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Abstract 7 

Soft nanoparticles are an important class of material with potential to be used as carriers of active 8 

compounds. Swollen, penetrable particles can act as a hosts for these active ingredients and provide 9 

stability, stimuli-responsiveness and recyclability for the guest. Thermoresponsive colloidal gel particles are 10 

especially attractive for such applications due to the extremely soft structure, size and responsiveness. 11 

Poly(N-vinylcaprolactam) is a much studied, popular thermoresponsive polymer. The polymer has low 12 

toxicity and the phase transition temperature is close to body temperature. During the phase transition, 13 

the polymer becomes less soluble, the particle expels a large part of water and the particle collapses to a 14 

more compact one. The diffusion of material in and from the particles is largely affected by this transition.  15 

As the solubility of the polymer changes, so does the interactions with loaded compound.  This minireview 16 

focuses on the synthetic methods, properties and applications of soft PNVCL particles.  17 

 18 

Introduction 19 

 20 

There is a need for aqueous carriers of active compounds as a large portion of drugs are insoluble in water, 21 

a solvent which is the basis of biological fluids.1 Especially for cancer drugs, there is a need to deliver the 22 

drug to target site in a way that supresses the toxicity on healthy cells and supresses side-effects.2-4 In these 23 

applications the particles are used to mask the toxicity of the drug during the transport and to release it at 24 

target site. Water is also an important environmentally benign solvent for chemical transformations, but 25 

many catalysts and reagents need to be stabilized in water either to increase their availability and reactivity 26 

or to protect them from degradation. Soft (deformable) nanoparticles may help in compatibilization of the 27 

reagents and catalysts and act as nanoreactors. The particles may also help in separation of the catalyst 28 

from the product. Typical catalysts include both enzymes5 and metal nanoparticles.6,7 29 

From the different options available; self-assemblies of amphiphilic polymers, mesoporous silica particles, 30 

latex particles and such, micro- and nanogel particles are unique due to their dualistic nature between a 31 

branched  soluble polymer and a crosslinked dispersed insoluble  polymer particle 8-12 These, 1 nm to few 32 

μm sized polymer particles are robust, swollen with water and extremely soft / deformable. The 33 

deformability has been recognized as an important factor in determining the fate of carriers in human body 34 

as softer particles exhibit longer circulation times due to smaller response to the body immune system and 35 

due to being able to deform and pass through membranes.13-15 36 

Especially interesting soft nanoparticles are the stimuli responsive microgel particles  as the responsiveness 37 

can be utilized in to control the diffusion of material in to and out from the particles16 and in separation of 38 

the particles from a dispersion. Stimuli can also be used to change the conformation of the polymers in the 39 



particle to reveal active binding sites.17 Responsiveness is typically caused by the changed solubility of the 40 

sub-chains of the particle in response to a stimulus. Typical stimuli include pH, light and temperature.    41 

There are for example applications where the catalytic activity of a loaded catalyst is controlled by the 42 

swelling degree of the polymer particle.18 On the other hand, many microgel particles have also been 43 

reported to possess surface active properties and been used to stabilize emulsions.5,19-22 There is then a 44 

possibility to use these microgel particles as emulsifiers, which gives interesting possibilities when 45 

companied with a loaded catalyst for the catalysis at interphases.23-25 46 

Poly(N-vinyl caprolactam), PNVCL, is a popular polymer in general and also as a basis of responsive microgel 47 

particles. The main reasons are the low toxicity, thermoresponsiveness at moderate temperatures and the 48 

compatibility with a great variety of polar and non-polar compounds. PNVCL has been used in cosmetic 49 

products,26 protein affinity columns,27 and as a kinetic hydrate growth inhibitor in oil industry28. The 50 

polymer is made via radical polymerization of N-vinylcaprolactam. The monomer is synthesized from 51 

acetylene and caprolactam, which is a monomer mainly used for the synthesis of Nylon-6.29  Recently, a 52 

company named Genomatica announced it had synthesized a precursor for caprolactam in a 1 metric ton 53 

scale by fermentation from renewable resource.30 An excellent and comprehensive review exists about 54 

