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Abstract
The present study deals with the in silico of 45 indolyl-aryl-sulfones known as anti-HIV1. The data were collected from 
recent previously reported inhibitors and divided into a sub-set of 33 compounds as the training set and the remaining 12 
compounds were kept in the test set. The selected pharmacophore–ADRRR–yielded a statistically significant 3D-QSAR 
model containing high confidence scores (R2 = 0.930, Q2 = 0.848, and RMSE = 0.460). The predictive power of the estab-
lished pharmacophore model was validated with an external test (r2 = 0.848). A systematic virtual screening workflow 
shows an enrichment factor and has revealed a high predictive power. Then the model was used to screen the filtered 
PubChem database mapping all chemical features of model pharmacophore. The recognized hits were further assessed 
by in silico ADMET studies. Molecular dynamics also used to explore the stability of obtained complexes. Finally, these 
selected compounds are probably to become a good lead molecule for the development of effective anti-HIV-1 drugs.

Keywords: Indolyl-aryl-sulfone, HIV-1 inhibitor, Pharmacophore, 3D-QSAR, Molecular Docking, Molecular Dynam-
ics.

1. Introduction
AIDS is one of the most destructive of human im-

mune system pandemic in the world, caused by human 
immunodeficiency virus infection (HIV).1 It continues to 
be a critical global public health concern, 1.5 million peo-
ple were newly infected with HIV in 2020, and around 38 
million HIV-infected persons are estimated to be dealing 
with it to date.2 Unfortunately, there is no effective treat-
ment for HIV infection. Luckily, available antiretroviral 
drugs are used to control the proliferation of the virus. 

Therefore, persons having HIV can lead healthy and pro-
ductive lives.3 

Most of the drugs designed and licensed have been 
classified as Nucleoside Reverse Transcriptase inhibi-
tors (NRTI’s), Non-nucleoside Reverse Transcriptase 
Inhibitors (NNRTI’s), Protease Inhibitors (PI’s), Fusion 
Inhibitors, HIV integrase strand transfer inhibitors and 
Inhibitors–CCR5 co-receptor antagonist.4 Protease is an 
important factor for viral maturation within the HIV life 
cycle.5,6 The HIV protease is a homodimeric aspartyl pro-
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tease and each monomer consists of 99 amino acid resi-
dues with a catalytic Asp at position 25. At nine processing 
sites, the main structural component of HIV-1 is the Gag 
polyprotein. HIV-1 protease cleaves polyprotein precur-
sors Gag and Gag-Pol encoded by the HIV-1 virus genome 
to create mature active proteins.7 Gag-Pol is incorporated 
into virions via interactions with the Gag precursor Pr-
55gag. The protease (PR) incorporated into Gag-Pol me-
diates proteolytic processing of both Pr55gag and Gag-Pol 
during or shortly after release of viral particles from cells. 
Since efficient viral incorporation of Gag-Pol depends on 
interaction with Pr55gag through its N-terminal Gag do-
main, prevention of premature Gag cleavage may attenuate 
Gag-Pol packaging deficiencies associated with enhance-
ment of the PR cleavage.8

The vital role of HIV protease in viral maturation 
makes it a popular drug design target; there are 10 FDA-ap-
proved HIV protease inhibitors, namely: Saquinavir, Indi-
navir, Ritonavir, Nelfinavir, Amprenavir, Fosamprenavir, 
Lopinavir, Atazanavir, Tipranavir, and Darunavir. The 
FDA-approved HIV protease inhibitors have structural 
similarities and a similar binding pattern, which might ex-
plain some of the protease inhibitor-related adverse effects 
such as dyslipidaemia, hyperglycaemia, and body-fat dis-
tribution. It is possible to optimize the chemical structure 
of HIV protease inhibitors to avoid side effects.9,10

The computer-aided drug design CADD approach 
has played a crucial role in the search and optimization 
of potential lead compounds with a substantial benefit in 
time and expense; it has been used during different phases 
of drug discovery: target identification, validation, molec-
ular design, and interactions of drug candidates with tar-
gets of interest.11,12

Pharmacophores are a set of methods related to 
QSAR: they produce 3-dimensional arrangements of func-
tional group that are required for activity.13,14

A well-developed pharmacophore model may be 
used to design novel and more active molecules, such 
pharmacophore models are also the starting point for 
3D-QSAR analysis, and can allow quantitative predictions. 
In the very early stages of the drug development process, 
the use of 3D pharmacophore models will potentially 
anticipate unwanted side effects and thereby reduce the 
probability of late failure of drug candidates.15 

Docking simulations are widely used to screen a li-
brary of compounds rapidly and to identify new drug leads 
employing a simple model. Docking simulations are also 
useful for lead enhancement using more detailed models 
to analyze the atomic interactions between inhibitors and 
target macromolecules.16

In order to take a forward step for prediction and 
guidance of more effective drug, we have utilized state of 
the art techniques in drug design for the development of 
a three-dimensional pharmacophore model using a data-
set of indolyl-aryl-sulfone derivatives from literature. We 
have used also a comprehensive approach involving vir-

tual screening-based pharmacophore modeling, molecu-
lar docking and Molecular Dynamics (MD) simulations 
to identify potential HIV1 inhibitors. The studied com-
pounds were consequently analyzed for ADMET proper-
ties and were found to be potential drug-like candidates 
that can effectively bind to the HIV protease enzyme. 

Taken together the specifics of the current study 
could provide important insights needed for the produc-
tion of next-generation of inhibitors that could theoreti-
cally reduce the function of HIV protease.

2. Materials and Methods
2. 1. At a Set Preparation

In vitro biological data of a series of 45 indolyl-ar-
yl-sulfones as anti-HIV-1 were collected from literature.17 
the observed anti-HIV-1 activity was represented as EC50 
and converted into logarithmic scale pEC50 = –logEC50 
(μM).

It is essential to examine the structures of the mole-
cules in the data set before starting molecular modeling. For 
that, the 3D-structures of the 45 inhibitors were prepared 
using the builder panel in Maestro 12.0 and were generated 
for all ligands with LigPrep.18 Partial atomic charges were 
ascribed and possible ionization states were generated at a 
pH equal to 7.0. The OPLS3e force field was used to optimize 
and to produce low energy conformer of the ligand.19,20 En-
ergy minimization was performed with OPLS3e force field 
till root mean square mean deviation (RMSD) of 0.01 Å was 
attained. The so-prepared ligands were used to generate 
pharmacophore and to build QSAR model.

2. 2. Generation of Pharmacophore Model
A pharmacophore describes the arrangement of mo-

lecular or functional group’s characteristics that a ligand 
must contain in order to produce a given biological re-
sponse. Pharmacophore models are developed to identify 
new compounds that meet the requirements of the phar-
macophore, which could have the high probability to be 
biologically active. Often, such pharmacophore models are 
the starting point for 3D-QSAR analysis.21

Each compound structure was represented by a set 
of points in 3D space that correspond to different chemical 
features, which help the compound to bind with the target 
receptor non-covalently. The data set was created by assign-
ing pEC50 > 8.6 as active and pEC50 < 6.5 as inactive to the 
threshold. Inactive compounds can be used to screen the hy-
pothesis because they do not provide an explanation for the 
activity. However, they give signals of the inactive function.

