© creative

Scientific paper

Combustion Synthesis of Nano Fe_2O_3 and its Utilization as a Catalyst for the Synthesis of N^{α} -Protected Acyl Thioureas and Study of Anti-bacterial Activities

Raghavendra Mahadevaiah,^{1,3} Lalithamba Haraluru Shankraiah^{1,*} and Latha Haraluru Kamalamma Eshwaraiah²

¹ Department of Chemistry, Siddaganga Institute of Technology, B. H. Road, Tumakuru - 572 103, Karnataka, India

² Department of Electronics & Instrumentation Engineering, Siddaganga Institute of Technology, 10 B. H. Road, Tumakuru - 572 103, Karnataka, India

³ Department of Chemistry, Channabasaveshwara Institute of Technology, B. H. Road, Gubbi, Tumkur - 572 216, Karnataka, India

* Corresponding author: E-mail: lalithambasit@yahoo.co.in; hslalithamba@gmail.com

Received: 07-15-2021

Dedicated to Dr. Sree Sree Shivakumara Mahaswamiji, Siddaganga Matt, Tumakuru, Karnataka, India

Abstract

A simple and eco-friendly nano Fe_2O_3 heterogeneous catalytic system is described for the synthesis of acyl thiourea derivatives from corresponding *in situ* generated acyl isothiocyanates and amino acid esters in acetone obtained in good yields. The structures of synthesized acyl thioureas were confimed by 1H NMR, ^{13}C NMR, mass, and FTIR analysis. Fe_2O_3 NPs has been prepared *via* a solution combustion route using ascorbic acid as the reducing agent and ferric nitrate as the source of iron. The prepared nano material has been characterized by XRD, SEM, UV-Visible, and FTIR analysis. More prominently, the Fe_2O_3 and other impurities are removed though a simple work-up and the material prepared shows to be effective in catalyzing the conversion of reactants to products in good yields. Further, some of the synthesized acyl thioureas were evaluated for *in vitro* antibacterial activity against *Staphylococcus aureus* and *Escherichia coli*.

Keywords: N-protected acyl thioureas; in vitro antibacterial activity; Fe₂O₃ nanoparticles; solution combustion.

1. Introduction

Many acyl thiourea derivatives are well known to possess a diverse range of biological activities such as anticancer,¹ antiviral,² fungicidal,³ anti-microbial,⁴ antimycobacterial,⁵ antitumor,⁶ anti-inflammatory,ⁿ herbicidal,⁵ anti-aggregating,⁰ analgesic, and are often employed as local anesthetic, and antihyperlipidemic.¹⁰ Therefore, the acyl thiourea linkage has received greater attention because of its potent biological as well as structural aspects. The ability to provide a hydrogen bond donor and acceptor point makes it an efficient anion receptor and enables it to play a key role in some epoxy resin curing agents containing amino function-

al groups and to act as chelating agents in catalysis. ^{11–13} Aroylthiourea ligands are an important class of compounds in the field of coordination chemistry and catalysis. ^{14–16} Thiourea and its derivatives have long been studied for their use against the corrosion of a wide range of metals in various corrosion environments. ^{17–18} Also the thiourea and its derivatives have found wide range of applications in agriculture, medicine, and analytical chemistry. ^{19–20}

In the past, Benjawan and his group synthesized and evaluated the acyl thiourea derivatives for the *in vitro* evaluation of activity against *Mycobacterium tuberculosis* showing promising results.²¹ Substituted thioureas are an important

class of sulphur-containing organic compounds or intermediates in the synthesis of a variety of heterocyclic compounds such as 2-imino-1,3-thiazolines, imidazole-2-thiones, (benzothiazolyl)-4-quinazolinones. Pyrimidine-2-thiones N-(substituted phenyl)-N-phenylthioureas have been developed as calixarenes containing thioureas as neutral receptors towards α,α -dicarboxylate anions, anion-binding sites in a hydrogen-bonding receptor, and N-4-substituted-benzyl-N-tert-butylbenzyl thioureas as antagonists in rate DRG neurons and vanilloid receptor ligands. $^{22-28}$

There are several works demonstrating the synthesis of acyl thiourea derivatives including: (a) reaction of functionalized diisothiocyanate with various benzenamines in the presence of PEG-400,²⁹ (b) difluoromethyl pyrazole acyl thiourea derivatives were successfully synthesized using PEG-600 as a phase transfer catalyst, 30 (c) The application of benzoyl / carbethoxy isothiocyanate towards the synthesis of substituted-3-benzoyl/carbethoxy thioureas in the presence of nucleophile such as amine and NH₄SCN was investigated,³¹ (d) reaction of acid chloride with potassium thiocyanate to obtain acyl isothiocyanate intermediate, this is coupled with the amines employing TBAB as an organic catalyst to afford N-(o-fluorophenoxyacetyl) thioureas derivatives,³² (e) Zhong et al. synthesized three different acyl thiourea derivatives of chitosan and their antimicrobial behavior against four species of bacteria were investigated.³³ Therefore, the application of nano Fe₂O₃ for the synthesis of N^{α} -protected acyl thioureas is, according to the literature survey, not established yet. Hence, herein we report a simple and efficient route for the synthesis of biologically active acyl thioureas employing nano Fe₂O₃. Furthermore, the synthesized compounds were screened for in vitro activity in anti-bacterial studies.

Nowadays, nano metaloxide semiconductors have attracted a lot of attention, as their properties can be controlled by changing the crystallite size, shape, surface-to-volume ratio, temperature and also by synthetic routes.34-35 From the view point of the basic research purpose Fe₂O₃ is an important semiconductor for the study of magnetic properties, and polymorphism and structural phase transitions of nanoparticles.^{36,37} In the last decades, nanostructured iron oxides such as α-Fe₂O₃, γ-Fe₂O₃, β-Fe₂O₃ and Fe₂O₃, have received remarkable interest from both theoretical and experimental viewpoints because of their potential applications in sensing devices and biomedical applications, such as magnetic resonance imaging, biosensors, hyperthermia, and drug delivery in cancer therapy, and detoxification and also in industrial applications.³⁸⁻⁴¹ At the same time there is an increased interest in using iron oxide NPs for the removal of various pollutants (As5+, Cr6+, dyes) from wastewaters.42-45

Several synthetic methods have been developed for the preparation of ${\rm Fe_2O_3}$ nanoparticles due to its inherent biocompatible nature, magnetic properties as well its stability towards oxidation. There are many methods available to prepare nano ${\rm Fe_2O_3}$ including: co-precipita-

tion, plasma chemical synthesis, micro emulsions, thermal decomposition, sol-gel, and flame spray pyrolysis etc. $^{50-57}$ Some of these are expensive and time consuming. Here, we have prepared $\rm Fe_2O_3$ nanopowder by eco-friendly simple low-cost solution combustion method using ascorbic acid as the reducing agent. 58 Although the synthesis of $\rm Fe_2O_3$ nanoparticles has seen substantial progress, the preparation of pure, large surface area nano $\rm Fe_2O_3$ powders is still one of the top goals in the field.

