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Abstract

Electronic structures, the effect of the substitution, structure physicochemical property/activity relationships and
drug-likeness applied in pyrazine derivatives, have been studied at ab initio (HF, MP2) and B3LYP/DFT (density func-
tional theory) levels. In the paper, the calculated values, i.e., NBO (natural bond orbitals) charges, bond lengths, dipole
moments, electron affinities, heats of formation and quantitative structure-activity relationships (QSAR) properties are
presented. For the QSAR studies, we used multiple linear regression (MLR) and artificial neural network (ANN) statis-
tical modeling. The results show a high correlation between experimental and predicted activity values, indicating the
validation and the good quality of the derived QSAR models. In addition, statistical analysis reveals that the ANN tech-
nique with (9-4-1) architecture is more significant than the MLR model. The virtual screening based on the molecular
similarity method and applicability domain of QSAR allowed the discovery of novel anti-proliferative activity candidates

with improved activity.

Keywords: Pyrazine; DFT; QSAR; MLR; ANN.

1. Introduction

Pyrazine is a heterocyclic compound containing two
nitrogen atoms in its aromatic ring with molecular formula
C4H,N,. it is a symmetrical molecule with point group Dy,

Pyrazine is less basic than pyridine, pyridazine and
pyrimidine. Tetramethyl pyrazine (also known as ligustra-
zine) is reported to scavenge superoxide anion and de-
crease nitric oxide production in human polymorph nu-
clear leukocytes and is a component of some herbs in
traditional Chinese medicine. Some pyrazine derivatives
contain various pharmacological effects: anti-cancer, anti-
depressant and anxiolytic, tuberculosis, an anti-diabetic
drug and pulmonary hypertension and cardiac valve.>”’

Quantum chemistry methods play an important role
in obtaining molecular structures and predicting various

properties. To obtain highly accurate geometries and phys-
ical properties for molecules that are built from electro-
negative elements, expensive Ab initio/MP2 electron cor-
relation methods are required.® Density functional theory
methods®!* offer an alternative use of inexpensive com-
putational methods which could handle relatively large
molecules.!>-20

Quantitative structure-activity relationships
(QSAR)?!-2 are attempts to correlate molecular structure,
or properties derived from molecular structure, with a
particular kind of chemical or biochemical activity. The
kind of activity is a function of the interest of the user.
QSAR is widely used in pharmaceutical, environmental
and agricultural chemistry in the search for particular
properties. The molecular properties used in the correla-
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tions relate as directly as possible to the key physical or
chemical processes taking place in the target activity.2°

This work is planned to illuminate the theoretical de-
termination of the optimized molecular geometries, MESP,
NBO charges of pyrazine compounds. In addition, we cal-
culated important quantities such as the HOMO-LUMO
energy gap. ¥’

Lipinski’s ‘Rule of Five'’?® as well as other parameters
is useful a tools to aid in choosing oral drug candidates.
Drug-likeness is described to encode the balance among
the molecular properties of a compound that influences its
pharmacodynamics, pharmacokinetics and ADME (ab-
sorption, distribution, metabolism and excretion) in a hu-
man body like a drug.?’

These parameters allow estimating oral absorption
or membrane permeability, which occurs when evaluated
molecules obey Lipinski’s rule-of-five. Other parameters
that are included the number of rotatable bonds, molecu-
lar volume, molecular polar surface area and the in vitro
plasma protein binding.

The present paper deals with a specific organization-
al form of molecular matter. Other forms are given for ex-
ample in the References.’0-3

Many different chemometric methods, such as mul-
tiple linear regression (MLR),* partial least squares re-
gression (PLS),%¢ different types of artificial neural net-
works (ANN),¥7-40 genetic algorithms (GA)*! and support
vector machine (SVM) can be employed to deduce cor-
relation models between the molecular structure and
properties. At present, we derive a quantitative struc-
ture-activity relationship (QSAR) model using multiple
linear regression (MLR) as well as artificial neural network
(ANN) methods for the series of pyrazine derivatives.

The goal of the present study is to validate a suitable
methodology for the accurate prediction of molecular ge-
ometries and energetic properties of potentially active
compounds, and to determine the best molecular descrip-
tors to be used in conjunction with linear (MLR) and non-
linear (ANN) QSAR models to identify the best candidates
for antiproliferative agents against the BGC823. The ob-
tained QSAR models were finally employed to identify bi-
ological activities of potentially novel active compounds
using in silico screening procedures.