Six pharmacophore features defined the chemical 
features of the ligands: H-bond Acceptor (A), H-bond Do-
nor (D), hydrophobic group (H), negatively charged group 
(N), positively charged group (P) and Aromatic Ring (R). 
The consistency of each alignment is calculated by: (1) the 
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vector score, the average cosine of the angles generated in 
the aligned structures by the corresponding pairs of vector 
characteristics (acceptors, donors and aromatic rings); (2) 
the volume score that is based on the overlap of Van der 

Waals non-hydrogen atom models in each pair of struc-
tures (3); the site score which is the degree to which site 
points in the alignment are applicable; (4) The final score, 
(5) and the function-survival score.

Table 1. Various substituents attached to basic structure of indolyl-aryl-sulfones.

N°		  Structural features
	 X	 Y	 Z	 W

1	 SO2	 H	 NH2	 Cl
2	 S	 H	 OEt	 H
3	 S	 2-NH2	 OEt	 Cl
4	 S	 2-NH2-5-Cl	 OEt	 Cl
5	 SO2	 H	 OEt	 H
6	 SO2	 2-NH2-5-Cl	 OEt	 H
7	 SO2	 2- NH2-5-Cl	 OEt	 Cl
8	 S	 H	 NH2	 H
9	 S	 2-NH2-5-Cl	 NH2	 H
10	 S	 H	 NH2	 Cl
11	 S	 2-Me	 NH2	 Cl
12	 S	 4-F	 NH2	 Cl
13	 S	 4-Cl	 NH2	 Cl
14	 S	 4-iPr	 NH2	 Cl
15	 S	 4-tBu	 NH2	 Cl
16	 S	 3,5-Me2	 NH2	 Cl
17	 S	 2,6-Cl2	 NH2	 Cl
18	 S	 2-NH2-5-Cl	 NH2	 Cl
19	 SO2	 H	 NH2	 H
20	 SO2	 2-NH2-5-Cl	 NH2	 H
21	 SO2	 2-Me	 NH2	 Cl
22	 SO2	 3-Me	 NH2	 Cl
23	 SO2	 4-Me	 NH2	 Cl
24	 SO2	 4-F	 NH2	 Cl
25	 SO2	 4-Cl	 NH2	 Cl
26	 SO2	 4-iPr	 NH2	 Cl
27	 SO2	 4-tBu	 NH2	 Cl
28	 SO2	 2,4 Me2	 NH2	 Cl
29	 SO2	 3,5-Me2	 NH2	 Cl
30	 SO2	 2,6-Cl2	 NH2	 Cl
31	 SO2	 2-NH2-5-cl	 NH2	 Cl
32	 SO2	 3,5-Me2	 NH2	 Br
33	 SO2	 3,5-Me2	 NH2	 COMe
34	 SO2	 3,5-Me2	 NH2	 CH(OH)Me
35	 S	 H	 NHNH2	 Cl
36	 S	 4-Me	 NHNH2	 Cl
37	 S	 4-F	 NHNH2	 Cl
38	 S	 4-Cl	 NHNH2	 Cl
39	 SO2	 H	 NHNH2	 H
40	 SO2	 H	 NHNH2	 Cl
41	 SO2	 4-Me	 NHNH2	 Cl
42	 SO2	 4-F	 NHNH2	 Cl
43	 SO2	 4-Cl	 NHNH2	 Cl
44	 SO2	 3,5-Me2	 NHNH2	 Cl
45	 SO2	 2-NH2-5-Cl	 NHNH2	 Cl
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2. 3. Building 3D-QSAR Model
QSAR modeling was performed using the selected 

hypothesis by dividing randomly the data set into training 
set (60%) and test set (40%). This phase presents two op-
tions for the alignment of the 3D-structure of molecules: 
pharmacophore-based alignment and atom-based align-
ment.

In this study, the selected 45 compounds from the 
chemical dataset were used to develop an atom-based 
3D-QSAR model based on previously developed pharma-
cophoric maps as a backbone with a default grid space of 1 
Å via partial least-square (PLS) regression.22

2. 4. Model Validation
Validation is a critical aspect of pharmacophore 

design, particularly when the model is constructed for 
predicting molecular activity in external test series.23 the 
intensity of the defined pharmacophore hypotheses was 
internally validated by statistical parameters, squared 
coefficient of correlation (R2) and the ratio of variance 
(F). Validation on chemicals was not used in the model 
development, the so-called external validation, is par-
ticularly important in the context of using QSAR models 
for the prediction of new data in virtual screening.24 The 
approach demonstrated by Golbraikh and Tropsha, in 
200025 and Roy and al., 200826 was used to evaluate the 
predictive potential of the current QSAR model. Further, 
the best hypothesis selected was validated by enrichment 

studies using the decoy test. More than 1000 decoy test set 
compounds retrieved from the PubChem database, were 
taken to evaluate the predictive power of the built model27 
and were taken to evaluate some parameters, such as: En-
richment Factor (EF), Robust Initial Enhancement (RIE), 
Receiver Operating Characteristic (ROC) and Boltz-
mann-Enhanced Discrimination of ROC (BEDROC). 
These parameters were used to benchmark the reliability 
of the model and for the accurate ranking of compounds.28

2. 5. Virtual Screening of PubChem Database
In pharmaceutical research, computational screen-

ing of databases has become incredibly popular. Based 
on biological structures, virtual screening uses comput-
er-based methods to discover new ligands.29,30 the aim of 
virtual screening, in this work, is to detect potential leads 
to anti-HIV with various scaffolds and high inhibitory ac-
tivity. To identify inhibitors of PR HIV, we have screened 
the PubChem database31 by searching compounds hav-
ing more than 80% similarity instead of compound that 
have the most fitness score (compound 40, Table 1). All 
PubChem drug-like compounds (459926) were filtered 
by Canvas’s property filter utility to pick compounds with 
low-dimensional properties similar to the anti-HIV com-
pounds. We used the following property filters: AlogP ≥ 
1, AlogP ≤ 5, HBA ≥ 2, HBA ≤ 3, HBD ≥ 1, HBD ≤ 3, 
MW ≥ 250, MW ≤ 500, Num rings ≥ 3, Num rings ≤ 5, 
Polar ≥ 45, Polar ≤ 60, RB ≥ 3 and RB ≤ 5. As a result, 

Fig. 1. Schematic representation of the methods followed in the current study.
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5575 compounds were obtained and mounted as a series of 
decoys. Each compound must fit a minimum of four sites 
and a distance of 2.0 Å matching between sites. After the 
pharmacophore-based screening according to the fitness 
score, the top 230 hits were selected for molecular docking 
analysis. Figure 1 represents the schema of the methods 
followed in the current study.