2. Experimental Section

2. 1. General

All the chemicals were purchased from Sigma-Aldrich and Merck and used without purification. The pathogenic bacterial strains were purchased from National Chemical Laboratory Pune, India. IR spectra were recorded on Bruker Alpha-II FTIR spectrometer. ¹H NMR and ¹³C NMR spectra were recorded using Bruker AMX 400 MHz spectrometer using TMS as the internal standard and DMSO as the solvent. Mass spectra were recorded on a Micromass Q-ToF Micro Mass Spectrometer. Powder XRD data were recorded on Shimadzu X-ray diffractometer (PXRD-7000) using Cu-Ka radiation of wavelength λ = 1.541 Å. IR spectra were recorded on Bruker Alpha-T FTIR spectrometer (KBr windows, 2 cm⁻¹ resolution). The absorption spectrum and band gap were measured using Lambda-35 (Perkin Elmer) spectrophotometer in the wavelength range 200-800 nm diffused reflectance mode. Morphological features were studied by using Hitachi-7000 Scanning Electron Microscopy.

2. 2. Solution Combustion Synthesis of Nano Fe₂O₃

1 g of Fe(NO₃)₃ · 9H₂O (acting as oxidizing agent) and 0.6 g of ascorbic acid (acting as reducing agent) were mixed and stirred in 10 mL distilled H₂O to get homogeneous solution. This solution was poured into silica crucible and kept in a preheated muffle furnace at 500 °C. The homogeneous solution first undergoes dehydration, then decomposition and large amounts of gases were released during the process. Fe₂O₃ NPs were formed within 5 minutes. In continuation of our interest a facile protocol for the nano Fe₂O₃ catalyzed synthesis of acyl thioureidopeptides was developed in peptide chemistry.

2. 3. Reusability and Recyclability of Nano Fe₂O₃

Catalyst was reused and recycled without any loss of activity and product yield. The nano Fe_2O_3 can be recycled by a simple protocol after the completion of the reaction. The catalyst was removed by filtration, washed with methanol and dried. The recovered catalyst was reused for the

second, third and fourth consecutive cycles without any significant loss in catalytic activity.

2. 4. General Procedure for the Synthesis of N^{α} -Protected Acyl Thioureas

To the protected amino acid (1 mmol) dissolved in CH₂Cl₂ (5 mL), SOCl₂ (1.5 mmol) was added and the mixture was sonicated at rt for about 40-50 min and monitored through TLC. The excess of CH₂Cl₂ and SOCl₂ were carefully eliminated by rotary distillation and the residue was precipitated after the addition of hexane (5 mL) and then filtered and dried to get pure acid chlorides. To the formed acid chloride were added ammonium thiocyanate and acetone, this reaction mixture was refluxed for 1 h and the solvent was removed on a rotary evaporator to obtain a crude product of acyl isothiocyanates. This intermediate was dissolved in CH₂Cl₂ (30 mL), then subjected to H₂O and brine wash and dried over anhydrous Na2SO4. The organic phase containing acyl isothiocyanate intermediate was coupled with neutralized amino acid esters followed by the addition of nano Fe₂O₃ (0.5 mmol). The reaction mixture was stirred for 4-6 h at rt and monitored by TLC. After the completion of the reaction, Fe₂O₃ was removed by filtration and the organic phase was washed with 5% HCl (20 mL), 5% Na₂CO₃ (20 mL), H₂O, and brine and dried over anhydrous Na₂SO₄ to get crude product of acyl thioureas; then, it was purified by the trituration with hexane-diethyl ether system to afford analytically pure products.

3. Results and Discussion

3. 1. Characterization of Fe₂O₃ NPs

3. 1. 1. Powder X-Ray Diffraction Technique

Figure 1 shows the XRD pattern of Fe₂O₃ NPs calcined at 500 °C. The diffraction peaks observed at 24.18,

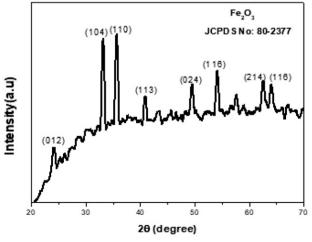


Figure 1. XRD patterns of the Fe₂O₃ NPs.

33.34, 35.68, 40.85, 49.63, 54.28, 62.55 and 64.22 could be indexed to the (012), (104), (022) (202), (103), and (123) planes respectively, consistent with the standard XRD data of Fe_2O_3 (JCPDS no. 72-1191). The average crystallite size of the prepared sample was calculated by Debye–Scherrer equation (Equation 1) and it was observed to be 30 nm.

$$D = \frac{0.9 \,\lambda}{\beta cos\theta} \tag{1}$$

3. 1. 2. Fourier Transform Infrared Spectroscopy

From Figure 2 the two peaks at 442 and 530 cm⁻¹ are observed in the FTIR spectrum of the Fe₂O₃ NPs. In comparison with the literature, we conclude that these peaks were assigned to the stretching and bending modes of the Fe–O bond. The absorption peaks around 1587 and 1383 cm⁻¹ are due to the asymmetric and symmetric bending vibration of C=O.

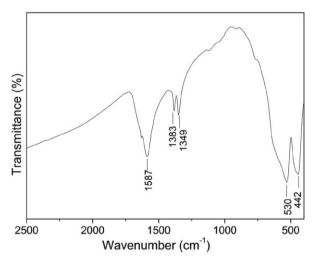


Figure 2. FTIR spectrum of Fe₂O₃ NPs.

3. 1. 3. Scanning Electron Microscopy Analysis

Figure 3 shows the SEM image of the prepared nano Fe_2O_3 which clearly shows that the particles have roughly irregular spongy cave like structure. The size and the shape of the Fe_2O_3 strongly depend on the preparation technique.

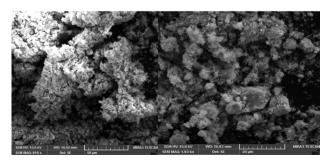
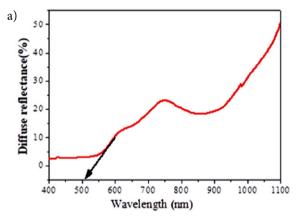
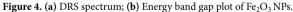
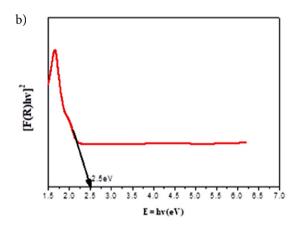


Figure 3. SEM images of Fe₂O₃ NPs.

