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Abstract

The present study deals with the in silico of 45 indolyl-aryl-sulfones known as anti-HIV1. The data were collected from
recent previously reported inhibitors and divided into a sub-set of 33 compounds as the training set and the remaining 12
compounds were kept in the test set. The selected pharmacophore-ADRRR-yielded a statistically significant 3D-QSAR
model containing high confidence scores (R? = 0.930, Q2 = 0.848, and RMSE = 0.460). The predictive power of the estab-
lished pharmacophore model was validated with an external test (r? = 0.848). A systematic virtual screening workflow
shows an enrichment factor and has revealed a high predictive power. Then the model was used to screen the filtered
PubChem database mapping all chemical features of model pharmacophore. The recognized hits were further assessed
by in silico ADMET studies. Molecular dynamics also used to explore the stability of obtained complexes. Finally, these
selected compounds are probably to become a good lead molecule for the development of effective anti-HIV-1 drugs.
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1. Introduction

AIDS is one of the most destructive of human im-
mune system pandemic in the world, caused by human
immunodeficiency virus infection (HIV).! It continues to
be a critical global public health concern, 1.5 million peo-
ple were newly infected with HIV in 2020, and around 38
million HIV-infected persons are estimated to be dealing
with it to date.? Unfortunately, there is no effective treat-
ment for HIV infection. Luckily, available antiretroviral
drugs are used to control the proliferation of the virus.

Therefore, persons having HIV can lead healthy and pro-
ductive lives.?

Most of the drugs designed and licensed have been
classified as Nucleoside Reverse Transcriptase inhibi-
tors (NRTIs), Non-nucleoside Reverse Transcriptase
Inhibitors (NNRTTs), Protease Inhibitors (PIs), Fusion
Inhibitors, HIV integrase strand transfer inhibitors and
Inhibitors-CCR5 co-receptor antagonist.* Protease is an
important factor for viral maturation within the HIV life
cycle.>® The HIV protease is a homodimeric aspartyl pro-
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tease and each monomer consists of 99 amino acid resi-
dues with a catalytic Asp at position 25. At nine processing
sites, the main structural component of HIV-1 is the Gag
polyprotein. HIV-1 protease cleaves polyprotein precur-
sors Gag and Gag-Pol encoded by the HIV-1 virus genome
to create mature active proteins.” Gag-Pol is incorporated
into virions via interactions with the Gag precursor Pr-
55gag. The protease (PR) incorporated into Gag-Pol me-
diates proteolytic processing of both Pr55gag and Gag-Pol
during or shortly after release of viral particles from cells.
Since efficient viral incorporation of Gag-Pol depends on
interaction with Pr55gag through its N-terminal Gag do-
main, prevention of premature Gag cleavage may attenuate
Gag-Pol packaging deficiencies associated with enhance-
ment of the PR cleavage.?

The vital role of HIV protease in viral maturation
makes it a popular drug design target; there are 10 FDA-ap-
proved HIV protease inhibitors, namely: Saquinavir, Indi-
navir, Ritonavir, Nelfinavir, Amprenavir, Fosamprenavir,
Lopinavir, Atazanavir, Tipranavir, and Darunavir. The
FDA-approved HIV protease inhibitors have structural
similarities and a similar binding pattern, which might ex-
plain some of the protease inhibitor-related adverse effects
such as dyslipidaemia, hyperglycaemia, and body-fat dis-
tribution. It is possible to optimize the chemical structure
of HIV protease inhibitors to avoid side effects.*!?

The computer-aided drug design CADD approach
has played a crucial role in the search and optimization
of potential lead compounds with a substantial benefit in
time and expense; it has been used during different phases
of drug discovery: target identification, validation, molec-
ular design, and interactions of drug candidates with tar-
gets of interest.! 12

Pharmacophores are a set of methods related to
QSAR: they produce 3-dimensional arrangements of func-
tional group that are required for activity.!>!4

A well-developed pharmacophore model may be
used to design novel and more active molecules, such
pharmacophore models are also the starting point for
3D-QSAR analysis, and can allow quantitative predictions.
In the very early stages of the drug development process,
the use of 3D pharmacophore models will potentially
anticipate unwanted side effects and thereby reduce the
probability of late failure of drug candidates.'®

Docking simulations are widely used to screen a li-
brary of compounds rapidly and to identify new drug leads
employing a simple model. Docking simulations are also
useful for lead enhancement using more detailed models
to analyze the atomic interactions between inhibitors and
target macromolecules.!®

In order to take a forward step for prediction and
guidance of more effective drug, we have utilized state of
the art techniques in drug design for the development of
a three-dimensional pharmacophore model using a data-
set of indolyl-aryl-sulfone derivatives from literature. We
have used also a comprehensive approach involving vir-

tual screening-based pharmacophore modeling, molecu-
lar docking and Molecular Dynamics (MD) simulations
to identify potential HIV1 inhibitors. The studied com-
pounds were consequently analyzed for ADMET proper-
ties and were found to be potential drug-like candidates
that can effectively bind to the HIV protease enzyme.

Taken together the specifics of the current study
could provide important insights needed for the produc-
tion of next-generation of inhibitors that could theoreti-
cally reduce the function of HIV protease.

2. Materials and Methods

2. 1. At a Set Preparation

In vitro biological data of a series of 45 indolyl-ar-
yl-sulfones as anti-HIV-1 were collected from literature.!”
the observed anti-HIV-1 activity was represented as ECs,
and converted into logarithmic scale pECs5, = -10gECsy
(LM).

It is essential to examine the structures of the mole-
cules in the data set before starting molecular modeling. For
that, the 3D-structures of the 45 inhibitors were prepared
using the builder panel in Maestro 12.0 and were generated
for all ligands with LigPrep.!® Partial atomic charges were
ascribed and possible ionization states were generated at a
pH equal to 7.0. The OPLS3e force field was used to optimize
and to produce low energy conformer of the ligand.!>*° En-
ergy minimization was performed with OPLS3e force field
till root mean square mean deviation (RMSD) of 0.01 A was
attained. The so-prepared ligands were used to generate
pharmacophore and to build QSAR model.

2. 2. Generation of Pharmacophore Model

A pharmacophore describes the arrangement of mo-
lecular or functional group’s characteristics that a ligand
must contain in order to produce a given biological re-
sponse. Pharmacophore models are developed to identify
new compounds that meet the requirements of the phar-
macophore, which could have the high probability to be
biologically active. Often, such pharmacophore models are
the starting point for 3D-QSAR analysis.?!

Each compound structure was represented by a set
of points in 3D space that correspond to different chemical
features, which help the compound to bind with the target
receptor non-covalently. The data set was created by assign-
ing pECs, > 8.6 as active and pECs, < 6.5 as inactive to the
threshold. Inactive compounds can be used to screen the hy-
pothesis because they do not provide an explanation for the
activity. However, they give signals of the inactive function.