2. 6. Molecular Docking Analysis
T﻿he top 230 compounds were selected for molecu-

lar docking analysis based on the pharmacophore model 
following virtual screening. X-ray crystal structure of wild 
type HIV-1 protease in complex with GRL-09510 (PDB ID: 
5v4y) were obtained from the Protein Data Bank PDB.32 
The protein structure was preprocessed using the Protein 
Preparation Wizard,33 available in Schrödinger suite 2021-
2, by eliminating crystallographic water molecules (water 
molecules without H-bonds), inserting all missing side 
chain atoms, and pH 7.0 corresponding hydrogen bonds, 
taking into account the necessary ionization states for the 
residues of both acid and basic forms of the amino acid. 

Finally, energy minimization (up to 3.0 Å RMSD val-
ue) was performed using OPLS-2005 force field after the 
assignment of charge and protonation state. In fact, it was 
minimized to alleviate the steric clashes between the resi-
dues due to the addition of hydrogen atoms. The active site 
was defined with a radius of 10 Å around the ligand pres-
ent in the crystal structure and a grid was generated at the 
center of gravity of the active site for docking. All studied 
compounds were docked into the catalytic pocket of the 
Protease protein (PDB-ID: 5v4y) using Grid-Based Ligand 
Docking with Energetics34 with default parameters. Final-
ly, the docking results were analyzed using Biovia Discov-
ery Studio 4.5.12 (Dassault Systèmes 2018).35

2. 7. Analyzing ADMET 
ADMET (Absorption, Distribution, Metabolism, 

Elimination, Toxicity) analysis is important in drug de-
sign. These properties were calculated using the QikProp 
module36 of Schrodinger suite for assessing the drug abil-
ity and to filter the ligand molecules at an early stage of 
identifying the new inhibitors.

Toxicity is the degree to which a substance can dam-
age an organism or substructure of the organism. The pre-
dictions of toxicity of the compounds are essential to re-

duce the cost and labor of a drug’s preclinical and clinical 
trials. The toxicity evaluation was performed also using the 
ProTox platform.37 It gives predicted toxicity values, cy-
totoxicity, mutagenicity, carcinogenicity, immunotoxicity 
and LD50 values of selected compounds.

2. 8. Molecular Dynamics Simulations
Two compounds showing highest binding affin-

ity towards HIV-1 protease were selected for Molecu-
lar Dynamics (MD) simulation studies. The molecular 
docked complexes with lowest binding energy were used 
as initial point for the MD simulations performed using 
Gromacs-2018.1 packages with amber99sb-ILDN force 
field.38,39 The protein alone and their complexes with li-
gands (11630770 and 55868948) were solvated in triclin-
ic-boxed using TIP3P water model. Each structure was 
neutralized using counter chlorine ions. The topology of 
both ligands was prepared using antechamber packages in 
Amber Tools 19.40 For the removal of weak Van der Waals 
contacts; each system was minimized using the steepest 
descent minimization. The systems were then equilibrated 
for NVT using V-rescale thermostat for 1 ns at 300 K tem-
perature followed by NPT equilibration using Parrinel-
lo-Rahman barostat at 1.0 bar for 1 ns.41,42 MD simulation 
of each system was carried out for 100 ns and the trajec-
tories were recorded at 10 ps inervals. Each trajectiry was 
sunjected to PBC (periodic boundary conditions) correc-
tions before analysis. All calculations except MM-PBSA 
was done uisng Gromacs utilities. MM-PBSA calculation 
was performed for the calculation of vriuous binding en-
ergies the ligands with HIV-1 protease.43

3. Results and Discussions
3. 1. Pharmacophore Modeling

Our work is focused on the identification of new 
compounds with potential antiviral activity anti-HIV-1. 
To fulfill the objective, a ligand-based pharmacophore 
model was built using previously reported inhibitors, with 
a different combination of pharmacophoric features, 920 
pharmacophore hypotheses have been produced. 

Its vector, volume, sites survival score, and the num-
ber of matches measured the quality of each hypothesis. 
Table 2 represents the different scoring parameters for 
best hypothesis. The best fitted Model ADRRR1 with the 

Table 2. Different parameter scores of the generated hypothesis ADRRR1.

	 Survival score	 Site	 Vector	 Volume	 Bedroc	 Matches

ADRRR1	 6.067	 0.944	 0.977	 0.917	 0.843	 5
ADRRR2	 6.063	 0.695	 0.922	 0.613	 0.843	 5
ADRRR3	 6.062	 0.705	 0.919	 0.620	 0.844	 5
ADRRR4	 6.061	 0.711	 0.922	 0.619	 0.843	 5
ADRRR5	 6.061	 0.681	 0.932	 0.622	 0.844	 5 
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highest survival score (6.067) and site score (0.944) consist 
five-point hypothesis one hydrogen acceptors, one hydro-
gen donor, and three ring group. The spatial arrangement 
of the best pharmacophore hypothesis, ADRRR1 with 
their distance between the five-pharmacophore features is 
shown in figure 2 and tables S1-S2.

3. 2. 3D-QSAR Model
The previously developed pharmacophore hypothe-

sis ADRRR1 was used to build an atom-based 3D-QSAR 
with the phase program.44 Based on the training set mole-
cules for the chosen hypothesis, the pharmacophore mod-
el, that is statistically significant, was created through par-
tial least-square (PLS) regression. The partial least-squares 

factor has been raised to five, as there is a gradual improve-
ment in the model’s predictive power and statistical signif-
icance until the fifth factor. 

A statistically significant 3D-QSAR model was ob-
tained using this pharmacophore hypothesis with a strong 
correlation coefficient (R2 = 0.929) and a high Fisher ratio 
(F = 57) for the training set. The predictive power of the 
developed model was also found to be important, verified 
by the high value of the coefficient of cross-validated cor-
relation (Q2 = 0.848) and Pearson’s R (0.926) for the test 
set. The plots between the observed and the predicted ac-
tivities were made for both the training and test sets (Fig-
ure 3). The higher values of R2and Q2 in the training and 
test sets, respectively, are clearly indicated by the points 
lying extremely near to the best-fit line.

Fig. 2. (A) Pharmacophore model ADRRR1 interstice angles in (°) unit between the pharmacophoric points and (B) Pharmacophore model 
ADRRR1 interstice distances in Å unit.

Fig. 3. The plot of the correlation between the experimental and predicted activity of based indolyl aryl sulfones inhibitors using pharmacoph-
ore-based QSAR model of training and test set.
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3. 3. Model Validation
All the external validation results were above the 

threshold values for the various parameters presented in 
table S3. The squared correlation coefficient values be-
tween the observed and predicted values of the test set 
compounds (r2) and (r2 

0), respectively, were observed and 
the model had satisfied the requirement of the term (r2 − r2 

0)/r2. This was in agreement with a previous study reported 
by Golbraikh and co-workers, which states that the value 
(r2 − r2 

0)/r2 exhibits less than 0.1. In case of good external 
prediction, predicted values will be very close to observed 
activity values. Therefore, r2 value will be very near to r2

0 
value. In the best case r2

m will be equal to r2, whereas in 
the worst-case r2

m value will be zero, including values of 
r2

m < 0.6 indicate these models are useless for external 
predictivity. In the present study r2

m value of the model is 
acceptable (Table S3). This developed model passed all the 
Golbraikh and Tropsha criteria for the acceptability of the 
model. The screening results were evaluated by an enrich-
ment factor at the top 1% of the ranked database (EF1) and 
are summarized in table S4.

reported by Golbraikh and co-workers, which states that 
the value (r2 − r2 

0)/r2 exhibits less than 0.1.
In case of good external prediction, predicted val-

ues will be very close to observed activity values. There-
fore, R2 value will be very near to R2

0 value. In the best 
case r2

m will be equal to r2, whereas in the worst-case r2
m 

value will be zero, including values of r2
m< 0.6 indicate 

these models are useless for external predictivity. In the 
present study r2

m value of the model are acceptable (Ta-
ble S3).