PNVCL.31   55 

 56 

 Figure 1. Synthesis of vinyl caprolactam 57 

 58 

Thermoresponsivenes 59 

 60 

The phase transition temperature of PNVCL depends on both the concentration and the molar mass of the 61 

polymer.32 Increasing either of these will result in lowering the transition temperature. Similarly, added 62 

electrolytes or cosolvents will shifts the transition temperature to a degree determined by the choice of the 63 

additive. 27,33-36 Commonly, the phase transition temperature is given as a cloud point, which is the 64 

temperature where a solution turns turbid as the polymer becomes less soluble and aggregates. Depending 65 

on the concentration the aggregation may result in monodisperse spherical aggregates referred to as 66 

mesoglobules or to a macroscopic phase separation.37 Even though a single temperature value, i.e. the 67 

cloud point, is often used to describe the phase transition, high sensitivity DSC measurements and IR 68 

measurements have revealed that the phase transition process is gradual and happens within a relatively 69 

broad temperature range.37,38  According to the DSC measurements, the released heat per NVCL unit is in 70 

the range of 4-5 kJ/mol. 37 The transition has been studied using several methods. In a work by Spevácek et 71 

al. NMR, IR and SAXS data combined with quantum chemical calculation elucidated the molecular basis of 72 

the transition.39 Below the transition temperature the polymer is well solvated due to extensive hydrogen 73 

bonding. Every PNVCL carbonyl binds on average two water hydrogens. During the phase transition the 74 

extent of this hydrogen bonding decreases, non-directly bound water is expelled and after the transition 75 

PNVCL oxygen binds only one hydrogen. It is important to notice that the polymer is still hydrated, but to a 76 

lesser degree. 77 



For a microgel particle, the phase transition temperature is often referred to as a volume phase transition 78 

temperature. The covalently crosslinked particles exhibit similar partial dehydration as the linear 79 

counterparts during heating, but instead of forming aggregates the particles shrink as water diffuses out 80 

from the gel network. Dynamic light scattering is the most utilized tool for analysing the transition. The 81 

degree of crosslinking is very important in determining the stability of the particles during heating. When 82 

the crosslinking degree is low, the microgels tend to aggregate similarly as the linear polymer.40 It is 83 

fascinating, how the prepacking to particles result in stability. Other tools used for analysing the transition 84 

are NMR, SANS, and DSC that directly monitor the transition. Various release tests analyse the effect of the 85 

transition on the loaded compounds; fluorescence probes and model drugs have been used in release 86 

analysis. There are also examples of responsive microgels with interacting moieties which allow 87 

temperature-switchable binding and release of proteins and bacteria.17  88 

Copolymerization can be used to tailor the transition temperature of the PNVCL containing copolymer.41 89 

Statistical copolymers of PNVCL with a more hydrophobic comonomer, such as vinyl acetate exhibit lower 90 

phase transition temperature compared to the PNVCL homopolymer with similar molecular weight. Vice 91 

versa, copolymers with a more hydrophilic comonomer such as N-methyl-N-vinylacetamide exhibit higher 92 

phase transition temperature compared to PNVCL homopolymer. Distribution of repeating units in the 93 

copolymer has also a decisive role in determining the degree to which the incorporated comonomer affects 94 

the thermal behaviour. Therefore, it is possible to synthesize block copolymers with PNVCL block and 95 

another thermoresponsive block, which exhibit two distinct phase transition temperatures, whereas a 96 

copolymer with more randomly distributed repeating units along the chain would exhibit only one 97 

transition.     98 

In nano/microgels, the responsiveness is also often altered with comonomers, and comonomers are used 99 

to alter the stability of the dispersions. 42-52Acidic and basic comonomers affect the swelling degree 100 