2. Materials and Methods

All calculations were performed using HyperChem
8.0.6 software?? and Gaussian 09 program package*®, Mar-
vin Sketch 6.2.1 software*!, Molinspiration online data-
base*> and JMP 8.0.2 software.

The geometries of pyrazine and their methyl, ethyl,
bromo, fluoro derivatives were fully optimized with ab in-
itio/HF, MP2 and DFT/B3LYP methods, using both basis
set 6-311G ++(d,p) and cc-pVDZ integrated with Gauss-
ian 09 program package. The calculation of QSAR proper-

ties is performed through the module QSAR properties
(HyperChem version 8.0.6), which allows several proper-
ties commonly used in QSAR studies to be calculated.

Molinspiration, web-based software was used to ob-
tain parameters such as TPSA (topological polar surface
area), nrotb (number of rotatable bonds) and drug-like-
ness.

Multiple Linear Regression MLR analysis and artifi-
cial neural networks ANN were carried out using the soft-
ware JMP 8.0.2.

The calculated results have been reported in the
present work.

3. Results and Discussion

3. 1. Geometric and Electronic Structure of
Pyrazine

The optimized geometrical parameters of pyrazine
with ab initio/HF, ab initio/MP2 and DFT method using
6-311G ++ (d, p) and cc-pVDZ basis set. Results concern-
ing bond length values for pyrazine are listed in (Table 1),
bond angles are listed in (Table 2) with the experimental
results 4 and charge densities are listed in (Table 3) are
following the numbering scheme given in (Fig. 1).

Fig. 1. 3D conformation of pyrazine (GaussView 5.0.8).

The efficiency of the DFT/B3LYP method with cc-
pVDZ basis set may be scrutinized by comparison with
the results obtained by more elaborate calculations such as
ab initio/HF and MP2 methods. A very good agreement
between predicted geometries (bond lengths and bond an-
gles) and corresponding experimental data was obtained
especially through the DFT/B3LYP results.

From that, we can say that the DFT method is more
appropriate for further study on the pyrazine rings. Charge
densities calculated by DFT/B3LYP are almost similar to
ab initio/HF and MP2 methods. The geometry of the pyr-
azine is symmetric and planar; as all the dihedral angles
are either nearly 0° or 180°, which makes this conforma-
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tion more stable. The total atomic charges of pyrazine ob-
tained from NBO charges with DFT/B3LYP and ab initio/
HF and MP2 methods with cc-pVDZ basis set are listed in
Table 3. The atoms N have negative charges which lead to
an electrophilic attack, the atoms C and H have a positive
charges which leads to the preferential site to nucleophilic
attack.

The molecular electrostatic potential surface (MESP)
is a plot of electrostatic potential mapped on to the con-
stant electron density surface. In the majority of the MESP
the maximum negative region which preferred the site for
an electrophilic attack is indicated in red color, while the
maximum positive region which preferred the site for a
nucleophilic attack is symptoms indicated in blue color.*3
MESP has been found to be a very useful tool in the inves-
tigation of the correlation between the molecular structure
and the physicochemical property relationship of mole-
cules including biomolecules and drugs.**->3

The MESP surface and contour map of pyrazine (Fig.
2) show the three regions characterized by red color (neg-
ative electrostatic potential) around the tow cyclic nitro-
gen atoms which explain the ability of an electrophilic at-

=3.906e- T

3. M6e-T

tack on these positions, also the blue color (positive
electrostatic potential) around the four hydrogen atoms
which explain that these regions are susceptible for a nuc-
leophilic attack. The green color situated in the middle be-
tween the red and blue regions explains the neutral elec-
trostatic potential surface.

Table 3. NBO charges of pyrazine molecule.

Pyrazine = DFT/B3LYP Ab initio/HF ~ Ab initio/MP2
Atoms cc-pVDZ cc-pVDZ cc-pVDZ
C 0.013 0.044 0.033
N -0.456 -0.492 -0.487
H 0.215 0.202 0.210

3. 2. Substitution Effect on Pyrazine Structure

Calculated values of the two studied series indicated
that in the first series methyl and ethyl groups with effects
of electron donors,however, in the second series bromo
and fluoro groups with effects of electron acceptors in po-

¢ ®
e_e,

e f—

Fig. 2. 3D MESP surface map and 2D MESP contour map for pyrazine (Gauss view 5).

Table 1. Calculated bond lengths (angstrom) of pyrazine molecule.