This developed model passed all the Golbraikh and 
Tropsha criteria for the acceptability of the model. The 
screening results were evaluated by an enrichment factor 
at the top 1% of the ranked database (EF1) and are sum-
marized in table S4.

The enrichment factor (EF) of this screening proto-
col was calculated to be 13.012, which indicated that se-
lected model has 13 times more stability to identify active 
molecules than inactive.

Visualization of the validation was presented in ROC 
analysis to show how effectively the pharmacophore mod-

Fig. 4. (A) Mapping of the active compounds onto the pharmacophore. (B) Mapping of inactive compounds on to the pharmacophore.

Table 3. 3D-QSAR PLS statistical results of the selected Pharmacophore model ADRRR1.

ID	 PLS factors	 SD	 R2	 F	 P	 RMSE	 Q2	 Pearson-R

ADRRR1	 1	 0.650	 0.722	 39	 4.52 10–9	 0.600	 0.742	 0.869
	 2	 0.509	 0.835	 49	 1.78 10–11	 0.620	 0.724	 0.865
	 3	 0.425	 0.889	 56	 5.83 10–13	 0.490	 0.826	 0.914
	 4	 0.404	 0.903	 50	 7.10 10–13	 0.530	 0.799	 0.904
	 5	 0.351	 0.930	 57	 4.30 10–14	 0.460	 0.848	 0.925

All the external validation results were above the 
threshold values for the various parameters presented in 
table S3. The squared correlation coefficient values be-
tween the observed and predicted values of the test set 
compounds (r2) and (r2 

0), respectively, were observed 
and the model had satisfied the requirement of the term 
(r2 − r2 

0)/r2. This was in agreement with a previous study 

els distinguished between active and inactive compounds 
(Figure 4). Sensitivity (in other words, true positive rate, 
recall, hit rate) and specificity (in other words, true nega-
tive rate) are general indices to show the predictive power 
of a validated model and is indicated by the area under the 
curve. The area under the curve (AUC) was calculated as 
0.8157.
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Thus, we can conclude that our model is not ran-
domly classified. Considering area under the ROC curve, 
it is statistically significant from those obtained by random 
classifier (Area = 0.5). 

The result revealed that in 1% of the total database 
the generated model screened 28 decoys and five active 
compounds overall while in the top 2% it was able to get 21 
decoys and 8 active compounds hits, with an enrichment 
factor of 19. The detailed results are given in table S5.

3. 4. Contour Plot Analysis
Contour plot analysis was conducted at spatial loca-

tions of the system to interpret and understand the distinct 
vital pharmacophoric criteria. Positive and negative activ-
ity coefficients of different properties are described in the 
map, including (a) donor hydrogen bond, (b) hydrophobic/
non-polar and (c) ionizable negative properties. The blue 
cubes show their individual positive contribution, and the 
red cubes reflect the negative contribution (Figure 5).

3. 4. 1. H-Bond 
Red region near and around position X and W in-

dicates that the substitutions at these positions by groups 
having more hydrogen bond donor property is unfavorable 
to anti-HIV activity for example in compounds 3 and 5. 

The blue cubes around the position Z suggests that 
the presence of a donor substitution (e,g N, O, P, or S) at 
this position may favor the formation of H bond interac-
tion. Almost all the compounds containing Sulfur Diox-
ide (e, g Compound 1) were found to have better activity 

profile in comparison with the ones with Sulfur atom (e, g 
Compound 8).

3. 4. 2. Hydrophobic
Another significant component that affects the an-

ti-HIV activity is the hydrophobic character. In figure 5B, 
the contour map for hydrophobic characteristics displays 
blue cubes highly distributed proximal to the R9, R10 and 
R8 regions of indolyl-aryl-sulfones. This result reveals that 
the multiple rings R8, R9, and R10 of the indolyl-aryl-sul-
fones may enhance the hydrophobicity, and might play a 
major role in its higher activity. The presence of red cubes 
at W position of phenyl ring directly attached to the Cl 
group indicates that hydrophobic groups are unfavorable 
at this position. This assumption is supported by the low 
activity of Cl substituted compounds when compared to 
their unsubstituted derivatives. This is evident while com-
paring the compounds 6 with 7 and 32.

3. 4. 3. Negative
In contour plot of compound 25 (Figure 5C), the pres-

ence of red cubes at para position X indicates that the pres-
ence of electron withdrawing groups is undesirable at this 
position. This is evident while comparing the compounds 2 
(X: S) with 5 (X: SO2). On the contrary, the presence of blue 
cubes at para position of W indicated the preference of elec-
tron withdrawing groups at this position. This is explained 
by the significant anti-HIV activity of compounds with para 
halogen substitution (30, 35 and 40) (pEC50= 8.70, 7.82 and 
7.60) in the order of Br > COMe > CHOHMe.

Fig. 5. QSAR model visualized in the context of favorable and unfavorable effects in compound: (A) hydrogen bond donor, (B) hydrophobic/
non-polar and (C) negative ionizable properties.
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3. 5. Identifying Novel Inhibitors
The created five-site pharmacophore hypothesis, 

ADRRR-1, was used to identify new inhibitors with a 
new scaffold that corresponds to the 3D-QSAR model’s 
predicted molecular properties. Lead-like compounds 
from PubChem have been used to obtain new inhibitors, 
which could potentially target the HIV protease receptor. 
There was a total of 5575 hits compounds found from the 
PubChem datasets was similar 80% for most active com-
pound of indolyl-aryl-sulfones composes. Pharmacophore 
model was used to identify the molecules that satisfy the 
hypothesis. Pharmacophore pre-filtering with ADRRR-1 
hypothesis reduced initial 233 hits.

3. 6. Virtual Docking Screening
Molecular docking simulations for the selected set of 

hits were performed using the Glide (Grid-Based Ligand 
Docking with Energetics) program available in Schröding-
er 2021. The 3D structures were prepared using the Maes-
tro LigPrep module. This module generates possible 3D 
conformations for each ligand with various ionization 
states at pH 7.0 ± 2.0. The docking screening process was 
conducted in two steps: (i) Glide/SP is performed for 230 
ligands accelerated docking simulations; (ii) Glide/XP 
docking has chosen the top-docking ligands for more de-
tailed analyses. The scores of docking studies Glide/SP are 
shown in the (Table S5).

The key residues involved in substrate binding, in-
cluding Asp25 Gly27 Ala28 Asp29 Asp30 Thr31 Val32 
Ile47 Gly48 Gly49 Ile50 Gly51 Gly52 Phe53 Ile54 Leu76 
Thr80 Pro81 Val82 Ile84, the structural analysis using the 
X-ray crystallographic data of PR complexed with GRL-
09510 (8FM) showed that the P2-Crwn-THF of GRL-
09510 forms a strong hydrogen-bond network with the 
backbone atoms of Asp 29 and Asp 30.