depending on the pH.44,47,51,52 Crosslinking degree was already mentioned to have a huge impact on the 101 

gels. However, there are also several examples of gel particles with different sensitive cleavable 102 

crosslinkers, including pH, oxidation/reduction, enzymatically degradable and mechanoresponsive 103 

ones.40,46,53-55  The transformations induced by cleaving the crosslinks are generally not recoverable unlike 104 

the thermosensitivity derived from the responsive polymer.   105 

 106 

Utilization of the thermoresponsiveness 107 

 108 

During the thermal transition, interactions between the dispersing medium and the polymer PNVCL 109 

change. This affects also the interactions between the polymer particle and the loaded content.43,47,56,57 The 110 

diffusion in and out from the particle is diminished above the phase transition temperature as the polymer 111 

collapses and forms a barrier.  112 

Thermoresponsive nanoparticles, including PNVCL particles have been widely studied as drug delivery 113 

systems.43,46,47,49,56 The release from the particles is often diffusion controlled.16 The thermoresponsiveness 114 

is utilized to obtain a fast and efficient loading at lower themperatures and a sustained released at higher 115 

temperatures.  The sustained release is important for the particle to reach its target prior to release. 116 

Specific interactions may be created by incorporating comonomers, often charged ones, to the particles. 117 

Acidic or basic units can provide a means for pH specific release.51   118 



As the diffusion in to and out from the particle is dependent on the swelling degree, accessability and thus 119 

activity of a loaded catalyst may be controlled with the swelling degree.18,58 Similarly, functional groups in 120 

the gel structure may be available only in the collapsed state. 17 121 

Soft microgel particles have also been studied as stabilizers of emulsions, and in these cases the thermal 122 

collapse of the polymer changes the colloidal stability of the microgel and results in destabilization of the 123 

emulsion.5,19-21,23 124 

 125 

 126 

 127 

 128 

Synthesis of soft particles  129 

 130 

Soft PNVCL polymer particles can be synthesized from a preformed polymer using self-assembly or from 131 

the monomer by means of polymerization, either emulsion or precipitation polymerizations. Also, “from 132 

top to bottom” approach has been reported, where microgel particles where prepared by grinding a macro 133 

hydrogel down to microgels.  134 

 135 

Synthesis by self-assembly 136 

 137 

PNVCL homopolymer may form stable self-assembled aggregates in aqueous solutions upon heating above 138 

the thermal transition temperature under dilute conditions. The particle size and size distribution depends 139 

on the molecular weight and concentration of the polymer and on the heating program.37,59,60 The self-140 

assembled structures are stable for days, even months, and the self-assembly process can be used to 141 

capture material inside the particles. The particles are dynamic in their nature, stable against dilution, but 142 

disassemble by lowering the temperature. However, hydrogen bonding with phenols may be used to make 143 

the particles to withstand cooling.59,61 Similarly, PNVCL-block copolymers can form assemblies upon heating 144 

and can be stabilized against heat induced dis-assembly.62,63  145 

In addition to thermoprecipitation, PNVCL block copolymers form assemblies as any amphiphilic block 146 

copolymer. In these assemblies PNVCL can be either one, the solvophobic or solvophilic block depending on 147 

the other block and on the conditions. PNVCL-PEG copolymer particles have been formed for example both 148 

with thermoprecipitation59 and with solvent-exhange from DMF to H2O (37 °C).64 Additionally, PNVCL block 149 

copolymers have been self-assembled using nanoprecipitation and by film-dehydration followed by 150 

membrane extrusion.65   151 

PNVCL has also been assembled with silk fibroin using the layer-by-layer method to form multilayers on 152 

silica particles. Hydrophobic interactions and hydrogen bonding are responsible for the interactions 153 

between silk fibroin and PNVCL.66 The use of the self-assemblies of PNVCL copolymers in biomedical 154 