Six pharmacophore features defined the chemical
features of the ligands: H-bond Acceptor (A), H-bond Do-
nor (D), hydrophobic group (H), negatively charged group
(N), positively charged group (P) and Aromatic Ring (R).
The consistency of each alignment is calculated by: (1) the
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vector score, the average cosine of the angles generated in
the aligned structures by the corresponding pairs of vector
characteristics (acceptors, donors and aromatic rings); (2)
the volume score that is based on the overlap of Van der

Waals non-hydrogen atom models in each pair of struc-
tures (3); the site score which is the degree to which site
points in the alignment are applicable; (4) The final score,
(5) and the function-survival score.

Table 1. Various substituents attached to basic structure of indolyl-aryl-sulfones.

0
z
HN
) X
4/
VoY
N° Structural features
X Y VA w
1 SO, H NH, Cl
2 S H OEt H
3 S 2-NH, OFt cl
4 S 2-NH,-5-Cl OFt cl
5 SO, H OFEt H
6 SO, 2-NH,-5-Cl OFt H
7 SO, 2- NH,-5-Cl OEt Cl
8 S H NH, H
9 S 2-NH,-5-Cl NH, H
10 S H NH, cl
11 S 2-Me NH, cl
12 S 4-F NH, cl
13 S 4-Cl NH, cl
14 S 4-iPr NH, cl
15 S 4-tBu NH, cl
16 S 3,5-Me, NH, cl
17 S 2,6-Cl, NH, cl
18 S 2-NH,-5-Cl NH, cl
19 S0, H NH, H
20 SO, 2-NH,-5-Cl NH, H
21 S0, 2-Me NH, cl
22 SO, 3-Me NH, cl
23 SO, 4-Me NH, cl
24 SO, 4-F NH, cl
25 SO, 4-Cl NH, Cl
26 S0, 4-iPr NH, cl
27 SO, 4-tBu NH, cl
28 SO, 2,4 Me, NH, cl
29 SO, 3,5-Me, NH, cl
30 SO, 2,6-Cl, NH, cl
31 SO, 2-NH,-5-cl NH, cl
32 SO, 3,5-Me, NH, Br
33 SO, 3,5-Me, NH, COMe
34 SO, 3,5-Me, NH, CH(OH)Me
35 S H NHNH, cl
36 S 4-Me NHNH, cl
37 S 4-F NHNH, cl
38 S 4-Cl NHNH, cl
39 S0, H NHNH, H
40 SO, H NHNH, cl
41 S0, 4-Me NHNH, cl
42 S0, 4-F NHNH, cl
43 S0, 4-Cl NHNH, cl
44 SO, 3,5-Me, NHNH, cl
45 SO, 2-NH,-5-Cl NHNH, cl
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2. 3. Building 3D-QSAR Model

QSAR modeling was performed using the selected
hypothesis by dividing randomly the data set into training
set (60%) and test set (40%). This phase presents two op-
tions for the alignment of the 3D-structure of molecules:
pharmacophore-based alignment and atom-based align-
ment.

In this study, the selected 45 compounds from the
chemical dataset were used to develop an atom-based
3D-QSAR model based on previously developed pharma-
cophoric maps as a backbone with a default grid space of 1
A via partial least-square (PLS) regression.??

2. 4. Model Validation

Validation is a critical aspect of pharmacophore
design, particularly when the model is constructed for
predicting molecular activity in external test series.?® the
intensity of the defined pharmacophore hypotheses was
internally validated by statistical parameters, squared
coefficient of correlation (R?) and the ratio of variance
(F). Validation on chemicals was not used in the model
development, the so-called external validation, is par-
ticularly important in the context of using QSAR models
for the prediction of new data in virtual screening.?* The
approach demonstrated by Golbraikh and Tropsha, in
2000% and Roy and al., 2008%¢ was used to evaluate the
predictive potential of the current QSAR model. Further,
the best hypothesis selected was validated by enrichment
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studies using the decoy test. More than 1000 decoy test set
compounds retrieved from the PubChem database, were
taken to evaluate the predictive power of the built model?”
and were taken to evaluate some parameters, such as: En-
richment Factor (EF), Robust Initial Enhancement (RIE),
Receiver Operating Characteristic (ROC) and Boltz-
mann-Enhanced Discrimination of ROC (BEDROC).
These parameters were used to benchmark the reliability
of the model and for the accurate ranking of compounds.?®

2. 5. Virtual Screening of PubChem Database

In pharmaceutical research, computational screen-
ing of databases has become incredibly popular. Based
on biological structures, virtual screening uses comput-
er-based methods to discover new ligands.?*? the aim of
virtual screening, in this work, is to detect potential leads
to anti-HIV with various scaffolds and high inhibitory ac-
tivity. To identify inhibitors of PR HIV, we have screened
the PubChem database®! by searching compounds hav-
ing more than 80% similarity instead of compound that
have the most fitness score (compound 40, Table 1). All
PubChem drug-like compounds (459926) were filtered
by Canvas’s property filter utility to pick compounds with
low-dimensional properties similar to the anti-HIV com-
pounds. We used the following property filters: AlogP >
1, AlogP < 5, HBA > 2, HBA < 3, HBD > 1, HBD < 3,
MW = 250, MW < 500, Num rings > 3, Num rings < 5,
Polar > 45, Polar < 60, RB > 3 and RB < 5. As a result,

series of 45 indolyl aryl sulfones

Application of the threshold
A\

'él;ssiﬁcalion of active and
: i;tpclivc compounds

Selection best model

Cx-lemal validation of 3D QSAR
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Fig. 1. Schematic representation of the methods followed in the current study.
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5575 compounds were obtained and mounted as a series of
decoys. Each compound must fit a minimum of four sites
and a distance of 2.0 A matching between sites. After the
pharmacophore-based screening according to the fitness
score, the top 230 hits were selected for molecular docking
analysis. Figure 1 represents the schema of the methods
followed in the current study.

2. 6. Molecular Docking Analysis

The top 230 compounds were selected for molecu-
lar docking analysis based on the pharmacophore model
following virtual screening. X-ray crystal structure of wild
type HIV-1 protease in complex with GRL-09510 (PDB ID:
5v4y) were obtained from the Protein Data Bank PDB.*
The protein structure was preprocessed using the Protein
Preparation Wizard,*® available in Schrédinger suite 2021-
2, by eliminating crystallographic water molecules (water
molecules without H-bonds), inserting all missing side
chain atoms, and pH 7.0 corresponding hydrogen bonds,
taking into account the necessary ionization states for the
residues of both acid and basic forms of the amino acid.