Dist. EXP# DFT/B3LYP Ab initio/HF Ab initio/MP2
1stance 6-311G ++ (d,p) cc-pVDZ 6-311G ++ (d,p) cc-pVDZ 6-311G ++ (d,p) cc-pVDZ
C-N 1.338 1.335 1.339 1.317 1.320 1.343 1.349
C-C 1.397 1.394 1.398 1.386 1.388 1.399 1.405
C-H 1.083 1.086 1.095 1.075 1.082 1.087 1.096
Table 2. Angles in degree of pyrazine molecule.
Anel EXPY DFT/B3LYP Ab initio/HF Ab initio/MP2
ngle 6-311G++(d, p) cc-PVDZ 6-311G++ (d,p) cc-pVDZ 6-311G++(d, p) cc-pVDZ
CCH 120.0 120.0 120.8 120.8 120.8 120.7 120.6
CNC 115.7 116.1 115.6 116.6 116.3 115.2 114.6
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sitions C2 and C3 in the same series are given in (Table 4)
and (Table 5),the heat of formation, dipole moment (p)
and HOMO (Highest Occupied Molecular Orbital) and
LUMO (Lowest Unoccupied Molecular Orbital) energies
of pyrazine systems are presented in (Fig. 3), NBO charges
of pyrazine derivatives are reported in (Table 6) for the
first series and in (Table7) for the second series. This calcu-
lation is performed with DFT/B3LYP method using the
cc-pVDZ basis set.

1
R1 ) M H
" -
3
"
R2 I? H
Series 1 Series 2

(B1) Rl = H,R2=H
(B2) R1 = Br, R2=H
R1 = CH3, R2 = CH3 (B3) R1 = Br, R2=Br
(B4) Rl =F, R2=H
(B5) Rl = F, R2=F

Fig. 3. Structure of pyrazine derivatives (Marvin sketch15.8.31).

For each addition of methyl, ethyl and fluoro, the
heat of formation decreases approximately 6, 12 or 39 (kcal
- mol™!) respectively but the addition of the bromo group
leads to the increase of the heat of formation with 6 (kcal -
mol!) approximately.

The Frontier orbitals, the highest occupied molecu-
lar orbital (HOMO) and lowest unoccupied molecular or-
bital (LUMO) are important factors in quantum chemistry
5% as these determine the way the molecule interacts with
other species. The frontier reactivity and kinetic stability of
the molecule. A molecule with a small frontier orbital gap

Table 4. Energies of pyrazine and methyl, ethyl-substituted pyrazine.

is more polarizable and is generally associated with a high
chemical reactivity, low kinetic stability and is also termed
a soft molecule.>

For the first series, it was found that electron donors
of compound A4 (2-ethyl pyrazine) has the lowest energy
gap HOMO-LUMO (0.1958) and compound B3 (2,3-di-
bromopyrazine) has the lowest energy gap (0.1927) for the
second series (Fig. 4).

From HSAB (Hard Soft Acid and Base) principle the
lowest energetic gap allows an easy flow of electrons which
makes the molecule soft and more reactive,”® which means
that A4 and B3 compounds are the most reactive in the
two series of pyrazine derivatives. For each addition of al-
kyl-substituted, the energy of the HOMO and LUMO in-
crease respectively but the addition of the fluoro, bromo
substituted leads to the decrease of the LUMO energy an
exception increase of the bromo substituted and decrease
of the fluoro substituted of the HOMO. The carbon C2 has
the most important positive charge (0.206) in the com-
pound A4 (2-ethyl pyrazine) for the first series, also for
compound B3 (2,3-dibromopyrazine) of the second series,
the most important positive charges are on carbon C2
(0.102) and C3 (0.102) as shown in (Table 5), these posi-
tions C2 and C3 with the important positive charges lead
to preferential sites of nucleophilic attack. The compound
B3 is predicted to be the most reactive with a smaller HO-
MO-LUMO energy gap and with sites of nucleophilic at-
tack, more stable with the maximum value in the heat of
formation.

The contour plots of the 7 like frontier orbital for
the ground state of the compound B3 are shown in (Fig.
4).