applications has recently been reviewed.67    155 

 156 

 157 



Synthesis by the means of polymerization 158 

 159 

1. Precipitiation polymerization 160 

Precipitation polymerization is a type of free radical polymerization that is used to make particles, 161 

especially colloidal gels. In the polymerization the monomer is soluble in the solvent but the formed 162 

polymer is not and as a result, the polymer will precipitate during the polymerization. When synthesising a 163 

thermoresponsive polymer, the synthesis temperature is selected such that the formed polymer is 164 

insoluble. Surfactants are often used in the synthesis to guide the polymer to precipitate into well-defined, 165 

similar sized aggregates, which stay dispersed in the reaction mixture. When synthesizing colloidal gel 166 

particles, difunctional comonomers, i.e. crosslinkers are used. Then the polymer particles/aggregates 167 

formed during the synthesis become permanent polymer networks that do not break even upon improving 168 

the solvent quality. Synthesis of colloidal PNVCL hydrogels has been well studied and various comonomers 169 

have been incorporated to the particles during the polymerizations. 42-50,68-75  170 

Typically, precipitation polymerizations have been performed as batch polymerizations, meaning that all 171 

monomers are present from the start. In batch polymerizations, the reactivity difference between 172 

monomers can lead to a composition gradient in the particle structure as the more reactive monomer is 173 

incorporated first.50,69,70,73 For this reason, PNVCL colloidal gels usually have a more crosslinked core and 174 

dangling chains on the surface, as the crosslinker, which is the more reactive monomer, has polymerized 175 

first.70,73 Continuous and semi-continuous addition of monomers can be used to control the spatial 176 

arrangement of the monomers in the gel particles. Imaz et al. and Willems et al. have reported syntheses of 177 

a homogenously crosslinked hydrogel particles with continued feed of the crosslinking monomer during the 178 

polymerization.50,70  Temperature ramp and continuous feed have also been used to synthesize large 1 to 5 179 

μm sized particles.76 Precipitation polymerization has also been performed without surfactants in a inject 180 

printer, where high shear forces and pressures have resulted in small stable particles (50 nm).77 Also there 181 

is a report of precipitation polymerization in a continuous flow reactor.78 182 

Precipitation polymerization can also be used to polymerize a PNVCL shell on a pre-existing particle or on a 183 

sacrificial template such as a dimethyldiethoxysilane droplet.79 Removal of the sacrificial template will 184 

produce particles with inner lumen, i.e. capsules.   185 

 186 

 187 

2. Emulsion polymerization 188 

 189 
Emulsion polymerization is ”polymerization whereby monomer(s), initiator, dispersion medium, and 190 

possibly colloid stabilizer constitute initially an inhomogeneous system resulting in particles of colloidal 191 

dimensions containing the formed polymer”, according to the IUPAC definition.80 192 

The typical precipitation polymerizations of NVCL in water is also sometimes referred to as an emulsion 193 

polymerization. However, in this text the term precipitation polymerization is used for the aqueous 194 

polymerizations of NVCL, which are performed above the phase transition temperature of PNVCL, and 195 

where the starting NVCL concentration (0.5–3 wt% monomer in respect to H2O) is close to the solubility 196 

limit of NVCL. Most of the PNVCL particle syntheses are precipitation polymerizations. The use of larger 197 

concentrations of NVCL has been reported to lead to colloidal instability and to the formation of coagulum 198 

during the polymerization.70 199 



In addition to precipitation polymerizations in water, PNVCL particles have also been synthesized with 200 

miniemulsion81,82 and inverse miniemulsion polymerizations83,84. In miniemulsion and in inverse 201 

miniemulsion polymerizations, the initial polymerization mixture consists of evenly sized droplets dispersed 202 

in a continuous phase, and these droplets act as the loci of the polymerization and in the end turn in to 203 

polymer particles.85,86 To clarify, the difference between emulsion and miniemulsion polymerization is that 204 