Finally, energy minimization (up to 3.0 A RMSD val-
ue) was performed using OPLS-2005 force field after the
assignment of charge and protonation state. In fact, it was
minimized to alleviate the steric clashes between the resi-
dues due to the addition of hydrogen atoms. The active site
was defined with a radius of 10 A around the ligand pres-
ent in the crystal structure and a grid was generated at the
center of gravity of the active site for docking. All studied
compounds were docked into the catalytic pocket of the
Protease protein (PDB-ID: 5v4y) using Grid-Based Ligand
Docking with Energetics®* with default parameters. Final-
ly, the docking results were analyzed using Biovia Discov-
ery Studio 4.5.12 (Dassault Systémes 2018).%

2.7. Analyzing ADMET

ADMET (Absorption, Distribution, Metabolism,
Elimination, Toxicity) analysis is important in drug de-
sign. These properties were calculated using the QikProp
module’ of Schrodinger suite for assessing the drug abil-
ity and to filter the ligand molecules at an early stage of
identifying the new inhibitors.

Toxicity is the degree to which a substance can dam-
age an organism or substructure of the organism. The pre-
dictions of toxicity of the compounds are essential to re-

duce the cost and labor of a drug’s preclinical and clinical
trials. The toxicity evaluation was performed also using the
ProTox platform.?” It gives predicted toxicity values, cy-
totoxicity, mutagenicity, carcinogenicity, immunotoxicity
and LD50 values of selected compounds.

2. 8. Molecular Dynamics Simulations

Two compounds showing highest binding affin-
ity towards HIV-1 protease were selected for Molecu-
lar Dynamics (MD) simulation studies. The molecular
docked complexes with lowest binding energy were used
as initial point for the MD simulations performed using
Gromacs-2018.1 packages with amber99sb-ILDN force
field.3®3° The protein alone and their complexes with li-
gands (11630770 and 55868948) were solvated in triclin-
ic-boxed using TIP3P water model. Each structure was
neutralized using counter chlorine ions. The topology of
both ligands was prepared using antechamber packages in
Amber Tools 19.40 For the removal of weak Van der Waals
contacts; each system was minimized using the steepest
descent minimization. The systems were then equilibrated
for NVT using V-rescale thermostat for 1 ns at 300 K tem-
perature followed by NPT equilibration using Parrinel-
lo-Rahman barostat at 1.0 bar for 1 ns.*"*> MD simulation
of each system was carried out for 100 ns and the trajec-
tories were recorded at 10 ps inervals. Each trajectiry was
sunjected to PBC (periodic boundary conditions) correc-
tions before analysis. All calculations except MM-PBSA
was done uisng Gromacs utilities. MM-PBSA calculation
was performed for the calculation of vriuous binding en-
ergies the ligands with HIV-1 protease.*?

3. Results and Discussions
3. 1. Pharmacophore Modeling

Our work is focused on the identification of new
compounds with potential antiviral activity anti-HIV-1.
To fulfill the objective, a ligand-based pharmacophore
model was built using previously reported inhibitors, with
a different combination of pharmacophoric features, 920
pharmacophore hypotheses have been produced.

Its vector, volume, sites survival score, and the num-
ber of matches measured the quality of each hypothesis.
Table 2 represents the different scoring parameters for
best hypothesis. The best fitted Model ADRRR1 with the

Table 2. Different parameter scores of the generated hypothesis ADRRRI.

Survival score Site Vector Volume Bedroc Matches
ADRRRI1 6.067 0.944 0.977 0.917 0.843 5
ADRRR2 6.063 0.695 0.922 0.613 0.843 5
ADRRR3 6.062 0.705 0.919 0.620 0.844 5
ADRRR4 6.061 0.711 0.922 0.619 0.843 5
ADRRR5 6.061 0.681 0.932 0.622 0.844 5
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highest survival score (6.067) and site score (0.944) consist
five-point hypothesis one hydrogen acceptors, one hydro-
gen donor, and three ring group. The spatial arrangement
of the best pharmacophore hypothesis, ADRRRI1 with
their distance between the five-pharmacophore features is
shown in figure 2 and tables S1-S2.

3.2.3D-QSAR Model

The previously developed pharmacophore hypothe-
sis ADRRRI1 was used to build an atom-based 3D-QSAR
with the phase program.** Based on the training set mole-
cules for the chosen hypothesis, the pharmacophore mod-
el, that is statistically significant, was created through par-
tial least-square (PLS) regression. The partial least-squares

factor has been raised to five, as there is a gradual improve-
ment in the model’s predictive power and statistical signif-
icance until the fifth factor.

A statistically significant 3D-QSAR model was ob-
tained using this pharmacophore hypothesis with a strong
correlation coefficient (R? = 0.929) and a high Fisher ratio
(F = 57) for the training set. The predictive power of the
developed model was also found to be important, verified
by the high value of the coeflicient of cross-validated cor-
relation (Q? = 0.848) and Pearson’s R (0.926) for the test
set. The plots between the observed and the predicted ac-
tivities were made for both the training and test sets (Fig-
ure 3). The higher values of R%and Q?in the training and
test sets, respectively, are clearly indicated by the points
lying extremely near to the best-fit line.

Fig. 2. (A) Pharmacophore model ADRRRI interstice angles in (°) unit between the pharmacophoric points and (B) Pharmacophore model
ADRRRI interstice distances in A unit.
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3. 3. Model Validation

All the external validation results were above the
threshold values for the various parameters presented in
table S3. The squared correlation coefficient values be-
tween the observed and predicted values of the test set
compounds (r?) and (r? ), respectively, were observed and
the model had satisfied the requirement of the term (r? — r?
0)/r%. This was in agreement with a previous study reported
by Golbraikh and co-workers, which states that the value
(r? — r?)/r? exhibits less than 0.1. In case of good external
prediction, predicted values will be very close to observed
activity values. Therefore, r? value will be very near to r?,
value. In the best case r?,, will be equal to r, whereas in
the worst-case r?,, value will be zero, including values of
r?,, < 0.6 indicate these models are useless for external
predictivity. In the present study r?,, value of the model is
acceptable (Table S3). This developed model passed all the
Golbraikh and Tropsha criteria for the acceptability of the
model. The screening results were evaluated by an enrich-
ment factor at the top 1% of the ranked database (EFI) and
are summarized in table S4.

reported by Golbraikh and co-workers, which states that
the value (1> — r? ;)/r? exhibits less than 0.1.

In case of good external prediction, predicted val-
ues will be very close to observed activity values. There-
fore, R? value will be very near to R?, value. In the best
case r2,, will be equal to r?, whereas in the worst-case r?,
value will be zero, including values of r?,< 0.6 indicate
these models are useless for external predictivity. In the
present study r?, value of the model are acceptable (Ta-
ble S3).

This developed model passed all the Golbraikh and
Tropsha criteria for the acceptability of the model. The
screening results were evaluated by an enrichment factor
at the top 1% of the ranked database (EF1) and are sum-
marized in table S4.