3. 1. 4. UV-Visible Analysis


The optical properties of nano Fe_2O_3 were studied by UV-visible DRS spectroscopy. The spectrum was recorded in the wavelength region between 200 to 1200 nm at rt. The band gap energy of the samples can be evaluated from the E_g measurements using Kubelka–Munk model and the F(R) was estimated using the equation 2


$$F(R) = \frac{(1-R)^2}{2R} \tag{2}$$


where F(R) is the remission or Kubelka–Munk fuction, and R is the reflectance. A graph was plotted between $[F(R)hv]^2$ and hv, the intercept value is the band gap energy of the Fe₂O₃ NPs. From the Figure 4a it was observed that Fe₂O₃ NPs show strong reflectance peak at 510 nm wavelength. From Figure 4b the estimated band gap of nano Fe₂O₃ was found to be 2.5 eV which was higher when compared with the reported value for the bulk Fe₂O₃ (2.1 eV) owing to the quantum confinement effect exerted by the nanostructured materials. Thus there is a blue shift of the band edge of Fe₂O₃ NPs with respect to the bulk Fe₂O₃.

3. 1. 5. Application of Nano Fe₂O₃ as the Catalyst for the Synthesis of N^{α} -Protected Acyl Thioureas of N-Protected Amino Acids

To avoid the restrictions, such as cost of synthesis, prolonged reaction conditions, and low yields, the studies were made to develop a well-organized method with higher yields for the synthesis of acyl thioureas in the presence of nano Fe₂O₃. Therefore, we described the synthesis of acyl thiourea derivatives of protected amino acids bearing different side chains employing Fe₂O₃ nano powder under mild reaction conditions. The protocol is based on a threestep strategy, a direct chlorination of the carbonyl group of the protected amino acid with a thionyl chloride followed by the nucleophilic substitution reaction with ammonium thiocyanate in acetone under reflux condition to form acyl isothiocyanates as key intermediates, further being coupled with amino acid esters employing nano Fe₂O₃ as the catalyst leading to the desired acyl thioureas 5a-m in good yields (Scheme 1, Table 1). Basically, acyl thiourea in its basic structure has one sulfur atom, which has six valence electrons. It is believed that the present protocol provides a greater flexibility of amino acids at our convenience and is

 $\mathbf{R_1}, \mathbf{R_2}$: H, alkyl, aryl groups \mathbf{Pg} (Protecting group): Fmoc (fluorenylmethyloxycarbonyl), Cbz (benzyloxycarbonyl).

Scheme 1. Synthesis of acyl thioureas employing nano Fe₂O₃

Entry	Acyl thioureas	Yield (%)	M.p. (°C)	$[\alpha]_{\mathrm{D}}^{25}$ in degrees
5a	Fmoc-Val-ψ[CONHCSNH]-Ala-OMe	80	184	-55.45
5b	Fmoc-Phe-ψ[CONHCSNH]-Ser-OMe	81	170	-50.91
5c	Cbz-Val-ψ[CONHCSNH]-Gly-OMe	85	165	-9.09
5d	Cbz-Met-ψ[NHCONH]-Phe-OMe	86	180	-16.82
5e	Boc-Ala-ψ[CONHCSNH]-Ser-OMe	81	Gum	-22.39
5f	Boc-Leu-ψ[CONHCSNH]-Ala-OMe	79	Gum	-18.43
5g	Fmoc-Phe-ψ[CONHCSNH]-Ala-OMe	83	185	-24.56
5h	Fmoc-Leu-ψ[CONHCSNH]-Ile-OMe	84	91	-20.62
5i	Fmoc-Ala-ψ[CONHCSNH]-Val-OMe:	90	180	-17.27
5j	Fmoc-Try-ψ[CONHCSNH]-Ala-OMe	87	205	-12.73
5k	Boc-Val-ψ[CONHCSNH]-Ala-OMe	75	Gum	-23.18
5l	Fmoc-Ile-ψ[CONHCSNH]-Val-OMe	86	159	-9.09
5m	Cbz-Thr-ψ[CONHCSNH]-Val-OMe	90	165	-11.10

Table 1. List of N^{α} -protected acyl thioureas synthesized *via* scheme 1

superior to the other methods. N^{α} -Protected amino acid was dissolved in CH₂Cl₂ (dichloromethane), thionyl chloride was added and the mixture was sonicated at rt for about 40-50 minutes yielding acyl chlorides 2. Then, the carbonyl group in 2 (in the form of acyl chloride) was modified by the nucleophilic substitution reaction. To the acyl chlorides 2 ammonium isothiocyanate was added, yielding acyl isothiocyanates 3 under reflux condition. The formed acyl isothiocyanate intermediates 3 were trapped with amino acid esters 4 employing nano Fe₂O₃ as an efficient, eco-friendly catalyst to form the final product acyl thioureas 5a-m as monitored by TLC. The reaction was complete in about 6 h and all the compounds were isolated, after a simple work-up, and purified by hexane-diethyl ether system and their structures were confirmed by mass, ¹H NMR, ¹³C NMR, and FTIR spectroscopy techniques.

3. 1. 6. Spectral Data of the Synthesized Compounds 5a-m

(S)-Methyl 2-(3-((S)-2-(((9H-Fluoren-9-yl)methoxy) carbonyl)-3-methylbutanoyl)thioureido)propanoate (Fmoc-Val- ψ [CONHCSNH]-Ala-OMe) (5a). Yield 80%, m.p. 184 °C. ¹H NMR (400 MHz, DMSO- d_6): δ 1.01 (d, J = 12.0 Hz, δ H), 1.30 (d, J = 8.0 Hz, δ H), 2.0 (br, δ H), 2.70 (m, δ H), 3.60 (m, δ H), 3.70 (s, δ H), 4.45–4.70 (m, δ H), 6.0 (br, δ H), 7.20–7.90 (m, δ H). δ H) (100 MHz, DMSO- δ H): δ 17.0, 17.80, 32.0, 47.0, 52.30, 54.0, δ H). (68.0, 126.0, 128.0, 128.40, 129.0, 140.0, 143.80, 156.0, 170.0, 175.0, 187.0. MS: Calcd. for C₂₅H₂₉N₃O₅S: δ Hz 506.1726 (M + Na⁺), found: 506.1060.