From the plots, we can observe that the HOMO is a
n bonding molecular orbital developed on C5 and C6 at-
oms, and the LUMO is a * anti-bonding molecular orbit-

AH¢ HOMO LUMO AE n
[kcal/mol] [au] [au] [au] [Debye]
Al Pyrazine 44.09 -0.252 -0.055 0.197 0.00
A2 2-methyl pyrazine 37.05 -0.247 -0.051 0.196 0.59
A3 2,3-di-methyl pyrazine 31.78 -0.243 -0.044 0.199 0.80
A4 2-ethyl pyrazine 30.97 -0.247 -0.051 0.195 0.59
A5 2,3-di-ethyl pyrazine 20.48 -0.242 -0.045 0.196 0.69
Table 5. Energies of pyrazine and fluoro, bromo-substituted pyrazine.
AH; HOMO LUMO AE m
[kcal/mol] [au] [au] [au] [Debye]
B1 Pyrazine 44.09 -0.253 -0.055 0.197 0.00
B2 2-bromopyrazine 49.73 -0.269 -0.068 0.201 1.50
B3 2,3-dibromopyrazine 55.88 -0.268 -0.075 0.192 2.05
B4 2-fluoro pyrazine 04.15 -0.272 -0.065 0.207 1.33
B5 2,3-di-fluoropyrazine -33.52 -0.280 -0.069 0.211 2.24
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Table 6. NBO charges of pyrazine series 1.

Al A2 A3 A4 A5

N1 -0.456 -0.472 -0.471 -0.476 -0.476
N4 -0.456 -0.452 -0.473 -0.452 -0.472
C2 0.013 0.204 0.215 0.206 0.216
C3 0.013 0.016 0.208 0.020 0.213
C5 0.013 0.003 0.010 0.004 0.013
Cé6 0.013 0.022 0.012 0.023 0.015
C-methyl- 2 - -0.665 -0.669 - -

C-methyl -3 - - -0.673 - -

Cl-ethyl- 2 - - - -0.458 -0.459
C2-ethyl -2 - - - -0.628 -0.627
Cl-ethyl -3 - - - - -0.461
C2-ethyl-3 - - - - -0.627

Table 7. NBO charges of pyrazine series 2.
B1 B2 B3 B4 B5

N1 -0.456 -0.458 -0.446 -0.497 -0.485
N4 -0.456 -0.441 -0.446 -0.441 -0.485
C2 0.013 0.112 0.102 0.634 0.586
C3 0.013 0.018 0.102 -0.040 0.586
C5 0.013 0.006 0.018 -0.008 0.002
Cé6 0.013 0.024 0.018 0.024 0.002
Brome-2 - 0.064 0.100 - -

Brome-3 - - 0.100 - -

Fluor-2 - - - -0.338 -0.327
Fluor-3 - - - - -0.327

al developed on the N1 and C2 atoms. These further
demonstrates the existence of the delocalization of the
conjugated m-electron system in 2, 3-dibromopyrazine
molecule. Dipole moment equal to zero which confirms
the symmetry group Dy, of pyrazine. The compound B5
(2, 3-di-fluoropyrazine) also shows a high dipole moment
value (2.2435 Debye).

LUMO

AE=0.192 a

HOMO

Fig. 4. nt like frontier orbitals of the compound B3.

3. 3. Structure Activity/Property Relationship
for Pyrazine Derivatives

For the series of pyrazine derivatives (Fig. 8) we have
studied seven physicochemical properties with respect to
their anti-proliferative activity against the BGC823 (hu-
man gastric cell).”” The properties involved are: Surface
area grid (SAG), molar volume (V), hydration energy
(HE), partition coeflicient octanol/water (log P), molar re-
fractivity (MR), polarizability (Pol) and molecular weight
(MW).

The results obtained using HyperChem 8.0.8 soft-
ware are shown in Table 8. For example, Fig. 5 shows the
favored conformation in 3D of compound 1.

Fig. 5. 3D Conformation of compound 1 (HyperChem 8.03).
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Table 8. QSAR properties of pyrazine derivatives.

Compounds MW SAG v Pol MR LogP HE
[amu] [A°?] [A°3] [A®3] [A°3] [kcal/mol]
1 288.30 466.47 770.17 28.82 79.14 1.94 -12.54
2 304.75 474.61 791.62 30.84 83.73 2.32 -12.63
3 349.20 485.20 810.26 31.54 86.54 2.60 -12.58
4 304.75 498.29 809.75 30.84 83.73 2.32 -13.29
5 349.20 505.96 828.55 31.54 86.54 2.6 -13.24
6 320.81 512.80 828.87 33.20 90.17 2.67 -11.30
7 304.36 486.18 800.84 31.18 85.58 2.29 -11.39
8 320.81 498.70 822.05 33.20 90.17 2.67 -12.25
9 424.32 628.79 1054.66 41.91 118.37 3.13 -11.55
10 363.41 543.20 948.38 39.20 110.97 2.48 -11.54
11 379.87 550.54 984.28 41.21 115.56 2.86 -10.69
12 424.32 554.53 997.06 41.91 118.37 3.13 -10.63
13 379.87 562.49 980.74 41.21 115.56 2.86 -11.45
14 363.41 543.20 948.38 39.20 110.97 2.48 -11.54
15 270.31 475.71 769.23 28.91 79.01 2.55 -13.67
16 286.37 490.32 789.01 31.27 85.45 2.89 -12.89
17 349.20 517.21 832.69 31.54 86.54 2.60 -14.62
18 306.29 476.68 771.74 28.73 79.26 1.34 -13.64