The enrichment factor (EF) of this screening proto-
col was calculated to be 13.012, which indicated that se-
lected model has 13 times more stability to identify active
molecules than inactive.

Visualization of the validation was presented in ROC
analysis to show how effectively the pharmacophore mod-

Table 3. 3D-QSAR PLS statistical results of the selected Pharmacophore model ADRRRI1.

ID PLS factors SD R? F P RMSE Q? Pearson-R
ADRRRI1 1 0.650 0.722 39 452107 0.600 0.742 0.869

2 0.509 0.835 49 1.78 10°1 0.620 0.724 0.865

3 0.425 0.889 56 5.83 10713 0.490 0.826 0.914

4 0.404 0.903 50 7.10 10713 0.530 0.799 0.904

5 0.351 0.930 57 43010714 0.460 0.848 0.925

All the external validation results were above the
threshold values for the various parameters presented in
table S3. The squared correlation coefficient values be-
tween the observed and predicted values of the test set
compounds (r?) and (r? (), respectively, were observed
and the model had satisfied the requirement of the term
(r? — 1% p)/r% This was in agreement with a previous study

els distinguished between active and inactive compounds
(Figure 4). Sensitivity (in other words, true positive rate,
recall, hit rate) and specificity (in other words, true nega-
tive rate) are general indices to show the predictive power
of a validated model and is indicated by the area under the
curve. The area under the curve (AUC) was calculated as
0.8157.

Fig. 4. (A) Mapping of the active compounds onto the pharmacophore. (B) Mapping of inactive compounds on to the pharmacophore.
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Thus, we can conclude that our model is not ran-
domly classified. Considering area under the ROC curve,
it is statistically significant from those obtained by random
classifier (Area = 0.5).

The result revealed that in 1% of the total database
the generated model screened 28 decoys and five active
compounds overall while in the top 2% it was able to get 21
decoys and 8 active compounds hits, with an enrichment
factor of 19. The detailed results are given in table S5.

3. 4. Contour Plot Analysis

Contour plot analysis was conducted at spatial loca-
tions of the system to interpret and understand the distinct
vital pharmacophoric criteria. Positive and negative activ-
ity coefficients of different properties are described in the
map, including (a) donor hydrogen bond, (b) hydrophobic/
non-polar and (c) ionizable negative properties. The blue
cubes show their individual positive contribution, and the
red cubes reflect the negative contribution (Figure 5).

3.4.1. H-Bond

Red region near and around position X and W in-
dicates that the substitutions at these positions by groups
having more hydrogen bond donor property is unfavorable
to anti-HIV activity for example in compounds 3 and 5.

The blue cubes around the position Z suggests that
the presence of a donor substitution (e,g N, O, P, or S) at
this position may favor the formation of H bond interac-
tion. Almost all the compounds containing Sulfur Diox-
ide (e, g Compound 1) were found to have better activity

profile in comparison with the ones with Sulfur atom (e, g
Compound 8).

3. 4. 2. Hydrophobic

Another significant component that affects the an-
ti-HIV activity is the hydrophobic character. In figure 5B,
the contour map for hydrophobic characteristics displays
blue cubes highly distributed proximal to the R9, R10 and
R8 regions of indolyl-aryl-sulfones. This result reveals that
the multiple rings R8, R9, and R10 of the indolyl-aryl-sul-
fones may enhance the hydrophobicity, and might play a
major role in its higher activity. The presence of red cubes
at W position of phenyl ring directly attached to the Cl
group indicates that hydrophobic groups are unfavorable
at this position. This assumption is supported by the low
activity of Cl substituted compounds when compared to
their unsubstituted derivatives. This is evident while com-
paring the compounds 6 with 7 and 32.

3. 4. 3. Negative

In contour plot of compound 25 (Figure 5C), the pres-
ence of red cubes at para position X indicates that the pres-
ence of electron withdrawing groups is undesirable at this
position. This is evident while comparing the compounds 2
(X: S) with 5 (X: SO,). On the contrary, the presence of blue
cubes at para position of W indicated the preference of elec-
tron withdrawing groups at this position. This is explained
by the significant anti-HIV activity of compounds with para
halogen substitution (30, 35 and 40) (pECs,= 8.70, 7.82 and
7.60) in the order of Br > COMe > CHOHMe.

Fig. 5. QSAR model visualized in the context of favorable and unfavorable effects in compound: (A) hydrogen bond donor, (B) hydrophobic/

non-polar and (C) negative ionizable properties.
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3. 5. Identifying Novel Inhibitors

The created five-site pharmacophore hypothesis,
ADRRR-1, was used to identify new inhibitors with a
new scaffold that corresponds to the 3D-QSAR model’s
predicted molecular properties. Lead-like compounds
from PubChem have been used to obtain new inhibitors,
which could potentially target the HIV protease receptor.
There was a total of 5575 hits compounds found from the
PubChem datasets was similar 80% for most active com-
pound of indolyl-aryl-sulfones composes. Pharmacophore
model was used to identify the molecules that satisty the
hypothesis. Pharmacophore pre-filtering with ADRRR-1
hypothesis reduced initial 233 hits.

3. 6. Virtual Docking Screening

Molecular docking simulations for the selected set of
hits were performed using the Glide (Grid-Based Ligand
Docking with Energetics) program available in Schroding-
er 2021. The 3D structures were prepared using the Maes-
tro LigPrep module. This module generates possible 3D
conformations for each ligand with various ionization
states at pH 7.0 + 2.0. The docking screening process was
conducted in two steps: (i) Glide/SP is performed for 230
ligands accelerated docking simulations; (ii) Glide/XP
docking has chosen the top-docking ligands for more de-
tailed analyses. The scores of docking studies Glide/SP are
shown in the (Table S5).

The key residues involved in substrate binding, in-
cluding Asp25 Gly27 Ala28 Asp29 Asp30 Thr31 Val32
Ile47 Gly48 Gly49 Ile50 Gly51 Gly52 Phe53 Ile54 Leu76
Thr80 Pro81 Val82 Ile84, the structural analysis using the
X-ray crystallographic data of PR complexed with GRL-
09510 (8FM) showed that the P2-Crwn-THF of GRL-
09510 forms a strong hydrogen-bond network with the
backbone atoms of Asp 29 and Asp 30.