(S)-Methyl 2-(3-((S)-2-(((9H-Fluoren-9-yl)methoxy) carbonyl)-3-phenylpropanoyl)thioureido)-3-hydroxy-propanoate (Fmoc-Phe- $\psi[CONHCSNH]$ -Ser-OMe) (5b). Yield 81%, m.p. 170 °C. 1 H NMR (400 MHz, DMSO- 1 d₆): δ 2.10 (s, 1H), 2.90 (1 d, 1 d = 6.0 Hz, 2H), 3.50 (t, 1 d = 10.0 Hz, 1H), 3.70 (s, 3H), 4.40–4.90 (m, 6H), 6.0 (br, 2H), 7.10–

7.90 (m, 13H), 8.0 (br, 1H). 13 C NMR (100 MHz, DMSO- d_6): δ 38.0, 46.50, 51.20, 53.0, 62.0, 68.70, 126.0, 127.0, 127.80, 128.0, 128.40, 128.70, 129.0, 140.0, 141.0, 143.0, 156.0, 176.0, 187.10. MS: Calcd. for $C_{29}H_{29}N_3O_6S$: m/z 570.1675 (M + Na⁺), found: 570.2275.

(S)-Methyl 2-(3-(2-(Benzyloxycarbonyl)-3-methylbutanoyl)thioureido)acetate (*Cbz-Val-* ψ [*CONHCSNH*]-*Gly-OMe*) (5c). Yield 85%, m.p. 165 °C. ¹H NMR (400 MHz, DMSO- d_6): δ 1.0 (d, J = 8.0 Hz, 6H), 2.70 (m, 1H), 3.70 (s, 3H), 4.40–4.50 (m, 3H), 5.30 (s, 2H), 6.10 (br, 2H), 7.10–7.30 (m, 5H), 8.0 (br, 1H). ¹³C NMR (100 MHz, DM-SO- d_6): δ 20.89, 21.67, 46.67, 56.18, 64.93, 65.26, 126.98, 127.51, 127.54, 129.08, 129.14, 129.28, 129.38, 129.44. MS: Calcd. for $C_{17}H_{23}N_3O_5S$: m/z 404.1256 (M + Na⁺), found: 404.2250.

(S)-Methyl 2-(3-((S)-2-(Benzyloxycarbonyl)-4-(methylthio)butanoyl)thioureido)-3-phenylpropanoate (*Cbz-Met-ψ[NHCONH]-Phe-OMe*)(5d). Yield 86%, m.p. 180 °C. 1 H NMR (400 MHz, DMSO- 2 d₆): δ 2.0 (s, 3H), 2.30–2.50 (m, 4H), 3.30–3.50 (m, 4H), 3.70 (s, 3H), 5.30 (s, 2H), 6.10 (br, 2H), 7.10–7.30 (m, 10H), 8.01 (br, 1H). 13 C NMR (100 MHz, DMSO- 2 d₆): δ 17.10, 29.0, 32.0, 38.0, 52.0, 54.50, 60.0, 66.0, 126.0, 127.40, 127.60, 127.90, 128.50, 129.0, 139.0, 141.0, 156.0, 171.0, 175.50, 187.0. MS: Calcd. for $C_{24}H_{29}N_3O_5S_2$: m/z 526.1446 (M + Na⁺), found: 526.2130.

(*S*)-Methyl 2-(3-((*S*)-2-(*tert*-Butoxycarbonyl)propanoyl) thioureido)-3-hydroxypropanoate (*Boc-Ala-ψ[CONHC SNH]-Ser-OMe*) (5e). Yield 81%, Gum. ¹H NMR (400 MHz, DMSO- d_6): δ 1.29 (s, 9H), 1.50–1.59 (d, J = 6.0 Hz, 3H), 2.0 (br, 1H), 3.40–3.55 (m, 1H), 3.78 (s, 3H), 4.10–4.25 (t, J = 10.0 Hz, 2H), 4.60–4.75 (m, 1H), 6.45 (br, 1H), 8.01 (br, 2H). ¹³C NMR (100 MHz, DMSO- d_6): δ 19.0, 28.0, 50.0, 51.80, 61.0, 80.0, 155.0, 172.0, 176.20, 188.0. MS: Calcd. for $C_{13}H_{23}N_3O_6S$: m/z 372.1205 (M + Na⁺), found: 372.3041.