Validation of the docking process was done by dock-
ing of the compounds Nelfinavir and co-crystallized ligand 
8FM ((3S,3aR,5R,7aS,8S)-hexahydro-4H-3,5-methano-
furo[2,3-b] pyran-8-yl [(2S,3R)-3-hydroxy-4-{[(4-meth-
oxyphenyl) sulfonyl] (2-methylpropyl) amino}-1-phenylbu-
tan-2-yl] carbamate) at the active site of the target. Whereas, 
Nelfinavir is one of many protease inhibitors currently 
available, used to limit viral replication and improve im-
mune function in people with HIV infection.45 The docking 
complex and binding interactions of Nelfinavir with HIV-1 
protease are given in (Figure S1) with binding affinity –5.88 

kJ/mol. This interaction is favored by the formation of the 
H-bond and non-hydrophobic interactions. The H-bonds 
are supported by the amino acids, Asp29 and Asp25 with 
the active site of protease and salt bridge interaction with 
Asp25, whereas pi-alkyl stacking with Val82 and Ile54. By 
comparing the docked energy of all the molecules studied, it 
is noteworthy that six bonds have better energy scores than 
Nelfinavir, knowing that the energy value for the reaction of 
the indicated molecule is –5.88 kcal/mol (Table 4).

The top-scored hit molecule identified is PubChem 
11560933 with a binding energy of –7.55 kcal/mol. The 
second top-scored hit molecule is PubChem 11654778 
with a binding energy of –7.227 kcal/mol and the third 
top-scored hit molecule is PubChem 11710411 with an 
average binding energy of –6.655 kcal/mol. The molecular 
structure of top-scored compounds can be seen in table 5.

Visualization of the docking results revealed that all 
the ligands adopted a very similar orientation in the ac-
tive site. The nitrogen atoms with amide groups are ori-
ented to the two aspartic acids as shown in figure 6. All of 
them form H-bond, while their large hydrophobic groups 
were often orientated to the main hydrophobic site, which 
distinguishes the PR active site. Moreover, the literature 
was mentioned that the catalytic triad Asp-Thr-Gly that 
is where the ligand binds determines the active site of the 
enzyme.46,47

Simplifying the docking results for the compounds, 
we have taken the 2D representative ligands; the bind-
ing mode of the most active compound CID 11560933 is 
shown in table S13. In its binding mode, the Diamino Hex-
anoyl amino fragment is observed to be inserted deeply in 
the cavity, interacting with Gly27 Asp29 Ala28 and Val32 
through H-bond and pi-H contacts, respectively. 

In ligand 11654778, the two oxygen of the pentane 
diamide have shown strong hydrogen bonding acceptor 
interaction with aspartate (residue number 29 and 30) was 
also mapped on HBA features on ADRRR1 pharmacoph-
ore model.

Whereas the nitrogen atom of the carboxamide 
group in all the compounds shows H-bonds with Gly27 
are observed explaining why the H-donor is beneficial for 
activity in the pharmacophore 3D-QSAR model. It should 
be noted that favorable interactions of hydrophobic type 
are observed between the indole rings and the residues 
Ala28, Ile54 and Val32; we can say that the aromatic ring 
was important for binding and stability of ligand with the 
HIV-1 PR active site complex. 

Table 4. Docking scores of the selected hits using GLIDE module.

Compound Names CID	 Xp score	 Glid E model	 Compound Names	 Xp score	 Glid E model

CID 11560933	 –7.554	 –56.274	 CID 55868948	 –6.615	 –45.144
CID 11654778	 –7.227	 –53.648	 CID 11567743	 –6.454	 –45.532
CID 11710411	 –6.655	 –48.052	 CID 11630770	 –6.449	 –47.750
Nelfinavir.	 –5.882	 –51.263	 MF8	 –4.851	 –48.632
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One of the most important characteristics of the 
HIV-1 protease is that all amino acids of the active site 
are hydrophobic except for hydrophilic aspartic acids 
(Asp25).48 Due to these HIV-1 protease active site char-
acters, the hits are considered a good inhibitor of the ac-
tivity of HIV-1 protease because its hydrophobic surface 
provides strong Van der Waals interaction between hits 
and HIV-1 protease active site, which are beneficial to ac-
tivity. This supports the proposed model pharmacophore 
ADRRR1 as it consists of three rings.

The compounds CID 11560933, CID 11654778, 

CID 11710411, CID 55868948, CID 11567746, and CID 
11630770 make good interaction with HIV-1 protease by 
forming hydrogen bonds, hydrophobic interactions and 
non-bonding interaction with catalytic residues such as 
Asp30, Thr80, Gly27, Asp29, Ile54 and Ile84 at the active 
site cavity of HIV protease. These interactions systems 
have the lowest total energies. According to this study, 
the type and spatial location of the hit compounds agree 
perfectly with the pattern of enzyme inhibitor interac-
tions identified from Nelfinavir. In future, optimality of 
the compounds should be confirmed experimentally and 

Table 5. Details of virtual screening compounds.

Structure	 CID	 Molecular	 PubChem IUPAC 	 Molecular mass
		  formula 	 name 	 (g/mol)

	 11567743	 C22H26N4O2S	 6-[[(2-amino-3-methylpentanoyl)amino]	 410.5
			   methyl]-3-phenylsulfanyl-1H-indole-2-
			   carboxamide

	 11560933	 C22H27N5O2S	 6-[(2,6-diaminohexanoylamino)methyl]-3-	 425.5
			   phenylsulfanyl-1H-indole-2-carboxamide

	 11654778	 C21H23N5O3S	 2-amino-N-[(2-carbamoyl-3 phenylsulfanyl-	 425.5
			   1H-indol-6 yl)methyl]pentanediamide

	 55868948	 C20H21ClN4O2	 5-chloro-N-[[3-[[2-(dimethylamino)acetyl]	 384.9
			   amino]phenyl]methyl]-1H-indole-2-
			   carboxamide

	 11630770	 C16H15N3OS	 6-(aminomethyl)-3-phenylsulfanyl-1H-	 297.4
			   indole-2-carboxamide

	 11710411	 C19H20N4O2S	 6-[(2-aminopropanoylamino)methyl]-3-	 368.5
			   phenylsulfanyl-1H-indole-2-carboxamide
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compared its binding modes with a number of HIV-1 pro-
tease.

3. 7. �Analyzing Absorption, Distribution, 
Metabolism and Excretion (ADME) 
For additional validation purpose, The QikProp 

module of Schrodinger is a quick, accurate, and easy-to-
use to describe absorption, distribution, metabolism and 
elimination results listed in table 6.

The aqueous solubility plays an essential role in the 
bioavailability of the candidate. The aqueous solubility pa-
rameter (QPlog S) of the test entities was assessed and the 
compounds were also found to be in the permissible range 
(< 0.5) (Table 6).