Validation of the docking process was done by dock-
ing of the compounds Nelfinavir and co-crystallized ligand
8SFM ((35,3aR,5R,7a8,8S)-hexahydro-4H-3,5-methano-
furo[2,3-b] pyran-8-yl [(2S,3R)-3-hydroxy-4-{[(4-meth-
oxyphenyl) sulfonyl] (2-methylpropyl) amino}-1-phenylbu-
tan-2-yl] carbamate) at the active site of the target. Whereas,
Nelfinavir is one of many protease inhibitors currently
available, used to limit viral replication and improve im-
mune function in people with HIV infection.*> The docking
complex and binding interactions of Nelfinavir with HIV-1
protease are given in (Figure S1) with binding affinity -5.88

Table 4. Docking scores of the selected hits using GLIDE module.

kJ/mol. This interaction is favored by the formation of the
H-bond and non-hydrophobic interactions. The H-bonds
are supported by the amino acids, Asp29 and Asp25 with
the active site of protease and salt bridge interaction with
Asp25, whereas pi-alkyl stacking with Val82 and Ile54. By
comparing the docked energy of all the molecules studied, it
is noteworthy that six bonds have better energy scores than
Nelfinavir, knowing that the energy value for the reaction of
the indicated molecule is -5.88 kcal/mol (Table 4).

The top-scored hit molecule identified is PubChem
11560933 with a binding energy of -7.55 kcal/mol. The
second top-scored hit molecule is PubChem 11654778
with a binding energy of -7.227 kcal/mol and the third
top-scored hit molecule is PubChem 11710411 with an
average binding energy of -6.655 kcal/mol. The molecular
structure of top-scored compounds can be seen in table 5.

Visualization of the docking results revealed that all
the ligands adopted a very similar orientation in the ac-
tive site. The nitrogen atoms with amide groups are ori-
ented to the two aspartic acids as shown in figure 6. All of
them form H-bond, while their large hydrophobic groups
were often orientated to the main hydrophobic site, which
distinguishes the PR active site. Moreover, the literature
was mentioned that the catalytic triad Asp-Thr-Gly that
is where the ligand binds determines the active site of the
enzyme. 4647

Simplifying the docking results for the compounds,
we have taken the 2D representative ligands; the bind-
ing mode of the most active compound CID 11560933 is
shown in table S13. In its binding mode, the Diamino Hex-
anoyl amino fragment is observed to be inserted deeply in
the cavity, interacting with Gly27 Asp29 Ala28 and Val32
through H-bond and pi-H contacts, respectively.

In ligand 11654778, the two oxygen of the pentane
diamide have shown strong hydrogen bonding acceptor
interaction with aspartate (residue number 29 and 30) was
also mapped on HBA features on ADRRRI1 pharmacoph-
ore model.

Whereas the nitrogen atom of the carboxamide
group in all the compounds shows H-bonds with Gly27
are observed explaining why the H-donor is beneficial for
activity in the pharmacophore 3D-QSAR model. It should
be noted that favorable interactions of hydrophobic type
are observed between the indole rings and the residues
Ala28, Tle54 and Val32; we can say that the aromatic ring
was important for binding and stability of ligand with the
HIV-1 PR active site complex.

Compound Names CID Xp score Glid E model Compound Names Xp score Glid E model
CID 11560933 -7.554 -56.274 CID 55868948 -6.615 -45.144
CID 11654778 -7.227 -53.648 CID 11567743 -6.454 -45.532
CID 11710411 -6.655 -48.052 CID 11630770 -6.449 -47.750
Nelfinavir. -5.882 -51.263 MEF8 -4.851 -48.632
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Table 5. Details of virtual screening compounds.

Structure CID Molecular PubChem IUPAC Molecular mass
formula name (g/mol)
Hol M o 11567743 CyHyeN,O,S  6-[[(2-amino-3-methylpentanoyl)amino] 410.5
| i 3\ methyl]-3-phenylsulfanyl-1H-indole-2-
EHW e — carboxamide
CHy o L
T Q
i s 11560933 C,,H,N;0,S  6-[(2,6-diaminohexanoylamino)methyl]-3- 425.5
2 phenylsulfanyl-1H-indole-2-carboxamide
AN
H\u A N —H
\i\ H/v
C Q
! s 11654778 C,H3N505S  2-amino-N-[(2-carbamoyl-3 phenylsulfanyl-  425.5
\_/ 1H-indol-6 yl)methyl]pentanediamide
\ru : NH —H
/ it
Hf-\
9 —o,
. 55868948 C,yoH,,CIN,O,  5-chloro-N-[[3-[[2-(dimethylamino)acetyl] 384.9
amino]phenyl]methyl]-1H-indole-2-
4 P carboxamide
A
.
H 11630770 C,¢H;5N50S 6-(aminomethyl)-3-phenylsulfanyl-1H- 297.4
i N P indole-2-carboxamide
|
e " NH N—TH
/ o 11710411 CioHyN,O,S  6-[(2-aminopropanoylamino)methyl]-3- 368.5

phenylsulfanyl-1H-indole-2-carboxamide

One of the most important characteristics of the
HIV-1 protease is that all amino acids of the active site
are hydrophobic except for hydrophilic aspartic acids
(Asp25).#8 Due to these HIV-1 protease active site char-
acters, the hits are considered a good inhibitor of the ac-
tivity of HIV-1 protease because its hydrophobic surface
provides strong Van der Waals interaction between hits
and HIV-1 protease active site, which are beneficial to ac-
tivity. This supports the proposed model pharmacophore
ADRRRI as it consists of three rings.

The compounds CID 11560933, CID 11654778,

CID 11710411, CID 55868948, CID 11567746, and CID
11630770 make good interaction with HIV-1 protease by
forming hydrogen bonds, hydrophobic interactions and
non-bonding interaction with catalytic residues such as
Asp30, Thr80, Gly27, Asp29, Ile54 and Ile84 at the active
site cavity of HIV protease. These interactions systems
have the lowest total energies. According to this study,
the type and spatial location of the hit compounds agree
perfectly with the pattern of enzyme inhibitor interac-
tions identified from Nelfinavir. In future, optimality of
the compounds should be confirmed experimentally and
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Acceptor BN
Fig. 6. The orientation of HIV 1 PR inhibitors in the active site and hydrogen and hydrophobic surface

compared its binding modes with a number of HIV-1 pro-
tease.

3.7. Analyzing Absorption, Distribution,
Metabolism and Excretion (ADME)

For additional validation purpose, The QikProp
module of Schrodinger is a quick, accurate, and easy-to-
use to describe absorption, distribution, metabolism and
elimination results listed in table 6.

The aqueous solubility plays an essential role in the
bioavailability of the candidate. The aqueous solubility pa-
rameter (QPlog S) of the test entities was assessed and the
compounds were also found to be in the permissible range
(< 0.5) (Table 6).