- (S)-Methyl 2-(3-((S)-2-(tert-Butoxycarbonyl)-4-methylpentanoyl)thioureido)propanoate (Boc-Leu- ψ [CONHC SNH]-Ala-OMe) (5f). Yield 79%, Gum. ¹H NMR (400 MHz, DMSO- d_6): δ 1.0 (d, J = 10.0 Hz, 6H), 1.25 (d, J = 8.0 Hz, 3H), 1.50 (s, 9H), 1.70–1.85 (m, 3H), 3.60 (m, 1H), 3.70 (s, 3H), 4.50 (t, J = 4.0 Hz, 1H), 6.20 (br, 2H), 8.0 br, 1H). ¹³C NMR (100 MHz, DMSO- d_6): δ 17.0, 22.0, 22.7, 28.40, 41.20, 51.0, 52.10, 55.20, 80.0, 155.0, 171.40, 175.50, 188.0. MS: Calcd. for C₁₆H₂₉N3O₅S: m/z 398.1726 (M + Na⁺), found: 398.2230.
- (S)-Methyl 2-(3-((S)-2-(((9H-Fluoren-9-yl)methoxy) carbonyl)-3-phenylpropanoyl)thioureido)propanoate (Fmoc-Phe- ψ [CONHCSNH]-Ala-OMe) (5g). Yield 83%, m.p. 185 °C. ¹H NMR (400 MHz, DMSO- d_6): δ 1.30 (d, J = 8.0 Hz, 3H), 2.90 (d, J = 10.0 Hz, 2H), 3.60 (s, 3H), 3.70 (m, 1H), 4.40–4.90 (m, 4H), 6.02 (br, 2H), 7.10–7.90 (m, 13H), 8.0 (br, 1H). 13 C NMR (100 MHz, DMSO- d_6): δ 18.0, 37.60, 47.10, 52.0, 54.60, 55.0, 67.0, 126.0, 126.60, 128.0, 128.40, 128.70, 129.0, 140.0, 141.0, 143.0, 156.20, 176.60, 171.0, 187.0. MS: Calcd. for $C_{29}H_{29}N_3O_5$ S: m/z 554.1726 (M + Na⁺), found: 554.5204.
- (2S,3S)-Methyl 2-(3-((S)-2-(((9H-Fluoren-9-yl)methoxy) carbonyl)-4-methylpentanoyl) thioureido)-3-methylpentanoate (Fmoc-Leu- ψ [CONHCSNH]-Ile-OMe) (5h). Yield 84%, m.p. 91 °C. ¹H NMR (400 MHz, DMSO- d_6): δ 1.0–1.30 (m, 14H), 1.70–1.85 (m, 3H), 2.50 (m, 1H), 3.40 (d, J = 6.0 Hz, 1H), 3.68 (s, 3H), 4.40–4.70 (m, 4H), 6.20 (br, 2H), 7.22–7.84 (m, 8H), 8.0 (br, 1H). ¹³C NMR (100 MHz, DMSO- d_6): δ 14.69. 22.30, 22.92, 28.17, 28.25, 37.69, 38.68, 47.85, 50.02, 55.81, 59.63, 78.09, 126.45, 126.61, 128.06, 128.18, 128.25, 138.05, 144.30, 145.25, 155.59, 170.79. MS: Calcd. for $C_{29}H_{37}N_3O_5S$: m/z 562.2352 [M+Na]⁺, found: 562.3050.
- (S)-Methyl 2-(3-((S)-2-(((9H-Fluoren-9-yl)methoxy) carbonyl)propanoyl)thioureido)-3-methylbutanoate (Fmoc-Ala- ψ [CONHCSNH]-Val-OMe) (5i). Yield 90%, m.p. 180 °C. IR (KBr): 3455, 2062, 1640, 1434, 1275, 706 cm⁻¹. ¹H NMR (400 MHz, DMSO- d_6): δ 1.10–1.20 (d, J = 10.0 Hz, 6H), 1.50–1.57 (d, J = 8.0 Hz, 3H), 2.70–2.94 (m, 1H), 3.40–3.50 (t, J = 6.0 Hz, 1H), 3.75 (s, 3H), 4.48–4.75 (m, 4H), 6.38–6.47 (br, 2H), 7.16–7.50 (m, 8H), 7.98 (br, 1H). ¹³C NMR (100 MHz, DMSO- d_6): δ 20.92, 21.32, 21.69, 46.67, 54.81, 56.16, 64.93, 65.29, 126.03, 126.98, 127.51, 127.55, 128.47, 129.08, 140.66, 143.76, 156.57, 157.26. MS: Calcd. for $C_{25}H_{29}N_3O_5$ S: m/z 506.1726 [M+Na]+, found: 506.2440.
- (*S*)-Methyl 2-(3-((*S*)-2-(((9*H*-Fluoren-9-yl)methoxy) carbonyl)-3-(1*H*-indol-3-yl)propanoyl)thioureido)propanoate (*Fmoc-Try-* ψ [*CONHCSNH*]-*Ala-OMe*) (5j). Yield 87%, m.p. 205 °C. ¹H NMR (400 MHz, DMSO- d_6): δ 1.27–1.34 (d, J = 8.0 Hz, 3H), 2.0 (br, 1H), 3.05–3.12 (d, J = 6.0 Hz, 2H), 3.30–3.59 (m, 1H), 3.80 (s, 3H), 4.40–4.80 (m,

- 4H), 6.0 (br, 1H), 6.30 (s, 1H), 7.12–7.98 (m, 12H), 8.12 (br, 1H), 8.85 (br, 1H). 13 C NMR (100 MHz, DMSO- d_6): δ 14.62, 37.61, 47.75, 49.93, 55.73, 59.53, 77.97, 125.97, 126.15, 126.36, 126.53, 127.97, 128.10, 128.17, 128.53, 129.25, 137.94, 138.01, 144.25, 144.46, 145.19, 155.17, 155.48, 156.23, 170.69. MS: Calcd. for $C_{31}H_{30}N4O_5S$: m/z 593.1835 [M+Na]⁺, found: 593.3030.
- (S)-Methyl 2-(3-((S)-2-(tert-Butoxycarbonyl)-3-methylbutanoyl)thioureido)propanoate (Boc-Val- ψ [CONHCS NH]-Ala-OMe) (5k). Yield 75%, Gum. ¹H NMR (400 MHz, DMSO- d_6): δ 1.0–1.28 (m, 9H), 1.50 (s, 9H), 2.60 (m, 1H), 3.60 (m, 1H), 3.70 (s, 3H), 6.0 (br, 2H), 8.0 (br, 1H). ¹³C NMR (100 MHz, DMSO- d_6): δ 17.0, 17.40, 28.40, 32.0, 52.0, 55.0, 60.0, 80.0, 156.0, 172.0, 177.0, 187.0. MS: Calcd. for C₁₅H₂₇N₃O₅S: m/z 384.1569 [M+Na]⁺, found: 384.2060.
- (S)-Methyl 2-(3-((2S,3S)-2-(((9H-Fluoren-9-yl)methoxy) carbonyl)-3-methylpentanoyl)thioureido)-3-methylbutanoate (Fmoc-Ile- ψ [CONHCSNH]-Val-OMe) (5l). Yield 86%, m.p. 159 °C. ¹H NMR (400 MHz, DMSO- d_6): δ (ppm) 1.20–1.46 (m, 12H), 1.65–1.90 (m, 2H), 2.70–2.92 (m, 2H), 3.33–3.46 (d, J = 6.0 Hz, 1H), 3.60 (s, 3H), 4.60–4.79 (m, 4H), 6.10–6.21 (br, 2H), 7.17–7.65 (m, 8H), 8.06–8.18 (br, 1H). ¹³C NMR (100 MHz, DMSO- d_6): δ 10.0, 15.0, 18.20, 24.80, 30.0, 37.10, 47.0, 52.0, 57.80, 62.70, 67.0, 126.60, 128.40, 128.60, 129.0, 141.0, 143.40, 156.0, 171.40, 175.50, 187.0. MS: Calcd. for $C_{28}H_{35}N_3O_5$ S: m/z 548.2195 [M+Na]+, found: 548.3090.
- (S)-Methyl 2-(3-((2S,3S)-2-(Benzyloxycarbonyl)-3-hydroxybutanoyl)thioureido)-3-methylbutanoate (*Cbz-Thr-* ψ [*CONHCSNH*]-*Val-OMe*) (5m). Yield 74%, Gum. 1 H NMR (400 MHz, DMSO- d_6): δ 1.0 (d, J = 6.0 Hz, 6H), 1.20 (d, J = 8.0 Hz, 3H), 2.0 (s, 2H), 2.75 (m, 1H), 3.40 (d, J = 4.0 Hz, 1H), 3.70 (s, 3H), 4.20–4.60 (m, 2H), 5.40 (s, 2H), 6.0 (br, 2H), 7.20–7.40 (m, 5H). 13 C NMR (100 MHz, DMSO- d_6): δ 18.0, 19.0, 30.0, 51.4, 60.0, 62.40, 65.0, 67.60, 127.2, 127.9, 129.0, 140.0, 156.10, 172.0, 175.7, 188.0. MS: Calcd. for $C_{19}H_{27}N_3O_6S$: m/z 448.1518 [M+Na]⁺, found: 448.2024.