in the latter, the starting mixture contains evenly sized droplets that have similar size as the resultant 205 

particles. The formation of the initial droplets is achieved by using surfactants and by intensive mixing 206 

processes such as sonication. The dispersed droplets often need to be stabilized against Ostawald ripening 207 

by using a costabilizer, which is a compound that is highly insoluble to the continuous phase, but soluble to 208 

the monomer phase. 209 

In inverse miniemulsion polymerizations, the dispersed droplets consist of a polar solvent (usually water) 210 

and the monomer, and the continuous phase is non-polar. This method is suitable for the synthesis of 211 

watersoluble polymers. When the polymerization takes place in the droplet phase instead of the 212 

continuous water phase, polymer particles are formed instead of a macrogel. Effective incorporation of 213 

water-soluble compounds to the formed PNVCL colloidal gel particles could be a reason to use this 214 

syntheses method.     215 

In miniemulsion polymerization, the dispersed phase is organic and contains the monomer, and the 216 

continuous phase is aqueous. The method has been used for the synthesis of PNVCL particles with high 217 

monomer concentrations (up to 16 wt% in respect to H2O)81,82 and to synthesize PNVCL particles with a 218 

water insoluble comonomer,87 which can be difficult with precipitation polymerization. The miniemulsion 219 

polymerization often demands the use of an additional hydrophobe (costabilizer) such as hexadecane and 220 

possibly the use of a cosolvent for the formation of the dispersed phase. The additives can result in a need 221 

of extensive purification steps. There are however, reports of miniemulsion like polymerization of NVCL 222 

without any cosolvent or costabilizers,87,88 with CTAB as the stabilizer and with  starting NVLC concentration 223 

<1.4 wt% performed after homonogenization with a microfluidisizer (at least 1100 bars and 8 cycles). The 224 

polymerization conditions are close to equal to the ones used in the precipitation polymerizations, except 225 

for the homogenization process. NVCL is soluble in water at the used concentration, however relatively 226 

stabile (at least for 250 min) monomer/surfactant droplets were observed with dynamic light scattering 227 

before addition of the initiator. This was because of the slowness of the dissolution of NVCL in water. This 228 

raises a question about the homogeneity of the starting situation in the precipitation polymerizations and 229 

on the correctness of the use of the term. In studies on the precipitation polymerization of NVCL, the 230 

starting mixture has seldom been investigated to verify the homogeneity. 231 

     232 

 233 

 234 

 235 

3. Polymerization induced self-assembly 236 

 237 
Polymerization induced self-assembly (PISA) is a type of controlled polymerization, where a solvophilic 238 

polymer is chain extended with a solvophobic block.89,90 During the polymerization the growth of the 239 

solvophobic block causes the polymer to self-assemble. The polymerizations are most often RAFT 240 

polymerizations, where a solvophilic macromolecule with a chain transfer agent (CTA) as an end group, i.e. 241 

macromolecular CTA (macroCTA), is used to control the polymerization and as the soluble block in the 242 



forming copolymer. This is also a synthetic route to obtain polymer particles. These particles are not 243 

polymer networks but amphiphilic self-assemblies consisting of block copolymers with narrow molecular 244 

weight distributions. Usually, no surfactant is needed in addition to the soluble polymer to be chain 245 

extended. Other appealing aspect of the polymerization is the possibility to obtain different well-defined 246 

morphologies by changing the block length ratio and concentration of the polymerization. Typically, also 247 

high monomer concentrations (1o to 30 wt%) can be and are used in the PISA polymerizations. 248 

 249 

Figure 2. Polymerization induced self-assembly in water (by Vikram Baddam) 250 

 251 

Recently, the first example of PISA of NVCL as the sole monomer was reported.63 Prior work has shown how 252 

a partial utilization of the PISA concept can also be beneficial compared to the precipitation/emulsion free 253 

radical polymerizations. Etchenausia et al. have synthesized cationic hydrogel particles by polymerizing 254 

