CN)CO 6.1397
A4 0=C(O)clccceclclecce(cel)nle(CO)c(ncl1 C(CC)C(C)N)CO 6.5279
A5 0=C(O)clccceclelece(cel)nle(CO)c(ncl1C(CC)C(=0)0)CO 6.4697

Table 6. Score values (kcal/mol) for all computer-aided designed compounds

Molecule Electro ElectroLong  Steric Vdw HBond NoHBond90 Energy PoseEnergy RerankScore
A -8.03766 -2.77855 -139.592 -45.6996 -9.69917 -9.71146 -151.25 -145.534 -112.478
Al -1.31333 -1.95883 -154.897 -46.1529 -5 -5.38596 -158.14 -150.184 -123.34
A2 -10.8113 -5.73813 -148.83 -42.3753 -9.10444 -10.3858 -167.669 -157.889 -125.207
A3 -8.75907 -2.86037 -152.509 -41.8093 -7.5 -8.39838 -156.857 -150.872 -121.193
A4 -8.3428 -2.78078 -153.414 -26.587 -11.4747 -11.5507 -157.525 -155.959 -121.392
A5 -1.29674 -1.9214 -152.925 -44.0886 -2.5 -2.5 -156.511 -147.798 -120.706
and ILE304, while molecules from cluster 1 had hydro- We have no conflict of interest to disclose.
gen bonds with amino acid PRO301. Also molecules
from cluster 2 shown m-7 interactions with amino acid

Acknowledgments

TRP100.

4. Conclusion

Developing robust QSAR models for angiotensin
II receptor antagonism that possess good predictability,
which is determined by utilizing various statistical pa-
rameters, represents the main aim of this research. Cal-
culations of the conformation independent models, which
were developed in accordance with the optimal descrip-
tors and derived from a local graph and the SMILES nota-
tion invariants, were performed by employing the Monte
Carlo optimization method. Applying a range of statistical
techniques yielded the evaluation of the developed QSAR
models’ predictive potential and robustness. The high ap-
plicability of the developed QSAR models is displayed by
the realized numerical values applied to validate the men-
tioned. The Monte Carlo optimization method successful-
ly determined molecular fragments, used in QSAR model-
ing as the SMILES notation fragments with a positive and
negative effect on angiotensin II receptor antagonism and
the mentioned were used for the computer-aided design
of novel compounds with higher pICs, values. The final
validator of the developed QSAR model and the designed
molecules’ potential inhibitory effect were the molecu-
lar docking studies, and the obtained results show good
inter-correlation. In summary, new therapeutics for the
treatment of hypertension and congestive heart failure can
be sought by applying the methodology presented in this
research.
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Patogeneza esencialne hipertenzije, kongestivnega srénega popusc¢anja in renovaskularne hipertenzije je povezana z an-
giotenzinom II. Ta $tudija predstavlja modeliranje QSAR za nabor spojin, ki delujejo kot antagonisti receptorjev an-
giotenzina II, na podlagi optimizacije Monte Carlo z deskriptorji na osnovi molekularnih grafov in zapisov SMILES.
Konformacijsko neodvisni modeli QSAR so bili razviti za tri naklju¢ne razdelitve. Za oceno statisti¢ne kakovosti razvitih
modelov smo uporabili razli¢ne statisti¢ne pristope, dobljeni rezultati pa so bili zelo dobri. Za kon¢no oceno modela smo
uporabili novo statisticno metriko, znano kot indeks idealnosti korelacije, in dobljeni rezultati kazejo, da je bil model
dober. Prav tako so bili definirani molekularni fragmenti, ki so odgovorni za povecanja in/ali zmanj$anja proucevane
aktivnosti, in nato uporabljeni za ra¢unalnisko podprto nacrtovanje novih spojin kot potencialnih antagonistov recep-
torjev angiotenzina II. Kon¢na ocena nacrtovanih zaviralcev je bila izvedena z uporabo $tudij molekularnega sidranja,
ki poudarjajo izjemno visoko stopnjo korelacije z rezultati modeliranja QSAR. Metodologijo, ki je predstavljena v tej
raziskavi, je mogoce uporabiti pri iskanju novih u¢inkovin za zdravljenje sréno-zilnih obolenj z antagonizmom recep-

torjev angiotenzina IL.
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