One of the essential factors to be studied concern-
ing the absorption of the drug molecule is also intestinal
absorption or permeation, which was further supported
by the expected permeability of Caco-2 cells (QPPCaco).
The estimation of the test compounds for Caco-2 cell per-
meability the compounds CID 55868948 shows excellent

Hydrophobicity
3.00
200/
1.00
0.00

-100

-200

-3.00

results, predicting strong intestinal absorption. The ether
compounds have poor permeability across the gut-blood
barrier. The parameters of the brain/blood partition coef-
ficient (QPlogBB) define the drug’s ability to pass through
the blood-brain barrier, which is important for ADME
to investigate drug performance. The QikProp descriptor
for blood/brain partition coefficient QPlogBB has shown
reliable prediction for all the test compounds and refer-
ence drugs. Predictions related to skin permeability (Kp),
showed that these parameters for the active analogs fall
within the standard ranges normally observed for drugs
(Table 6). In addition, four out of the six compounds,
shown to be more than 25% human oral absorption. Hu-
man Ether-a-go-go Related Gene (hERG) parameter is
used to determine the potential cardiac toxicity of the com-
pounds. The hERG encodes a potassium ion (K*) channel
that plays a role during systolic and diastolic activities of
the heart. The blockage of hERG K* channels can lead to
cardiac arrhythmia. All the six compounds have logICs,
(hERG) values less than the acceptable range for the block-
age of hERG K" channels (1ogIC50 (hERG) < -5); however,

Table 6. Estimated physicochemical and pharmacokinetic parameters by QikProp.

Compound QPlogs QPPCaco QplogHEGd Qlog BB Percent human Metabolism Logkp
Names CID oral absorption

11560933 -2.474 0.822 -4.316 -3.024 7.540 7 -7.518
11654778 -0.446 1.018 -3.709 -2.655 8.635 7 -7.374
11710411 -3.067 15.627 -5.325 -1.665 40.552 5 -5.837
55868948 -4.648 211.95 -7.225 -0.459 86.524 4 -4.064
11567743 -3.223 25.586 -5.525 -1.540 50.499 5 -5.302
11630770 -3.231 64.203 -5.923 -0.929 65.168 4 -5.479

QPlogs is the predicted aqueous solubility, log S: S in moles/l is the concentration of the solute in a saturated solution that is inequilibrium with the
crystalline solid; QPPCaco is the predicted apparent Caco-2 cell permeability in nm/s; Caco-2 cells are a model for the gut-blood barrier Recom-
mended values QPPCaCo = <25 POOR, >500 great,; QplogHEGd: Predicted IC50 value for blockage of HERG K+ channels QploghEGd concern
below -5. QPlog BB is the predicted brain-blood partition coefficient; Percent Human-OralAbsorption = <20 POOR, >80great; QPlogBB = —3.0
to 1.2; *Recommended values — As per the guidelines given in Schrodinger’s Maestro software suite manual
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the values are near the borderline. All the six compounds
were predicted to possess non-blocker to hERG channel
(Table 6). An estimated number of possible metabolic re-
actions has also been predicted by QikProp and used to
determine whether the molecules can easily gain access to
the target site after entering the blood stream. The com-
pounds have the most elevated QPlogP values. A number
of likely metabolic responses of the compounds are in the
range of 4-7. The In silico ADMET results revealed that the
top six of Mpro inhibitors are virtually safe and active.

3. 8. Prediction of Toxicity

The computational prediction of toxicities was based
on 5 different targets linked to adverse drug-reactions. The
hepatotoxicity, carcinogenicity, mutagenicity and cytotox-
icity of the compounds were predicted. It was found that 6
compounds have shown no toxicity.

The LD50 has been also predicted, the obtained re-
sults have shown that compounds 11630770 and 5586948
present a LD50 of 650 and 1000 mg/kg, respectively, as
well as class four of toxicity. The other compounds show
moderate toxicity with a LD50 value of 200 mg/kg and
class 3 of toxicity.

Table 7. Toxicity prediction of the selected compounds

to be more stable during simulation competed to 5v4y
HIV-1 protease alone. However, 5v4y HIV-1 protease
55868948 complex showed more variations with some
spikes in RMSD. The RMSD average of both complexes
was statistically insignificant (p-value < 0.05) with respect
to 5v4y HIV-1 protease alone. The RMSD analysis of CID
55868948 alone revealed that these variations were due to
the fluctuations in RMSD of the ligand (CID 55868948).
The fluctuation in structures was assessed by calculat-
ing the root mean square fluctuation (RSF) of C, of 5v4y
HIV-1 protease in the absence and the presence of ligands
(Figure 8A). As evident from data, the RMSF of most of
the residues of 5v4y HIV-1 protease alone was found to
be less than 0.2 nm. A similar fluctuation was recorded for
5v4y HIV-1 protease CID 55868948 complex where most
of the fluctuation in most of residues was below 0.2 nm.
However, there was comparatively more fluctuations in
C, atoms of 5v4y HIV-1 protease CID 55868948 complex.
The RMSF of each atom of both ligands (CID 11630770
and CID 55868948) was also calculated (Figure 8B). The
RMSEF value of the atoms of both ligands varied from their
respective initial values indicating that the ligands exhib-
ited dynamical shift from its initial position in the binding
region.

Compound Names CID Hepatotoxicity = Carcinogenicity Mutagenicity  Cytotoxicity = LD50 mg/Kg
11567743 Inactive Inactive Inactive Inactive 200
11560933 Inactive Inactive Inactive Inactive 200
11654778 Inactive Inactive Inactive Inactive 200
55868948 Inactive Inactive Inactive Inactive 625
11630770 Inactive Inactive Inactive Inactive 1000
11710411 Inactive Inactive Inactive Inactive 200
3. 9. Molecular Dynamics Simulations 1 ,
——Protein
To further obtain the insights regarding the inter- 0g L~ Protein-11630770 complex
action of the ligands (CID 11630770 and CID 55868948) ! )
. . . Protein-55868948 complex
with 5v4y HIV-1 protease, Molecular Dynamics Simula- -
tion was performed. The docked complex was used as ini- i 0.6
tial conformations for MD simulations. 2
204 _
m
3.9. 1. Analysis of RMSD and RMSF - I}w“'! 4
’ 1
The initial analysis of MD simulation was performed ‘
by calculating the root-mean square deviations (RMSD) 0 ' ' : '
1] 20 40 60 80 100

with respect to their respective backbone of initial struc-
ture to assess the stability of the 5v4y HIV-1 protease and
complexes under physiological conditions. The RMSD of
5v4y HIV-1 protease and complexes is shown in figure 7
and listed in table 8. The RMSD of 5v4y HIV-1 protease
alone showed some variations initial time till 20 ns then
it became stable for entire simulation period. The average
RMSD of was found to be 0.290 + 0.047 nm. The RMSD
of 5v4y HIV-1 protease CID 11630770 complex was found

Time (ns)
Fig. 7. Root mean square deviation (RMSD) of HIV-1 protease in
the absence and presence of 11630770 and 55868948.

3.9.2. Assessment of Rg, SASA and Energies

The mass-weighted root mean square distance of a
collection of atoms from their common center of mass is
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Fig. 8. Root mean square fluctuation (RMSF) of HIV-1 protease in the absence and presence of 11630770 and 55868948. (B) The average RMSF

value of each atom of ligands during the MD simulation.

defined as radius of gyration (Ry). The R, is also consid-
ered as indicator of the stability of proteins or their com-
plexes during MD.* Generally, compact or globular pro-
teins exhibit lesser variations in their R, compared to the
expanded form of proteins (5V4Y).