Molar refractivity and polarizability relatively in-
crease with the size and the molecular weight of the stud-
ied pyrazine derivatives (Table 8 and fig.6). This result is in
agreement with the formula of Lorentz-Lorenz, which
gives a relationship between polarizability, molar refractiv-
ity and molecular size.

From the obtained results presented in Table 8 and
figure 6, we observed that polarizability data and molecu-
lar refractivity are generally proportional to the size and
the molecular weight of pyrazine derivatives. This explains
the congruity of our results with Lorentz-Lorenz expres-
sion. For instance, compound 9 and compound 12 show
the same maximum values of polarizability (41.91 (A%))
and refractivity (118.37(A?)). These compounds have also

high values of molecular weight (424.32 uma), and a slight
difference in surfaces and volumes.

Hydration energy in absolute value, the most im-
portant is that of the compound 17 (14.62 kcal - mol™!) and
the smallest value is that of the compound 12 (10.63 kcal -
mol ). Indeed, in biological environments, the polar mol-
ecules are surrounded by water molecules. They have es-
tablished hydrogen bonds between them.

Hydrophobic groups in pyrazine derivatives induce a
decrease of hydration energy.

However, the lipophilie increases proportionally
with the hydrophobic features of the substituent. As seen
in Table 8, compound 17 is expected to have the highest
hydrophilicity, whereas compound number 12 should be

1100
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4 - MW
2 eocd oA, & * SAG a
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E_ 700 - v Pol
-] ; - MR
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E . .. = "o -
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2 1 ] - o g - = -, -
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Fig. 6. Graphical representation of physicochemical properties.
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most lipophilic. This implies that these compounds should
have poor permeability across the cell membrane.

We noticed that compound 17 possess seven hydro-
gen bond acceptors (HBA) and no hydrogen bond donors
(HBD), the presence of hydrophilic groups in this com-
pound result in an increase of the hydration energy. This
property explains the ability of these compounds, not only
to fix the receptor but also to activate it. Hydration energy
measures the degree of agonist character of a potential
drug molecule.

Almost (log P) of studied molecules have optimal
values. For good oral bioavailability, the log P must be
greater than zero and less than 3 (0 < log P < 3). For very
high values of log P, the drug has low solubility and for very
low values of log P; the drug has difficulty penetrating the
lipid membranes. Thus, compound 17 has the most im-
portant hydration energy and the optimal value of log P, the
small value of molecular weight leading to better distribu-
tion and solubility in fabrics, good oral bioavailability and
permeability in cellular membranes respectively (Fig. 7).

3. 4. Drug-Likeness Screening Applied in

Pyrazine Derivatives

We have applied rules of thumb and calculated met-
rics of eighteen derivatives of pyrazine (Fig. 8) taken from
literature with their anti-proliferative activity against the
BGC823.%7

The properties involved are: octanol/water partition
coefficient (log P), molecular weight (MW), hydrogen
bond donors (HBD), hydrogen bond acceptors (HBA),
number of rotatable bonds (NRB) and polar surface area
(TPSA). All the results have been calculated using Hyper-
Chem 8.0.8 and Marvin Sketch 6.2.1 software, which are
listed respectively in Table 9, we have studied Lipinski and
Veber rules to identify “drug-like” compounds:*%>°

(1) There are less than 5 H-bond donors (expressed
as the sum of OHs and NHs).

(2) The molecular weight is under 500 DA.

(3) The log P is under 5.

(4) There are less than 10 H-bond acceptors (ex-
pressed as the sum of Ns and Os).

HEBA

r HBA |
.___‘NH_,
HBA \>\"-n Bf~—| HBA |
[ HBA

ren ]

Fig. 7. Acceptor sites of proton for compound 17.

Table 9. Pharmacological activities and properties involved in MPO methods for drug-likeness of pyrazine derivatives.

N° PIC505Gcsas Lipinski’s rule Veber rules
logP MW HBA HBD NRB TPSA[A?]