NVCL in water above the phase transition themperature of PVCL with crosslinker and a cationic 255 

macroCTA.91 Using a crosslinker in a batch polymerization makes it unlikely to obtain a controlled 256 

polymerization and hence the polymerization induced self-assembly. However, the synthetic approach 257 

proved to be suitable for the production of colloidal hydrogel particles at high monomer concentrations (up 258 

to 10 wt% in respect to mass of H2O) compared to a free radical precipitation polymerization counterpart 259 

(no CTA, just surfactants). The macroCTA group reacted during the polymerization and imparted 260 

unprecented stability to the system against coagulation. Same group also performed aqueous PISA 261 

copolymerization of NVCL and vinylacetate with a PEG based macroCTA.92 Control over molecular mass was 262 

limited and only few polymerizations were made, but the resultant material was interesting as the formed 263 

polymers resembled by composition Soluplus93 (a commercial PNVCL containing polymer in clinical trials). 264 

No crosslinker was used as the hydrophobic comonomer prevented the dissolution of the formed assembly 265 

upon cooling if used in sufficiently high amounts (47 mol% of monomers in feed).  266 

 267 

Comparison of the synthesis methods 268 

 269 

Various aspects of the different synthesis methods to obtain soft PNVCL nanoparticles are presented in 270 

Table 1, to allow convenient comparison between them. 271 

 272 

 273 

 274 

 275 



Table 1 Various selected aspects of synthesis methods of PNVCL particles 276 

Method Concentrationa Suitable for Surfactantb REF. 

Self-assembly ≤ 0.2 wt% 

 

homo- and 

copolymers 

not used 37,59,60,62,65,66 

Precipitation 

polymerization 

0.5–3 wt% homo- and 

copolymers 

0–8 wt%, or 

surfactant-type 

comonomer (2 

– 50 wt%) 

42-44,46-

50,57,68-78,94 

Miniemulsion 

polymerization 

≤ 16 wt% homo- and 

copolymers 

0.4-2 wt% + 

possibly an 

additional 

costabilizer 

81,82,87,88 

Inverse 

miniemulsion 

polymerization 

≤ 5 wt% homo- and 

copolymers 

100 wt% 84 

PISA 1–30 wt% copolymers macroCTA 63,91,92 

a) monomers in respect to the weight of solvents plus continuous phase, 277 

b) wt% given in respect to monomer weight 278 
 279 

 280 

 281 

Conclusions and future  282 

 283 

The PNVCL particles are widely utilized as active ingredient carriers and emulsion stabilizers. PNVCL 284 

provides a thermoresponsive matrix for hosting the guest. The polymer is ideal for this purpose due to its 285 

non-toxicity and compatibility with a broad variety of compounds.  Solvent phobicity is an efficient driving 286 

force in loading of the particles. The particles themselves can act as nanoreactors and the temperature 287 

governed conformation controls the accessibility of reagents inside the particles and diffusion of material in 288 

and out from the particle. This accompanied with surface active properties provides opportunities in 289 

interfacial reactions.  290 

Current trend is to add functionality to the microgels for more specific tasks, and for more accurate delivery 291 

and release of the active ingredient. Similarly, more sophisticated architectures such as vesicular particles 292 

with drug loaded to the inner lumen surrounded by a membrane with temperature dependent 293 

permeability,65 degradable crosslinks for triggered release,62,79 and core-shell particles with pH dependent 294 

accelerated release of proteins51 are promising. 295 

There is also a report of PNVCL gel particles showing antiviral activity against HIV-virus.75 Additionally, soft 296 

PNVCL particles may be found in future in various scavenging applications including temperature 297 

dependent interactions with bacteria17 or removing small amounts of oil from water 22. New innovative 298 

applications keep appearing. As the synthesis methods develop and are getting industrially applicable, we 299 

see a great future for soft PNVCL particles.     300 

 301 
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