The changes in R, of 5v4y HIV-1 protease alone and
in complex with ligands are shown in figure 9A. The R, of
5v4y HIV-1 protease alone and 5v4y HIV-1 protease CID
11630770 complex was found to be stable during entire
simulation period with negligible variations. On contra-
ry, the R, of 5v4y HIV-1 protease CID 55868948 complex
showed relatively more variations that may be due to the
dynamic behavior of the ligand. The average RMSD of
HIV-1 protease alone, 5v4y HIV-1 protease CID 11630770
complex, and 5v4y HIV-1 protease CID 55868948 complex
was found to be 1.278 + 0.021, 1.265 + 0.016, and 1.301 +
0.027 nm, respectively. These values were statistically insig-
nificant with respect to the control (HIV-1 protease alone).

Solvent accessible surface area (SASA) of proteins is
also taken into account while studying the stability of pro-

7|l
(A)
Protein-11630770 complex
15 ¢ Protein-55868948 comp lex
14 ¢
5.
w .o WA A i
o 1,3 1 : ) L G I" " J.. Uik & I""
Atlbisks B S Y
35 | L
1,1 1 1 ] ]
0 20 40 60 80 100
Time (ns)

teins during MD simulation.”® SASA of HIV-1 protease in
the absence and the presence of ligands over simulation
time is presented in figure 9B. The average SASA of HIV-
1 protease alone, HIV-1 protease CID 11630770 complex,
and HIV-1 protease CID 55868948 complex was found to
be 64.318 +2.388, 63.049 + 2.194, and 65.833 + 1.995 nm?,
respectively. The negligible variations in SASA of these
structures further confirm their stable nature under phys-
iological conditions.

Further verification of the stability of HIV-1 pro-
tease and complexes was performed by calculating the
physicochemical parameters such as potential ener-
gy and total energy (Figure S2). The straight line with
negligible fluctuations in potential energy and total
energy shows that the system reached equilibrium and
remained stable during the entire simulation period.
>! The RMSD, R, and SASA values of both complexes
showed statistically insignificant variations with respect
to the potential and total energies HIV-1 protease alone
(Table 8).

—— Protein
- Protein-11630770 complex
Protein-55868948 complex
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Fig. 9. (A) Radius of gyration (R,) of 5v4y HIV-1 protease in the absence and presence of CID 11630770 and CID 55868948 as a function of simu-
lation time. (B) Solvent accessible surface area (SASA) of HIV-1 protease in the absence and presence of CID 11630770 and CID 55868948 as a
function of simulation time.
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Table 8. Average RMSD, R, and SASA of HIV-1 protease alone, and their complexes calculated over 10000

frames of 100 ns MD simulation.

3. 9. 3. Analysis of Hydrogen Bonds and

Parameters Proteins/complexes Values
RMSD (nm) HIV-1 protease only 0.290 + 0.047
HIV-1 protease 11630770 complex 0.246 £ 0.031
HIV-1 protease 55868948 complex 0.386 £ 0.105
11630770 only 0.096 + 0.030
55868948 only 0.191 + 0.060
Rg (nm) HIV-1 protease only 1.278 £ 0.021
HIV-1 protease 11630770 complex 1.265 £ 0.016
HIV-1 protease 55868948 complex 1.301 £ 0.027
11630770 only 0.342 +0.003
55868948 only 0.520 +0.033
SASA (nm2) HIV-1 protease only 64.318 +2.388

Potential energy (kcal/mol)

Total energy (kcal/mol)

HIV-1 protease 11630770 complex
HIV-1 protease 55868948 complex
11630770 only

55868948 only

HIV-1 protease only

HIV-1 protease 11630770 complex
HIV-1 protease 55868948 complex
HIV-1 protease only

HIV-1 protease 11630770 complex
HIV-1 protease 55868948 complex

63.049 +2.194
65.833 + 1.995
05.227 £ 0.195
06.869 + 0.244
-6.360 £ 0.013
-6.366 = 0.014
-6.358 £0.014
-5.096 £ 0.018
-5.101 £0.018
-5.092 £ 0.018

RMSD: Root-mean square deviation, Rg: Radius of gyration, SASA: Solvent accessible surface area.

Secondary Structure

The interaction of ligands with HIV-1 protease
was studied by calculating the hydrogens bond profiles
for 10000 frames of the MD simulation (Figure 10A).
The average number of hydrogen bonds between CID
11630770 and HIV-1 protease was found to be 2.437 +
1.050. Lesser number of average hydrogens binds was
between CID 55868948 and HIV-1 protease. The hy-
drogen bond existence was also calculated for both lig-
ands. As observed, the hydrogen bond existence be-
tween CID 11630770 and HIV-1 protease was found
over the entire simulation period. However, the hydro-

—_—
=
=)l

—— Protein-11630770 complex
—— Protein-55868948 complex

v

-

]

Hydrogen Bonds {Number)
= w

(=}

1
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gen bond existence between CID 55868948 and HIV-1
protease showed some breaks as the MD simulation
progressed.

The effect of binding of the ligands on the secondary
structure of HIV-1 protease was studies by calculating the
average secondary structure of all frames of the respec-
tive trajectories (Figure 10B). The coil, p-sheet, bends,
and turns in HIV-1 protease alone was found to be 22.34,
49.03, 11.18, and 11.55% respectively. These secondary
structural components were insignificantly altered in the
presence of both ligands. However, there was some incre-
ment in a-helix, which increased from 4.81% to 5.27% due
to binding of 55868948

60
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Secondary structure of HIV-1 protease

Fig. 10. (A) Number of hydrogen bonds the ligands (11630770 and 55868948) and HIV-1 protease over simulation time. (B) Percentage of second-
ary structure in HIV-1 protease in the absence and presence of 11630770 and 55868948.
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3. 9. 4. Calculation of Binding Energies and
Identification of Key Residues Involved in
Binding

The detailed investigation of the various binding
energies involved in the interaction of both ligands with
HIV-1 protease was done using MM-PBSA calculation.
Usually in protein-ligand interactions, non-covalent inter-
actions are predominant. The forces include hydrophobic
forces, hydrogen bonds, electrostatic interactions, Van der
Waals force. Each of these forces contributes either pos-
itively or negatively to the overall binding energy.>> The
MM-PBSA binding energies were calculated by extracting
100 frames from the entire MD simulation trajectories at
uniform intervals (Table 9). In the binding of 11630770
to HIV-1 protease, electrostatic interactions were most
prominent followed by Van der Waals interactions. The in-
teraction of 55868948 with HIV-1 protease was mostly fa-
vored by Van der Waals forces. Additionally, there was also
small contribution of SASA energy in the overall binding
of both leads. However, polar solvation energy impaired
the interaction of both ligands with HIV-1 protease. The
overall binding energy for 11630770 and 55868948 were
found to be -7.067 + 0.509 and -7.218 + 2.080 kcal/mol
respectively.