<5 [amu] <10 <5 <10 <140
1 4.74 1.94 288.30 5 0 4 64.71
2 4.56 2.32 304.75 5 0 4 64.71
3 4.76 2.60 349.20 5 0 4 64.71
4 4.8 2.32 304.75 5 0 4 64.71
5 4.94 2.6 349.20 5 0 4 64.71
6 4.87 2.67 320.81 4 0 4 51.57
7 4.73 2.29 304.36 4 0 4 51.57
8 4.69 2.67 320.81 4 0 4 51.57
9 4.70 3.13 424.32 5 0 5 56.50
10 4.53 2.48 363.41 4 0 4 51.57
11 4.46 2.86 379.87 5 0 5 56.50
12 4.44 3.13 424.32 5 0 5 56.50
13 4.69 2.86 379.87 5 0 5 56.50
14 4.57 2.48 363.41 5 0 5 56.50
15 4.60 2.55 270.31 5 0 4 64.71
16 4.67 2.89 286.37 4 0 4 51.57
17 4.59 2.60 349.20 5 0 4 64.71
18 4.48 1.34 306.29 5 0 4 64.71

Soualmia et al.:
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(5) Rotatable bonds are under 10.

(6) TPSA is under 140 A 2

All the compounds of the series have the MW under
500 DA, thus they can easily pass through the cell mem-
brane and the better the absorption will be.

There are less than 10 H-bond acceptors and 0
H-bond donors, the fat solubility will be high and there-
fore the drug will be able to penetrate the cell membrane to
reach the inside of the cell. If two of these rules are unsat-
isfied, the compound will have a problem in absorption
and permeability.®®

TPSA of pyrazine derivatives was found in the range
of 52.325-65.217 A°? and is well below 140 A2, indicating
that these compounds should have good cellular plasmatic
membrane permeability. All the screened compounds
were flexible, especially; compounds 9 and 11-14 which
have 5 rotatable bonds (table 9).

3. 5. Quantitative Structure-Activity
Relationships Studies (QSAR) of
Pyrazine Derivatives

When chemical or physical properties and molecu-
lar structures are derived from numbers, it is often possi-

Saabai s aakel
al = 'Iﬂ}‘f@‘

13
14
9stats
(™
I\{f_
17

Fig. 8. Structural comparison of pyrazine derivatives.

ble to propose mathematical relations connecting them,
which allow making quantitative predictions. The ob-
tained mathematical expressions can then be used as a pre-
dictive means of the biological response for similar struc-
tures. They are widely used in the pharmaceutical industry
to identify promising compounds, especially at the early
stages of drug discovery.®!

Relationships between the physicochemical proper-
ties of chemical substances and their biological activities
can be derived using QSAR (Quantitative Structure-Activi-
ty Relationships) concept. These models can also be used to
predict the activities of new chemical entities and for their
design.®? therefore, the biological activity is quantitatively
expressed as the concentration of substance necessary to
obtain a certain biological response. For that purpose, mul-
tiple linear regression, MLR, and artificial neural networks
(ANNs) are used. The accuracy of such models is mainly
evaluated by the correlation coefficient R%.% The MLR and
ANN models were generated using JMP 8.0.2 software.

The equilibrium geometries and the highest occu-
pied molecular orbital energy (Eyoyo) and lowest unoc-
cupied molecular orbital energy (Ejyyo) and dipole mo-
ment (p) of pyrazine derivatives were determined at the
B3LYP/cc-pVDZ level of theory. We list in table 10 of the

o
ﬁ,}

@/@*

15
.
18
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Table 10.Values of molecular descriptors.