3. 2. *In vitro* Anti-bacterial Activity

3. 2. 1. Determination of Zone of Inhibition by Agar Well Diffusion Method

Finally, the synthesized acyl thioureas were tested for the antibacterial activity by agar well diffusion method. For this, the synthesized acyl thiourea samples **5a-j** were subjected for the antibacterial activities against two Gram positive bacteria: *Escherichia coli* (MTCC1692) and *Staphylococcus aureus* (MTCC 3160) employing agar well diffusion method. ^{59,60} The bacterial pathogens were cultured on Mueller–Hinton broth agar for 24 h at 37 °C. ⁶¹ The inoculums were prepared by allowing bacteria

to grow on media containing nutrient broth at 37 °C with permanent stirring at 250 rpm for overnight. After obtaining 24 h fresh culture, Mueller-Hinton agar plates were prepared, strains of S. aureus, and E. coli were swabbed uniformly on individual plates using sterile cotton swabs. Wells of approximately 6 mm diameter were made on MH agar plates using gel puncture. Synthesized samples, approximately 200 mg were dissolved in 2 mL of DMSO. With a concentration of 500 µg/µL were used to measure the activity of the synthesized molecules and streptomycin sulphate (50 mg/2 mL) was used as the standard antibiotic. To each well, a volume of 50 µL of streptomycin sulphate standard (S) and 100 µL respective samples were added to individual plates. The plates were incubated at 37 °C for 24 h and inhibition zones obtained were measured. Antibacterial activity was evaluated in terms of the diameters of growth inhibition zones (mm). If the growth inhibition zones were less than 10 mm in diameter, confluent growth over the plates were scored as the absence of antibacterial activity, zones of 10-15 mm as weak activity, zones of 15-20 mm as moderate-marked

Table 2. Antibacterial activity of acyl thioureas **5a-j** against *E. coli* and *S. aureus*

Compound	Treatment (concentration in µg/µL)	E. coli	S. aureus
S	50	14.55 ± 0.88	12.67 ± 0.33
5a	100	14.67 ± 0.67	13.67 ± 0.88
5b	100	16.00 ± 0.58	10.33 ± 0.67
5c	100	15.67 ± 0.88	10.00 ± 1.0
5d	100	16.67 ± 0.88	12.67 ± 0.33
5e	100	12.67 ± 0.33	13.67 ± 0.88
5f	100	13.66 ± 0.88	11.33 ± 0.88
5g	100	10.67 ± 0.88	10.67 ± 1.2
5h	100	14.67 ± 0.67	12.33 ± 0.33
5i	100	13.67 ± 0.88	13.33 ± 1.2
5j	100	17.33 ± 0.33	31.00 ± 1.2

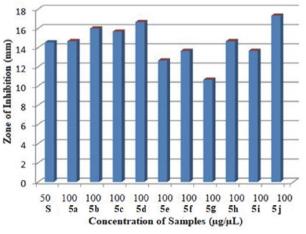


Figure 5. Antibacterial activity of acyl thioureas against E. coli

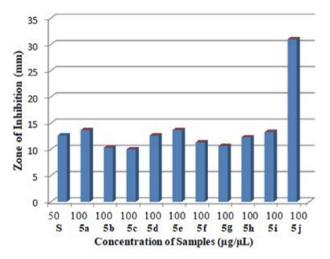


Figure 6. Antibacterial activity of acyl thioureas against *S. aureus*.

activity, and greater than 20 mm as marked activity. Results are summarized and analyzed in Table 2 and Figures 5 and 6.

4. Conclusions

We have developed a highly convenient and effective protocol for the synthesis of substituted acyl thiourea derivatives from the carboxyl group of N^{α} -amino acids and organic acids by nano Fe₂O₃-catalysed coupling of acyl isothiocyanates and amino acid esters at room temperature in very good yields. Some of the synthesized acyl thiourea derivatives showed promising anti-bacterial activity against two bacterial pathogens, possibly due to the presence of pharmacologically active keto-thiourea group. The presented protocol underlines the potential applicability of nano Fe₂O₃ as inexpensive, user friendly and efficient catalyst prepared via solution combustion method using ascorbic acid as a novel reducing agent. This work can be considered as a very good step towards the emerging trend of heterogeneous and environmentally friendly synthesis of acyl thiourea derivatives from N^{α} -amino acids.

Acknowledgements

We thank the Principal, Director, CEO of Siddaganga Institute of Technology, Tumakuru, Karnataka, for the research facilities. One of the authors (HSL) is thankful to the Vision Group of Science and Technology, Dept. of Information Technology, Biotechnology and Science & Technology, Government of Karnataka for providing funds under CISEE programme (VGST-GRD No. 472) to carry out the present research work by means of a sponsored project. And also thankful to the Dept. of Science and Technology, Govt. of India for the Instrumental facilities under Nano mission project.

Conflict of interest

The authors declare that they have no conflict of interest.