One of the essential factors to be studied concern-
ing the absorption of the drug molecule is also intestinal 
absorption or permeation, which was further supported 
by the expected permeability of Caco-2 cells (QPPCaco). 
The estimation of the test compounds for Caco-2 cell per-
meability the compounds CID 55868948 shows excellent 

results, predicting strong intestinal absorption. The ether 
compounds have poor permeability across the gut–blood 
barrier. The parameters of the brain/blood partition coef-
ficient (QPlogBB) define the drug’s ability to pass through 
the blood-brain barrier, which is important for ADME 
to investigate drug performance. The QikProp descriptor 
for blood/brain partition coefficient QPlogBB has shown 
reliable prediction for all the test compounds and refer-
ence drugs. Predictions related to skin permeability (Kp), 
showed that these parameters for the active analogs fall 
within the standard ranges normally observed for drugs 
(Table 6). In addition, four out of the six compounds, 
shown to be more than 25% human oral absorption. Hu-
man Ether-a-go-go Related Gene (hERG) parameter is 
used to determine the potential cardiac toxicity of the com-
pounds. The hERG encodes a potassium ion (K+) channel 
that plays a role during systolic and diastolic activities of 
the heart. The blockage of hERG K+ channels can lead to 
cardiac arrhythmia. All the six compounds have logIC50 
(hERG) values less than the acceptable range for the block-
age of hERG K+ channels (logIC50 (hERG) < −5); however, 

Fig. 6. The orientation of HIV 1 PR inhibitors in the active site and hydrogen and hydrophobic surface

Table 6. Estimated physicochemical and pharmacokinetic parameters by QikProp.

Compound	 QPlogs	 QPPCaco	 QplogHEGd	 Qlog BB	 Percent human	 Metabolism	 Logkp
Names CID					     oral absorption

11560933	 –2.474	 0.822	 –4.316	 –3.024	 7.540	 7	 –7.518
11654778	 –0.446	 1.018	 –3.709	 –2.655	 8.635	 7	 –7.374
11710411	 –3.067	 15.627	 –5.325	 –1.665	 40.552	 5	 –5.837
55868948	 –4.648	 211.95	 –7.225	 –0.459	 86.524	 4	 –4.064
11567743	 –3.223	 25.586	 –5.525	 –1.540	 50.499	 5	 –5.302
11630770	 –3.231	 64.203	 –5.923	 –0.929	 65.168	 4	 –5.479 

QPlogS is the predicted aqueous solubility, log S: S in moles/l is the concentration of the solute in a saturated solution that is inequilibrium with the 
crystalline solid; QPPCaco is the predicted apparent Caco-2 cell permeability in nm/s; Caco-2 cells are a model for the gut–blood barrier Recom-
mended values QPPCaCo = <25 POOR, >500 great,; QplogHEGd: Predicted IC50 value for blockage of HERG K+ channels QploghEGd concern 
below -5. QPlog BB is the predicted brain–blood partition coefficient; Percent Human-OralAbsorption = <20 POOR, >80great; QPlogBB = −3.0 
to 1.2; *Recommended values – As per the guidelines given in Schrodinger’s Maestro software suite manual



500 Acta Chim. Slov. 2022, 69, 489–506

Ouassaf et al.:   Combined Pharmacophore Modeling, 3D-QSAR,   ...

the values are near the borderline. All the six compounds 
were predicted to possess non-blocker to hERG channel 
(Table 6). An estimated number of possible metabolic re-
actions has also been predicted by QikProp and used to 
determine whether the molecules can easily gain access to 
the target site after entering the blood stream. The com-
pounds have the most elevated QPlogP values. A number 
of likely metabolic responses of the compounds are in the 
range of 4-7. The In silico ADMET results revealed that the 
top six of Mpro inhibitors are virtually safe and active.

3. 8. Prediction of Toxicity
The computational prediction of toxicities was based 

on 5 different targets linked to adverse drug-reactions. The 
hepatotoxicity, carcinogenicity, mutagenicity and cytotox-
icity of the compounds were predicted. It was found that 6 
compounds have shown no toxicity.

The LD50 has been also predicted, the obtained re-
sults have shown that compounds 11630770 and 5586948 
present a LD50 of 650 and 1000 mg/kg, respectively, as 
well as class four of toxicity. The other compounds show 
moderate toxicity with a LD50 value of 200 mg/kg and 
class 3 of toxicity.

to be more stable during simulation competed to 5v4y 
HIV-1 protease alone. However, 5v4y HIV-1 protease 
55868948 complex showed more variations with some 
spikes in RMSD. The RMSD average of both complexes 
was statistically insignificant (p-value < 0.05) with respect 
to 5v4y HIV-1 protease alone. The RMSD analysis of CID 
55868948 alone revealed that these variations were due to 
the fluctuations in RMSD of the ligand (CID 55868948). 
The fluctuation in structures was assessed by calculat-
ing the root mean square fluctuation (RSF) of Cα of 5v4y 
HIV-1 protease in the absence and the presence of ligands 
(Figure 8A). As evident from data, the RMSF of most of 
the residues of 5v4y HIV-1 protease alone was found to 
be less than 0.2 nm. A similar fluctuation was recorded for 
5v4y HIV-1 protease CID 55868948 complex where most 
of the fluctuation in most of residues was below 0.2 nm. 
However, there was comparatively more fluctuations in 
Cα atoms of 5v4y HIV-1 protease CID 55868948 complex. 
The RMSF of each atom of both ligands (CID 11630770 
and CID 55868948) was also calculated (Figure 8B). The 
RMSF value of the atoms of both ligands varied from their 
respective initial values indicating that the ligands exhib-
ited dynamical shift from its initial position in the binding 
region.

Table 7. Toxicity prediction of the selected compounds

Compound Names CID	 Hepatotoxicity	 Carcinogenicity	 Mutagenicity	 Cytotoxicity	 LD50 mg/Kg

11567743	 Inactive	 Inactive	 Inactive	 Inactive	 200
11560933	 Inactive	 Inactive	 Inactive	 Inactive	 200
11654778	 Inactive	 Inactive	 Inactive	 Inactive	 200
55868948	 Inactive	 Inactive	 Inactive	 Inactive	 625
11630770	 Inactive	 Inactive	 Inactive	 Inactive	 1000
11710411	 Inactive	 Inactive	 Inactive	 Inactive	 200 

3. 9. Molecular Dynamics Simulations
To further obtain the insights regarding the inter-

action of the ligands (CID 11630770 and CID 55868948) 
with 5v4y HIV-1 protease, Molecular Dynamics Simula-
tion was performed. The docked complex was used as ini-
tial conformations for MD simulations.

3. 9. 1. Analysis of RMSD and RMSF
The initial analysis of MD simulation was performed 

by calculating the root-mean square deviations (RMSD) 
with respect to their respective backbone of initial struc-
ture to assess the stability of the 5v4y HIV-1 protease and 
complexes under physiological conditions. The RMSD of 
5v4y HIV-1 protease and complexes is shown in figure 7 
and listed in table 8. The RMSD of 5v4y HIV-1 protease 
alone showed some variations initial time till 20 ns then 
it became stable for entire simulation period. The average 
RMSD of was found to be 0.290 ± 0.047 nm. The RMSD 
of 5v4y HIV-1 protease CID 11630770 complex was found 

3. 9. 2. Assessment of Rg, SASA and Energies

The mass-weighted root mean square distance of a 
collection of atoms from their common center of mass is 

Fig. 7. Root mean square deviation (RMSD) of HIV-1 protease in 
the absence and presence of 11630770 and 55868948.
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defined as radius of gyration (Rg). The Rg is also consid-
ered as indicator of the stability of proteins or their com-
plexes during MD.49 Generally, compact or globular pro-
teins exhibit lesser variations in their Rg compared to the 
expanded form of proteins (5V4Y). 