N°  pIC50pgess”  V HE LogP MR SAG MW Pol  Epomo Erumo M
[A°3] [kcal/mol] [A°3] [A°?] [amu] [A°3] [au] [au] [Debye]
1 4.740 770.170 -12.540 1.940 79.140 466.470 288.300 28.820 -0.239 -0.079 0.886
2 4.560 791.620 -12.630 2.320 83.730 474.610 304.750 30.840 -0.249 -0.081 5.144
3 4.760 810.260 -12.580 2.600 86.540 485.200 349.200 31.540 -0.240 -0.080 0.887
4 4.800 809.750 -13.290 2.320 83.730 498.290 304.750 30.840 -0.243 -0.081 1.269
5 4.940 828.550 -13.240 2.600 86.540 505.960 349.200 31.540 -0.247 -0.082 1.498
6* 4.870 828.870 -11.300 2.670 90.170 512.800 320.810 33.200 -0.236 -0.086 2.564
7 4.730 800.840 -11.390 2.290 85.580 486.180 304.360 31.180 -0.234 -0.084 5.024
8 4.690 822.050 -12.250 2.670 90.170 498.700 320.810 33.200 -0.235 -0.086 5.023
9* 4.700 1054.660 -11.550 3.130 118.370 628.790 424,320 41910 -0.223 -0.065 4.262
10 4.530 948.380 -11.540 2.480 110.970 543.200 363.410 39.200 -0.223 -0.064 4.275
11* 4.460 984.280 -10.690 2.860 115.560 550.540 379.870 41.210 -0.220 -0.063 4.963
12 4.440 997.060 -10.630 3.130 118.370 554.530 424,320 41.910 -0.220 -0.063 4.949
13 4.690 980.740 -11.450 2.860 115.560 562.490 379.870 41.210 -0.224 -0.067 4.190
14 4.570 948.380 -11.540 2.480 110.970 543.200 363.410 39.200 -0.223 -0.064 4.275
15 4.600 769.230 -13.670 2.550 79.010 475.710 270.310 28.910 -0.240 -0.081 4.278
16 4.670 789.010 -12.890 2.890 85.450 490.320 286.370 31.270 -0.233 -0.083 1.449
17 4.590 832.690 -14.620 2.600 86.540 517.210 349.200 31.540 -0.241 -0.081 4.127
18 4.480 771.740 13.640 1.340 79.260 476.680 306.290 28.730  -0.243 -0.084 4.472

* denotes the selected compounds for external validation (test set).

supplementary material the Cartesian coordinates of the
optimized pyrazine derivatives equilibrium structures.
Then, the QSAR properties module from Hyper Chem
8.08 was used to calculate: molar weight (MW), surface
area (SAG), volume (V), molar refractivity (MR), polariz-
ability (Pol), octanol-water partition coefficient (log P)
and hydration energy (HE).

3. 5. 1. Multiple Linear Regression (MLR)

Despite being the oldest, MLR®% still remains one
of the most popular approaches to build QSAR models.
This is due to its simple practicaluse, ease of interpretation
and transparency. Indeed, the key algorithm is available
and accurate predictions can be provided. ° The values of
the calculated descriptors are those listed in Table 10. Data
were randomly divided into two groups: a training set (in-
ternal validation) and a testing set (external validation) at
a ratio of 80:20. A correlation matrix between parameters
was performed on all nine descriptors. Nevertheless, the
analysis revealed six independent descriptors for the de-
velopment of the model. The significant correlation analy-
sis between biological activity and descriptors is represent-
ed by the following equation:

PIC505Gcs3 = ~6.878+0.0115
V-0.0134HE + 0.1763MR-0.0087
SAG-0.004355MAG-0.5185Pol-15.46
Exomo-66.309E; yvo-0.067 p

(1)

Where, pIC50 is the response or dependent variable
(V, HE, MR, SAG, MAG, Pol, EHOMO, E; 0 and p) are

descriptors (features or independent variables). Within the
regression, the coeflicients in front of these descriptors are
optimized.

The F value (F = 11.84) was found to be statistically
significant at 95% level, since all the calculated F value is
higher as compared to tabulated values.

For validation of the model, we plot in Fig. 9 the ex-
perimental activities against the predicted values as deter-
mined by equation (1). We can observe that the predicted
pIC50 values are in an acceptable agreement and regular
distribution with experimental ones with correlation coef-
ficient (R?) for the training set (R%,, = 0.955) and test set
(R2,, = 0.930) indicate the significant correlation between
different independent variables with anti-proliferative ac-
tivity against the BGC823.
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Fig. 9. Correlation of experimental and predicted pIC50 values as
derived using MLR.
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3. 5. 2. Artificial Neural Networks

ANN®-70 is a popular nonlinear model, used to
predict the biological activity (i.e. IC50) of the datasets of
therapeutic molecules. It presents several benefits like
better prediction, adaptation and generalization capacity
beyond the studied sample, and better stability of the co-
efficients. It is employed in complex drug design, drug
engineering and medicinal chemistry domains.”! In this
work, the neural network is a system of fully intercon-
nected neurons arranged in three layers. The input layer
is made of nine neurons, where each of them receives one
of the nine descriptors selected from the correlation ma-
trix of the model. The intermediate (hidden) layer is com-
posed of four neurons that form the deep internal pattern
that discovers the most significant correlations between

predicted and experimental data. One neuron constitutes
the output layer, which returns the value of pIC50 (Fig.
10).72

As it can be seen in Fig. 10, a good agreement between
experimental data and predicted pIC50 issued from the
ANN model is observed. Indeed, the statistical parameters
for this model, reveal a correlation coefficient close to 1 (=
0.995), indicating that the ANN one is more reliable. Fur-
thermore, the robustness of the model was further con-
firmed by the significant value of the test data set (= 0.920).