5. References

- I. Koca, A. Ozgür, E. Muhammet, M. Gümüs, K. A. Cos, B. Kun, Y. Tutar, *Eur. J. Med. Chem.* 2016, 122, 280–290.
 DOI:10.1016/j.ejmech.2016.06.032
- Z. M. Zhong, R. Xing, S. Liu, L. Wang, S. B. Cai, P. C. Li, *Carbohydr. Res.* 2008, 343, 566–570.
 DOI:10.1016/j.carres.2007.11.024
- 3. L. P. Duan, J. Xue, L.L. Xu, H. B. Zhang, *Molecules* **2010**, *15*, 6941–6947. **DOI**:10.3390/molecules15106941
- Z. Zhong, R. Xing, S. Liu, L. Wang, S. Caia, P. Lia, Carbohydrate Res. 2008, 343, 566–570.
 - **DOI:**10.1016/j.carres.2007.11.024
- G. M. Dobrikov, V. Valcheva, Y. Nikolova, I. Ugrinova, E. Pasheva, V. Dimitrov, *Eur. J. Med. Chem.* 2013, 63, 468–473.
 DOI:10.1016/j.ejmech.2013.02.034
- H. J. Ochel, K. Eichhorn, G. Gademann, Cell Stress Chaperones 2001, 6, 105–112. DOI:10.1379/1466-1268(2001)006
 0105:GTPOAC>2.0.CO;2
- A. P. Keche, G. D. Hatnapure, R. H. Tale, A. H. Rodge, S. S. Birajdar, V. M. Kamble, *Chin. J. Org. Chem.* 2006, 26, 1584–1586.
- 9. A. Ranise, F. Bondavalli, O. Bruno, S. Schenone, D. Donnoli, C. Parrillo, M. L. Cenicola, F. Rossi, *Farmaco* **1991**, *46*, 1203–1216.
- A. Ranise, A. Spallarossa, O. Bruno, S. Schenone, P. Fossa, G. Menozzi, F. Bondavalli, L. Mosti, A. Capuano, F. Mazzeo, G. Falcone, W. Filippelli, *Farmaco* 2003, 58, 765–780.
 DOI:10.1016/S0014-827X(03)00132-0
- 11. C. Radu, Chem. Commun. 2008, 3, 295-307.
- H. Arslan, N. Duran, G. Borekci, C. K. Ozer, C. Akbay, *Molecules* 2009, 14, 519–527.
 - DOI:10.3390/molecules14010519
- 13. G. Chun-ling, L. Liu, J. L. Zhao, D. Wang, Y. J. Chen, *Tetrahedron* **2007**, *18*, 455–463. **DOI:**10.1016/j.tetasy.2007.02.016
- G. Kemp, A. Roodt, W. Purcell, K. R. Koch, J. Chem. Soc. Dalton Trans. 1997, 23, 4481–4483. DOI:10.1039/a705887j
- K. R. Koch, C. Sacht, T. Grimmbacher, S. Bourne, S. Afr. J. Chem. 1995, 48, 71–77.
- S. Saeed, R. Hussain, Eur. Chem. Bull. 2013, 2, 465–467.
 DOI:10.1007/s00238-011-0670-2
- M. A. Quraishi, F. A. Ansari, D. Jamal, *Mat. Chem. Phys.* 2003, 77, 687–690. DOI:10.1016/S0254-0584(02)00130-X
- 18. A. Gupta, M. M. Singh, *Portugaliae Electrochim. Acta.* **1999**, *17*, 21–43. **DOI:**10.4152/pea.199901021
- 19. S. Saeed, N. Rashid, M. H. Bhatti, P. G. Jones, *Turk. J. Chem.* **2010**, *34*, 761–770.
- G. Binzet, G. Kavak, N. Külcü, S. Özbey, U. Flörke, H. Arslan,
 I. Chem. 2013, 1–9. DOI:10.1155/2013/536562
- B. Phetsuksiri, A. R. Baulard, A. M. Cooper, D. E. Minnikin, J. D. Douglas, G. S. Besra, P. J. Brennan, *Antimicrob. Agents Chemother.* 1999, 43, 1042–1051.
 DOI:10.1128/AAC.43.5.1042

- E. Maquoi, N. E. Sounni, L. Devy, F. Olivier, F. Frankenne, H.
 W. Krell, F. Grams, J. M. Foidart, A. Noel, *Clin. Cancer Res.* 2004, 10, 4038–4047. DOI:10.1158/1078-0432.CCR-04-0125
- R.-S. Zeng, J.-P. Zou, S.-J. Zhi, J. Chen, Q. Shen, Org. Lett. 2003, 5, 1657–1659. DOI:10.1021/ol0300241
- 24. M. Dhooghe, A. Waterinckx, N. De Kimpe, *J. Org. Chem.* **2005**, *70*, 227–232. **DOI**:10.1021/jo048486f
- R. Lakhan, B. J. Ral, J. Chem. Eng. Data. 1986, 31, 501–502.
 DOI:10.1021/je00046a035
- 26. J. Lee, J. Lee, M. Kang, M. Shin, K. Ji-Min, K. Sang-Uk, L. Ju-Ok, C. Hyun-Kyung, S. Young-Ger, P. Hyeung-Geun, O. Uhtaek, K. Hee-Doo, P. Young-Ho, H. Hee-Jin, K. Young-Ho, A. Toth, Y. Wang, R. Tran, L. V. Pearce, D. J. Lundberg, P. M. Blumberg, J. Med. Chem. 2003, 46, 3116–3126.
- L. Nie, L. Zhao, J. Han, Z. Xuan, R. Yang, L. Wen-Xia, W. Fang-Ying, X. Jian-Wei, Z. Yu-Fen, J. Yun-Bao, *J. Org. Chem.* 2004, 69, 6449–6454.
- H.-g. Park, J.-y. Choi, S.-h. Choi, M.-k. Park, J. Lee, Y.-g. Suh,
 H. Cho, U. Oh, J. Lee, S.-U. Kang, J. Lee, H.-D. Kim, Y.-H.
 Park, Y. S. Jeong, J. K. Choi, S.-s. Jew, *Bioorg. Med. Chem. Lett.* 2004, 14, 787–791. DOI:10.1016/j.bmcl.2003.11.019
- H. Peng, Y. Liang, L. Chen, F. Liwu, W. Haiqin, H. *Bioorg. Med. Chem. Lett.* 2011, 21, 1102–1104.
 DOI:10.1016/j.bmcl.2010.12.130
- X. H. Liu, C. X. Tan, J. Q. Weng, Phosphorus Sulfur Silicon Relat. Elem. 2011, 186, 558–564.
- L. Zhonghua, Y. Zhang, W. Yangang, Phosphorus Sulfur Silicon Relat. Elem. 2003, 178, 293–297.
 DOI:10.1080/10426500307952
- 32. K. Shao-Yong, X. Si-Jia, *Arkivoc* **2006**, (*x*), 63–68. **DOI:**10.3998/ark.5550190.0007.a08
- Z. Zhong, R. Xing, S. Liu, L. Wang, S. Cai, L. Pengcheng, *Carbohyd. Res.* 2008, 343, 566–570.
 DOI:10.1016/j.carres.2007.11.024
- 34. R. Srivastava, B. C. Yadav, Adv. Mat. Lett. **2012**, *3*, 197–203. **DOI:**10.5185/amlett.2012.4330
- 35. L. Chen, X. Pang, G. Yu, J. Zhang, Adv. Mat. Lett. **2010**, *1*, 75–78. **DOI**:10.5185/amlett.2010.4117
- C. Yoon, K. L. Sung, C. K. Kima, K. Young-Ho, C. S. Yoona, J. Magn. Magn. Mater. 2004, 272–276, 1167–1168.
- 37. E. Rafiee, N. Rahpeima, S. Eavani, *Acta Chim. Slov.* **2014**, *61*, 177–184.
- 38. M. Chirita, I. Grozescu, Chem. Bull. "POLITEHNICA" University (Timişoara). 2009, 54, 1–8.
- K. Rudzka, J. L. Viotab, J. A. M. Gamez, A. Carazo, A. Ruiz-Extremera, A. V. Delgado, *Colloids Surf.* 2013, 111, 88–96.
 DOI:10.1016/j.colsurfb.2013.05.010
- K. Kluchova, R. Zboril, J. Tucek, M. Pecova, L. Zajoncova, I. Safarik, M. Mashlan, I. Markova, D. Jancik, M. Sebela, H. Bartonkova, V. Bellesi, P. Novak, D. Petridis, *Biomaterials* 2009, 30, 2855–2863. DOI:10.1016/j.biomaterials.2009.02.023
- P. Moroz, H. Pardoe, S. K. Jones, T. G. S. Pierre, S. Song, B. N. Gray, *Phys. Med. Biol.* 2002, 47, 1591–1602.
 DOI:10.1088/0031-9155/47/9/312
- S. C. N. Tang, I. M. C. Lo, Water Res. 2013, 47, 2613–2632.
 DOI:10.1016/j.watres.2013.02.039