The changes in Rg of 5v4y HIV-1 protease alone and 
in complex with ligands are shown in figure 9A. The Rg of 
5v4y HIV-1 protease alone and 5v4y HIV-1 protease CID 
11630770 complex was found to be stable during entire 
simulation period with negligible variations. On contra-
ry, the Rg of 5v4y HIV-1 protease CID 55868948 complex 
showed relatively more variations that may be due to the 
dynamic behavior of the ligand. The average RMSD of 
HIV-1 protease alone, 5v4y HIV-1 protease CID 11630770 
complex, and 5v4y HIV-1 protease CID 55868948 complex 
was found to be 1.278 ± 0.021, 1.265 ± 0.016, and 1.301 ± 
0.027 nm, respectively. These values were statistically insig-
nificant with respect to the control (HIV-1 protease alone). 

Solvent accessible surface area (SASA) of proteins is 
also taken into account while studying the stability of pro-

teins during MD simulation.50 SASA of HIV-1 protease in 
the absence and the presence of ligands over simulation 
time is presented in figure 9B. The average SASA of HIV-
1 protease alone, HIV-1 protease CID 11630770 complex, 
and HIV-1 protease CID 55868948 complex was found to 
be 64.318 ± 2.388, 63.049 ± 2.194, and 65.833 ± 1.995 nm2, 
respectively. The negligible variations in SASA of these 
structures further confirm their stable nature under phys-
iological conditions. 

Further verification of the stability of HIV-1 pro-
tease and complexes was performed by calculating the 
physicochemical parameters such as potential ener-
gy and total energy (Figure S2). The straight line with 
negligible fluctuations in potential energy and total 
energy shows that the system reached equilibrium and 
remained stable during the entire simulation period. 
51 The RMSD, Rg and SASA values of both complexes 
showed statistically insignificant variations with respect 
to the potential and total energies HIV-1 protease alone 
(Table 8).

Fig. 8. Root mean square fluctuation (RMSF) of HIV-1 protease in the absence and presence of 11630770 and 55868948. (B) The average RMSF 
value of each atom of ligands during the MD simulation.

Fig. 9. (A) Radius of gyration (Rg) of 5v4y HIV-1 protease in the absence and presence of CID 11630770 and CID 55868948 as a function of simu-
lation time. (B) Solvent accessible surface area (SASA) of HIV-1 protease in the absence and presence of CID 11630770 and CID 55868948 as a 
function of simulation time.
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3. 9. 3. �Analysis of Hydrogen Bonds and 
Secondary Structure

The interaction of ligands with HIV-1 protease 
was studied by calculating the hydrogens bond profiles 
for 10000 frames of the MD simulation (Figure 10A). 
The average number of hydrogen bonds between CID 
11630770 and HIV-1 protease was found to be 2.437 ± 
1.050. Lesser number of average hydrogens binds was 
between CID 55868948 and HIV-1 protease. The hy-
drogen bond existence was also calculated for both lig-
ands. As observed, the hydrogen bond existence be-
tween CID 11630770 and HIV-1 protease was found 
over the entire simulation period. However, the hydro-

gen bond existence between CID 55868948 and HIV-1 
protease showed some breaks as the MD simulation 
progressed.

The effect of binding of the ligands on the secondary 
structure of HIV-1 protease was studies by calculating the 
average secondary structure of all frames of the respec-
tive trajectories (Figure 10B). The coil, β-sheet, bends, 
and turns in HIV-1 protease alone was found to be 22.34, 
49.03, 11.18, and 11.55% respectively. These secondary 
structural components were insignificantly altered in the 
presence of both ligands. However, there was some incre-
ment in α-helix, which increased from 4.81% to 5.27% due 
to binding of 55868948

Table 8. Average RMSD, Rg and SASA of HIV-1 protease alone, and their complexes calculated over 10000 
frames of 100 ns MD simulation.

Parameters	 Proteins/complexes	 Values	

RMSD (nm)	 HIV-1 protease only	 0.290 ± 0.047	
	 HIV-1 protease 11630770 complex	 0.246 ± 0.031	
	 HIV-1 protease 55868948 complex	 0.386 ± 0.105	
	 11630770 only	 0.096 ± 0.030	
	 55868948 only	 0.191 ± 0.060	
Rg (nm)	 HIV-1 protease only	 1.278 ± 0.021	
	 HIV-1 protease 11630770 complex	 1.265 ± 0.016	
	 HIV-1 protease 55868948 complex	 1.301 ± 0.027	
	 11630770 only	 0.342 ± 0.003	
	 55868948 only	 0.520 ± 0.033	
SASA (nm2)	 HIV-1 protease only	 64.318 ± 2.388	
	 HIV-1 protease 11630770 complex	 63.049 ± 2.194	
	 HIV-1 protease 55868948 complex	 65.833 ± 1.995	
	 11630770 only	 05.227 ± 0.195	
	 55868948 only	 06.869 ± 0.244	
Potential energy (kcal/mol)	 HIV-1 protease only	 –6.360 ± 0.013	
	 HIV-1 protease 11630770 complex	 –6.366 ± 0.014	
	 HIV-1 protease 55868948 complex	 –6.358 ± 0.014	
Total energy (kcal/mol)	 HIV-1 protease only	 –5.096 ± 0.018	
	 HIV-1 protease 11630770 complex	 –5.101 ± 0.018	
	 HIV-1 protease 55868948 complex	 –5.092 ± 0.018	

RMSD: Root-mean square deviation, Rg: Radius of gyration, SASA: Solvent accessible surface area.

Fig. 10. (A) Number of hydrogen bonds the ligands (11630770 and 55868948) and HIV-1 protease over simulation time. (B) Percentage of second-
ary structure in HIV-1 protease in the absence and presence of 11630770 and 55868948.
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Fig. 11. (A) Polar, apolar and total energy contributions of the key residues of HIV-1 protease for binding of 11630770. (B) Polar, apolar and total 
energy contributions of the key residues of HIV-1 protease for binding of 55868948.

