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ABSTRACT: 14 

 15 

The discovery of antibacterials is considered one of the greatest medical achievements of all 16 

time. In this work, a combination of three computational analyzes: 3D-QSAR, molecular 17 

docking and ADME evaluation were applied in thienopyrimidine derivatives as gram-positive 18 

bacterium staphylococcus aureus. 19 

The validity of 3D-QSAR model was tested with a set of data which is divided into a training 20 

and a test set. The two models constructed (CoMFA and CoMSIA) show good statistical 21 

reliability (q
2
=0.758; r

2
=0.96;r

2
pred= 0.783) and (q

2
= 0.744; r

2
=0.97;r

2
pred= 0.625) respectively. 22 

In addition, docking methods were applied to understand the structural features responsible 23 

for the affinity of the ligands in the binding pockets of S. aureus DNA gyrase. 24 

 Drug likeness and ADME analysis applied in this series of new proposed compounds, have 25 

shown that the five lead molecules would have the potential to be effective drugs and could be 26 

used as a starting point for designing compounds against staphylococcus aureus. 27 

 28 

Keywords: 3D-QSAR; docking; staphylococcus aureus; thienopyrimidine; admet. 29 

 30 

mailto:prof.belaidi@gmail.com


1. INTRODUCTION 31 

 32 

The Gram-positive Bacterium Staphylococcus aureus is medically important pathogens 33 

in infection to deep-seated tissue infection and bacteremia,
1
 due to the emergence of bacteria 34 

resistant to current therapeutic agents, the exploration of new antibiotics of a diversity of 35 

infections.
2
 36 

The enzymes DNA gyrase B is present in bacteria and absent in humans thereby acting 37 

as a potential target in treating the S, aureus related diseases.
3
 38 

Gyrase consists of two heterodimeric subunits, GyrA and GyrB. The inhibitors 39 

molecules induce cell death by trapping the gyrase DNA complex, inducing oxidative 40 

damage, and preventing DNA replication.
4
 41 

Thienopyrimidines represent important chemical class in drug discovery due to vast 42 

range of pharmacological properties including antiallergic,
5
 antiviral,

 6-7
anti-inflammatory,

8-12
 43 

analgesic,
13-14

 antispasmodic, antibacterial,
14-15

 antifungal,
16 

antimicrobial, 
17-21

 antidiabetic,
22

 44 

antioxidant,
23

 antitumor,
24-29

 antipsychotic 
30 

etc. This useful activity of thienopyrimidine 45 

generates our interest in developing a tool for screening novel thienopyrimidine analogs are 46 

promise antibacterial agent.
31 47 

The techniques of QSAR are the most prominent computational means to support 48 

chemistry within drug design projects where no three-dimensional structure of the 49 

macromolecular target is available, The primary aim of these techniques is to establish a 50 

correlation of biological activities of a series of structurally and biologically characterized 51 

compounds with the spatial fingerprints of numerous field properties of each molecule, such 52 

as steric demand, lipophilicity, and electrostatic interactions.
32

 53 

For this study, the modern drug discovery aspects were applied such as 3D-QSAR 54 

(three-dimensional quantitative structure-activity relationship), Molecular Docking, ADMET 55 

(absorption, distribution, metabolism, excretion, toxicity), etc, 56 

The combination of 3D-QSAR and docking analysis permit the direct visualization and 57 

interpretation of molecular modeling results within the active site of gyrase–DNA and some 58 



derivatives were consequently generated, and these compounds were evaluated for their drug 59 

likeness and (ADMET) properties. 60 

We believe that the results of this work can offer insight into the structural requirements 61 

of S, aureus inhibitors, providing some reference to guide the design of novel antimicrobial 62 

potency against staphylococcus aureus. 63 

2. MATERIALS AND METHODS 64 

2.1 Selection of Dataset 65 

 66 

Analogues of thienopyrimidine derivatives reported to have potent and selective 67 

inhibitory activity against a gram positive (S, aureus), were taken from the literature.
33

 68 

The structures of the compounds and corresponding pIC50 values (pIC50=−log IC50), where 69 

IC50 is the concentration of compound agreed for 50 that inhibited the visible growth of 70 

microorganism after overnight incubation for the whole set of ligands are presented in Table1. 71 