- 43. S. Lin, D. Lu, Z. Liu, *Chem. Eng. J.* **2012**, *211-212*, 46–52. **DOI:**10./j.cej.2012.09.018
- 44. T. A. Aragaw, F. M. Bogale, B. A. Aragaw, J. Saudi Chem. Soc. **2021**, *25*, 101280. **DOI**:10.1016/j.jscs.2021.101280
- P. N. Dave, L. V. Chopda, J. Nanotechnol. 2014, 2014, article ID 398569.
- 46. U. Jeong, X. Teng, Y. Wang, H. Yang, Y. Xia, *Adv. Mater.* **2007**, *19*, 33–60. **DOI:**10.1002/adma.200600674
- M. T. A. El-oi, R. B. Azevedo, E. C. D. Lima, A. C. M. Pimenta,
 P. C. Morais, *J. Magn. Magn. Mater.* 2005, 289, 168–170.
 DOI:10.1016/j.jmmm.2004.11.049
- 48. S. He, Y. Feng, N. Gu, Y. Zhang, X. Lin, *Environ. Pollut.* **2011**, *159*, 3468–3473. **DOI**:10.1016/j.envpol.2011.08.024
- Y. H. Chen, J. Alloys Compounds 2013, 553, 194–198.
 DOI:10.1016/j.jallcom.2012.11.102
- W. Jiang, M. Pelaez, D. D. Dionysiou, M. H. Entezari, D. Tsoutsou, K. O'Shea, *Chem. Eng. J.* 2013, 222, 527–533.
 DOI:10.1016/j.cej.2013.02.049
- A. Afkhami, M. Saber-Tehrani, H. Bagheri, *Desalination* 2010, 263, 240–248. DOI:10.1016/j.desal.2010.06.065
- S. K. Sahoo, K. Agarwal, A. K. Singh, B. G. Polke, K. C. Raha, Int. J. Eng. Sci. Technol. 2010, 2, 118–126.
- Y. Leconte, S. Veintemillas-Verdaguer, M. P. Morales, R. Costo, I. Rodriguez, P. Bonville, B. Bouchet-Fabre, N. Herlin-Bo-

- ime, *J. Colloid Interface Sci.* **2007**, *313*, 511–518. **DOI:**10.1016/j.jcis.2007.05.010
- R. Strobel, S. E. Pratsinis, Adv. Powder Technol. 2009, 20, 190– 194. DOI:10.1016/j.apt.2008.08.002
- A. D. Abid, M. Kanematsu, T. M. Young, I. M. Kennedy, *Aerosol Sci. Technol.* 2013, 47, 169–176.
 - DOI:10.1080/02786826.2012.735380
- 56. M. F. Silva, A. A. W. Hechenleitner, D. M. F. De Oliveira, M. Agüeros, R. Peñalva, J. M. Irache, E. A. G. Pineda, Eur. J. Pharmaceutical Sci. 2013, 49, 343–351. DOI:10.1016/j.ejps.2013.04.006
- K. Uma, H. S. Lalithamba, M. Raghavendra, V. Chandramohan, C. Anupama, *Arkivoc* 2016, (*iv*), 339–351.
 DOI:10.3998/ark.5550190.p009.605
- B. L. Shinde, L. A. Dhale, V. S. Suryavanshi, K. S. Lohar, *Acta Chim. Slov.* 2017, 64, 931–937.
- B. Secerov, Z. Andri, N. Abazovi, R. Krsmanovi, M. Mitri,
 A. Montonea, M. D. Dramianin, *Acta Chim. Slov.* 2008, 55, 486–491.
- H. S. Lalithamba, M. Raghavendra, K. Uma, K. V. Yatish, D. Mousumi, G. Nagendra, *Acta Chim. Slov.* 2018, 65, 354–364.
 DOI:10.17344/acsi.2017.4034
- N. T. M. Tho, T. N. M. An, M. D. Tri, T. V. M. Sreekanth, J. S. Lee, P. C. Nagajyothi, K. D. Lee, *Acta Chim. Slov.* 2013, 60, 673–678.

Povzetek

Opisujemo enostaven in okolju prijazen heterogeni katalitski sistem, temelječ na Fe₂O₃ nanodelcih, uporaben za sintezo acil tiosečninskih derivatov iz ustreznih *in situ* pripravljenih acil izotiocianatov in estrov aminokislin. Sinteza poteka v acetonu in daje produkte z dobrimi izkoristki. Strukture pripravljenih acil tiosečnin smo potrdili z ¹H NMR, ¹³C NMR, masno in FTIR analizo. Nanodelce Fe₂O₃ smo pripravili s pomočjo sežiga raztopine, z uporabo askorbinske kisline kot reducenta ter **železovega**(III) nitrata kot vira **železovih** ionov. Pripravljen nanomaterial smo okarakterizirali z XRD, SEM, UV-vidno in FTIR analizami. Pomembno je, da lahko Fe₂O₃ in ostale nečistoče po sintezi enostavno odstranimo. Katalitski sistem je učinkovit in katalizira pretvorbe reaktantov v produkte z dobrimi izkoristki. Za nekatere izmed pripravljenih acil tiosečnin smo določili *in vitro* antibakterijske aktivnosti proti *Staphylococcus aureus* in *Escherichia coli*.

Except when otherwise noted, articles in this journal are published under the terms and conditions of the Creative Commons Attribution 4.0 International License