3. 9. 4. �Calculation of Binding Energies and 
Identification of Key Residues Involved in 
Binding

The detailed investigation of the various binding 
energies involved in the interaction of both ligands with 
HIV-1 protease was done using MM-PBSA calculation. 
Usually in protein-ligand interactions, non-covalent inter-
actions are predominant. The forces include hydrophobic 
forces, hydrogen bonds, electrostatic interactions, Van der 
Waals force. Each of these forces contributes either pos-
itively or negatively to the overall binding energy.52 The 
MM-PBSA binding energies were calculated by extracting 
100 frames from the entire MD simulation trajectories at 
uniform intervals (Table 9). In the binding of 11630770 
to HIV-1 protease, electrostatic interactions were most 
prominent followed by Van der Waals interactions. The in-
teraction of 55868948 with HIV-1 protease was mostly fa-
vored by Van der Waals forces. Additionally, there was also 
small contribution of SASA energy in the overall binding 
of both leads. However, polar solvation energy impaired 
the interaction of both ligands with HIV-1 protease. The 
overall binding energy for 11630770 and 55868948 were 
found to be -7.067 ± 0.509 and -7.218 ± 2.080 kcal/mol 
respectively.

From MM-PBSA calculations, the binding energies 
of all residues can be calculated. The polar, a polar and 
total binding energy contribution of the key residues of 
HIV-1 protease in the interaction is presented in figure 
10 B. Glu-21, Asp-25, Asp-29, Asp-30, Glu-34, Glu-
35, Asp-60, Glu-65, Ile-84, and Phe-99 were the major 
contributor to overall binding energy in interaction of 
11630770 with HIV-1 protease. Similarly, Glu-21, Asp-
25, Asp-29, Asp-30, Glu-34, Glu-35, Ile-50, Asp-60, Glu-
65, Pro-81, Val-82, Phe-99 of HIV-1 protease contribut-
ed maximally in the binding of 55868948 to the protein. 
It is interesting to note that polar energy of some key 
residues contributed negatively towards the total bind-
ing process. 

3. 9. 5. Principal Component Analysis 
Principal component analysis (PCA) is the standard 

statistical procedure used for the investigation of large-
scale motion in protein, which is performed by reducing 
the dimensionality of data set without losing important in-
formation, which is characterized by eigenvectors.53 PCA 
was done to assess the differences in the flexibility param-
eters between the HIV-1 protease alone and complexes. 
Using PCA analysis, a set of eigenvectors and eigenvalues 
were projected (Figure 12A). HIV-1 protease alone and 
HIV-1 protease 11630770 complex occupied larger con-
formational space compared to HIV-1 protease 55868948 
complex. These observations denote the presence of more 
structural stability HIV-1 protease 11630770 complex 
than HIV-1 protease 55868948 complex. 

Moreover, the free energy landscapes for the pro-
tein alone and both complexes were plotted to decipher 
the variations in the protein folding patterns (Figure 13). 
Variations in the projection of free energy were recorded 
where alone energetically favorable and relatively stable 
was compared to both the complexes. The observations 
show that the binding of ligands partly perturbed the con-
formation of HIV-1 protease. 

Table 9. Binding free energy (kcal mol–1) for the interaction of pro-
tein with 11630770 and 55868948 ligands using MMBSA analysis.	

Type of energy	 Ligands	
	 11630770 ligand	 55868948 ligand

ΔEvdW	 –24.258 ± 0.533	 –20.163 ± 1.340
ΔEele	 –45.156 ± 1.261	 –3.787 ± 1.817
ΔEPSE	 66.022 ± 1.583	 19.443 ± 1.997
ΔESSASA	 –3.650 ± 0.046	 –2.701 ± 0.163
ΔEBE	 –7.067 ± 0.509	 –7.218 ± 2.080

ΔEvdW: Van der Waal energy, ΔEele: Electrostatic energy, ΔEPSE: 
Polar solvation energy, ΔESASA: Solvent accessible surface area en-
ergy and ΔEBE: Binding energy.
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To gain further insights into the conformational 
transition of HIV-1 protease, the lowest energy minima 
structures were extracted. The Ramachandran plots were 
made for the energy minima structures of HIV-1 protease 
alone and in complex with the ligands (Figure 12B). The 
phi (φ) and psi (ψ) angles for HIV-1 protease alone were 
found to be –82.31 and 93.60, respectively. The φ and ψ an-
gles for HIV-1 protease 11630770 complex were obtained 
as –85.15 and 91.30, respectively. Similarly, φ and ψ angles 
for HIV-1 protease CID 55868948 complex were recorded 
as –85.14 and 84.72, respectively. In both the complexes, 
remarkable variations in the dihedral angles with respect 

Donor (HBD), Hydrogen-Bond Acceptor (HBA), hydro-
phobic and aromatic groups, which may be responsible 
for the HIV1 inhibition. Both generated pharmacophore 
model was validated for its quality to identify new reliable 
chemical compounds. The validation procedure included 
two methods: test set validation, and decoy set validation. 
Based on the 3D-QSAR model ADRRR we have selected 
hits from the PubChem database. Initial screened com-
pounds were passed through several criteria including the 
range of activity of training set, fitness score more than 2.5 
and comparison of dock score and binding energy with 
Nelfinavir to reach the potential compounds. Docking into 

Fig. 12. (A) Principal component analysis (PCA) of HIV-1 protease in the absence and presence of 11630770 and 55868948. (B) Ramachandran plot 
of the energy minima of HIV-1 protease in the absence and presence of 11630770 and 55868948.

Fig. 13. Free energy landscape plot of (A) HIV-1 protease alone (B) HIV-1 protease 11630770 complex and (C) HIV-1 protease 5586894 complex.

to HIV-1 protease alone were observed, indicating the 
structural transition in the presence of ligands.

4. Conclusion
In this study, a five-featured (ADRRR) pharmacoph-

ore model for the HIV1 inhibitors was developed. The gen-
erated model revealed the importance of Hydrogen-Bond 

predicted active site conclusively infers those hydropho-
bic contacts possess more dominance compared to other 
interactions. Subsequently, amide group play an essential 
role in hydrogen binding. ADME properties of the six hits 
were found to be in accordance with known chemically 
and biologically active compounds. Conclusively, the hits 
obtained on virtual screening of the database have provid-
ed new chemical starting points for design and develop-
ment of novel HIV-1 inhibitory agents.
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Povzetek
Ta raziskava obravnava in silico 45 indolil-aril-sulfonov, znanih kot anti-HIV1. Podatki so bili zbrani iz nedavnih pred-
hodno prijavljenih zaviralcev in razdeljeni na podskupino 33 spojin, namenjenih nizu preizkušanj, preostalih 12 spo-
jin pa je bilo shranjenih v namen testnega niza. Izbrani farmakofor –ADRRR– je podal statistično pomemben model 
3D-QSAR, ki vključuje visoke ocene zaupanja (R2 = 0,930, Q2 = 0,848 in RMSE = 0,460). Napovedna moč uveljavljenega 
modela farmakofora je bila potrjena z zunanjim testom (r2 = 0,848). Sistematičen navidezni potek dela je pokazal visok 
faktor uporabnosti in razkril visoko moč napovedovanja. Nato je bil model uporabljen za pregled filtrirane baze podat-
kov PubChem in označil vse kemijske značilnosti modelne farmakofore. Ustrezni zadetki so bili dodatno ocenjeni z in 
silico ADMET študijami. Poleg tega se molekularna dinamika lahko uporablja tudi za raziskovanje stabilnosti dobljenih 
kompleksov. V končni fazi bodo te izbrane komponente lahko postale dobra začetna molekula za razvoj učinkovitih 
učinkovin proti HIV-1.
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