From MM-PBSA calculations, the binding energies
of all residues can be calculated. The polar, a polar and
total binding energy contribution of the key residues of
HIV-1 protease in the interaction is presented in figure
10 B. Glu-21, Asp-25, Asp-29, Asp-30, Glu-34, Glu-
35, Asp-60, Glu-65, Ile-84, and Phe-99 were the major
contributor to overall binding energy in interaction of
11630770 with HIV-1 protease. Similarly, Glu-21, Asp-
25, Asp-29, Asp-30, Glu-34, Glu-35, Ile-50, Asp-60, Glu-
65, Pro-81, Val-82, Phe-99 of HIV-1 protease contribut-
ed maximally in the binding of 55868948 to the protein.
It is interesting to note that polar energy of some key
residues contributed negatively towards the total bind-
ing process.
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Table 9. Binding free energy (kcal mol™!) for the interaction of pro-
tein with 11630770 and 55868948 ligands using MMBSA analysis.

Type of energy  Ligands

11630770 ligand 55868948 ligand
AE g ~24.258 % 0.533 ~20.163 + 1.340
AE,, ~45.156 + 1.261 ~3.787 £ 1.817
AEpgg 66.022 + 1.583 19.443 £ 1.997
AESgasa -3.650 = 0.046 -2.701 £0.163
AEgg -7.067 = 0.509 -7.218 £2.080

AE,qw: Van der Waal energy, AE,.: Electrostatic energy, AEpgg:
Polar solvation energy, AEgasa: Solvent accessible surface area en-
ergy and AEgg: Binding energy.

3.9. 5. Principal Component Analysis

Principal component analysis (PCA) is the standard
statistical procedure used for the investigation of large-
scale motion in protein, which is performed by reducing
the dimensionality of data set without losing important in-
formation, which is characterized by eigenvectors.>> PCA
was done to assess the differences in the flexibility param-
eters between the HIV-1 protease alone and complexes.
Using PCA analysis, a set of eigenvectors and eigenvalues
were projected (Figure 12A). HIV-1 protease alone and
HIV-1 protease 11630770 complex occupied larger con-
formational space compared to HIV-1 protease 55868948
complex. These observations denote the presence of more
structural stability HIV-1 protease 11630770 complex
than HIV-1 protease 55868948 complex.

Moreover, the free energy landscapes for the pro-
tein alone and both complexes were plotted to decipher
the variations in the protein folding patterns (Figure 13).
Variations in the projection of free energy were recorded
where alone energetically favorable and relatively stable
was compared to both the complexes. The observations
show that the binding of ligands partly perturbed the con-
formation of HIV-1 protease.
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Fig. 11. (A) Polar, apolar and total energy contributions of the key residues of HIV-1 protease for binding of 11630770. (B) Polar, apolar and total
energy contributions of the key residues of HIV-1 protease for binding of 55868948.
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To gain further insights into the conformational
transition of HIV-1 protease, the lowest energy minima
structures were extracted. The Ramachandran plots were
made for the energy minima structures of HIV-1 protease
alone and in complex with the ligands (Figure 12B). The
phi (¢) and psi () angles for HIV-1 protease alone were
found to be -82.31 and 93.60, respectively. The ¢ and y an-
gles for HIV-1 protease 11630770 complex were obtained
as —85.15 and 91.30, respectively. Similarly, ¢ and y angles
for HIV-1 protease CID 55868948 complex were recorded
as —85.14 and 84.72, respectively. In both the complexes,
remarkable variations in the dihedral angles with respect
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Donor (HBD), Hydrogen-Bond Acceptor (HBA), hydro-
phobic and aromatic groups, which may be responsible
for the HIV1 inhibition. Both generated pharmacophore
model was validated for its quality to identify new reliable
chemical compounds. The validation procedure included
two methods: test set validation, and decoy set validation.
Based on the 3D-QSAR model ADRRR we have selected
hits from the PubChem database. Initial screened com-
pounds were passed through several criteria including the
range of activity of training set, fitness score more than 2.5
and comparison of dock score and binding energy with
Nelfinavir to reach the potential compounds. Docking into
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Fig. 12. (A) Principal component analysis (PCA) of HIV-1 protease in the absence and presence of 11630770 and 55868948. (B) Ramachandran plot
of the energy minima of HIV-1 protease in the absence and presence of 11630770 and 55868948.
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Fig. 13. Free energy landscape plot of (A) HIV-1 protease alone (B) HIV-1 protease 11630770 complex and (C) HIV-1 protease 5586894 complex.

to HIV-1 protease alone were observed, indicating the
structural transition in the presence of ligands.

4. Conclusion

In this study, a five-featured (ADRRR) pharmacoph-
ore model for the HIV1 inhibitors was developed. The gen-
erated model revealed the importance of Hydrogen-Bond

predicted active site conclusively infers those hydropho-
bic contacts possess more dominance compared to other
interactions. Subsequently, amide group play an essential
role in hydrogen binding. ADME properties of the six hits
were found to be in accordance with known chemically
and biologically active compounds. Conclusively, the hits
obtained on virtual screening of the database have provid-
ed new chemical starting points for design and develop-
ment of novel HIV-1 inhibitory agents.
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Ta raziskava obravnava in silico 45 indolil-aril-sulfonov, znanih kot anti-HIV1. Podatki so bili zbrani iz nedavnih pred-
hodno prijavljenih zaviralcev in razdeljeni na podskupino 33 spojin, namenjenih nizu preizkusanj, preostalih 12 spo-
jin pa je bilo shranjenih v namen testnega niza. Izbrani farmakofor —~ADRRR- je podal statisticno pomemben model
3D-QSAR, ki vklju¢uje visoke ocene zaupanja (R? = 0,930, Q* = 0,848 in RMSE = 0,460). Napovedna mo¢ uveljavljenega
modela farmakofora je bila potrjena z zunanjim testom (r? = 0,848). Sistemati¢en navidezni potek dela je pokazal visok
faktor uporabnosti in razkril visoko mo¢ napovedovanja. Nato je bil model uporabljen za pregled filtrirane baze podat-
kov PubChem in oznacil vse kemijske znacilnosti modelne farmakofore. Ustrezni zadetki so bili dodatno ocenjeni z in
silico ADMET §tudijami. Poleg tega se molekularna dinamika lahko uporablja tudi za raziskovanje stabilnosti dobljenih
kompleksov. V kon¢ni fazi bodo te izbrane komponente lahko postale dobra zacetna molekula za razvoj ucinkovitih

ucinkovin proti HIV-1.
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