3. 5. 3. Virtual Screening Application

The aim of this study is to identify new structures of
pyrazines’”> with improved anti-proliferative activity
against BGC823 that has to be within the applicability do-

> plCH{BGECEES

Fig. 10. Structure of ANN.

Table 11. Experimental and predicted pIC50 values using MLR and ANN methods.

N° Exp. pIC50(BGC823) Pred. pIC50(BGC823) Pred.pIC50(BGC823)
MLR ANN
1 4.740 4.757 4.736
2 4.560 4.582 4.562
3 4.760 4.704 4,764
4 4.800 4.796 4.804
5 4.940 4.956 4931
6* 4.870 4.806 4.869
7 4.730 4,724 4,717
8 4.690 4.671 4.696
9* 4.700 4.748 4.642
10 4.530 4.537 4.550
11* 4.460 4,434 4,521
12 4.440 4.485 4.443
13 4.690 4.666 4.686
14 4.570 4.537 4.550
15 4.600 4.579 4.603
16 4.670 4.716 4.672
17 4.590 4.598 4.595
18 4.480 4.480 4481

* denotes the compounds selected for external validation (test set).
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Exp. plC50
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Fig. 11. Correlation of experimental and predicted pIC50 values obtained using ANN.

Table 12. Proposed structural compounds and predicted activities.

No. Compound structure pIC50 No. Compound structure pIC50

1 6.251 7 2.884
2 5.789 8 3.205
3 e | I 4495 9 7.570
Hil o er
4 2.941 10 3.770
=]

5 6.907 11 -, 7.632
6

L ) P
; pes
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main of the developed model. The structures and activities
of these compounds are reported in table 12.

4. Conclusion

The present work deals with the molecular proper-
ties of pyrazine. The HF, MP2 and DFT methods, the DFT
method is more appropriate for further study on pyrazine
rings. The geometry of the pyrazine is symmetric and pla-
nar, as all the dihedral angles are either nearly 0° or 180°,
which makes this conformation more stable. The com-
pound B3(2,3-dibromo pyrazine) is predicted to be the
most reactive with a smaller HOMO-LUMO energy gap
of all pyrazine systems, C2 and C3 positions are the most
preferential site of nucleophilic attack.

Afterward, we showed that both ANN and MLR
methods provide similar QSAR model accuracy. As can be
seen in Table 11, the ANN network has substantially better
predictive capabilities compared to MLR, leading to pIC50
values closer to the experimental determinations. Never-
theless, both models remain satisfactory and exhibit a high
predictive power, thus validating their use to explore and
propose new molecules as anti-proliferative activity
against the BGC823.

Based on the obtained QSAR equation we have iden-
tified a series of potential novel compounds of pyrazine.
This series has been used as a primary step for predicting
the anti-proliferative activity against the BGC823. It is
worth testing the reliability of these predictions in vitro,
our work should help in identifying new compounds tar-
geting anti-proliferative activity against the BGC823.
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Povzetek

Preucevali smo elektronske strukture, vpliv substitucije, povezavo med strukturno fizikalno-kemijskimi lastnostmi ter
aktivnostjo in uc¢inkovinske podobnosti (ang. drug-likeness) pirazinskih derivatov s pomocjo ab initio (HE, MP2) in
B3LYP/DFT (teorijo gostotnega fukcionala). V ¢lanku smo izracunali vrednosti naboja NBO (naravnih veznih orbital),
dolzino vezi, dipolne momente, elektronsko afiniteto, tvorbeno entalpijo in QSAR lastnosti. Studij QSAR smo izvedli
s pomodjo statisticnih modelov multiple linearne regresije in nevronskih mrez (ANN). Rezultati so pokazali visoko
korelacijo med eksperimentalnimi in napovedanimi vrednostmi, s ¢imer smo preverili in pokazali ustreznost QSAR
modelov. Statisti¢na analiza je pokazala, da je ANN z arhitekturo 9-4-1 bolj ustrezna kot MLR. Pregled razli¢nih molekul
na osnovi molekularne podobnosti in uporabe QSAR domen je pokazal ve¢ kandidatov z izbolj$anim antiproliferativnim
delovanjem.
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