 For 3D-QSAR study, the 27inhibitors were randomly divided into a training set (20 72 

molecules) and test set (7 molecules). 73 

2.2 Computational Approaches 74 

 75 

SYBYL-X2.0 package 
34 

running on windows 7, 64 bits workstation was used to 76 

perform 3D-QSAR modeling (CoMFA and CoMSIA). 77 

The 2D structures of thienopyrimidine derivatives built using the SKETCH option in SYBYL, 78 

by utilizing molecular modeling software package SYBYL-X 2.0 with standard geometric 79 

parameters, The Tripos force field was employed to carry out energy minimization of each 80 

conformation of the molecule, The Gasteiger–Hückel atomic partial charges by the Powell 81 

method with a convergence criterion of 0.01 Kcal/mol Å were estimated during minimization, 82 

then subsequently converted into 3D structures.
35

 83 

 84 

2.3 Molecular Alignment 85 

Molecular alignment of compound is a capital step in the construction of 3D-QSAR 86 

models.
36

 87 



In the present study ligand-based alignment technique has been chosen in which a 88 

template molecule is first isolated over which remaining molecules are aligned, the 89 

compound1 was selected as a template and all other molecules were aligned based on the 90 

common structure. 91 

During the process, all the dataset structures are aligned to the template common 92 

substructure using Distill module in SYBYL-X2.0.The superimposed structures of aligned 93 

data set are shown in Fig. 2. 94 

 95 

 
  

  

 

 
 

 

 
 

 

  

 

 



  
 

 
  

  

 

 

 

 

T=Test set molecule 96 

Fig.1. Structure of thienopyrimidine derivatives 97 

 98 

 

Fig.2. 3D-QSAR structure superposition and alignment of training and test sets 99 

 100 



2.4 CoMFA and CoMSIA analysis 101 

The descriptor fields of both methods were calculated in a three-dimensional cubic with 102 

one angstrom grid spacing, the frontier of the box extended extra 4 angstrom units from the 103 

order of aligned structures in each direction. 104 

For CoMFA method, incorporating steric and electrostatic fields, the probe atom of a 105 

charged sp
3
 hybridized carbon atom was applied to compute electrostatic and steric fields; the 106 

cutoff value was 30 kcal∙mol
−1

.
37

 107 

In the case of CoMSIA analysis, five similarity index descriptors consisting of steric 108 

(Str), electrostatic (Ele), hydrophobic (Hyd), H-bond donor (HBD), and H-bond acceptor 109 

(HBA) fields, A Gaussian function was also applied in calculating the similarity indices, 110 

making it accounts for all grid points.
38

 111 

2.5 Partial Least Square (PLS) Analysis 112 

 113 

The PLS statistical method implemented in SYBYL-X 2.0, was used to derive a linear 114 

relationship for the 3D-QSAR, and cross-validation was performed using the leave-one-out  115 

method.
39

 116 

 In PLS, the independent variables were the CoMFA and CoMSIA descriptors, and 117 

pIC50 values were used as dependent variables, The ONC was the number of components 118 

that led to the highest cross-validated correlated correlation coefficient q
2
 (or R

2
cv) 119 

2.6 Model Validation 120 

The predictive power of CoMFA and CoMSIA models was further validated by using 121 

an external test set (inhibitors marked with “T” in Table 2). 122 

To avoid excessive extrapolation upon external prediction, Golbraikh and Tropsha’s 123 

Criteria followed in developing activity predictors, especially for continuous QSAR, are as 124 

follows: (i) correlation coefficient R between the predicted and observed activities; (ii) 125 

coefficients of determination predicted versus observed activities R
2

0 and The inhibitors in the 126 

test set were given exactly the same pretreatment as the inhibitors in the corresponding 127 

training set.  The correlation between the experimental and predicted activity for models was 128 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3341716/table/T1/


calculated as R
2

pred value observed versus predicted activities R′0
2
 for regressions through the 129 

origin; and (iii) slopes k and k′ of regression lines through the origin.
40

 130 

2.7 Molecular docking 131 

 132 

 In order to check the reliability of the established 3D-QSAR models, were subjected to 133 

docking with DNA gyrase subunit b (PDB ID: 3G7B) ,
4
 from the Protein Data Bank (RCSB) 134 

(http://www.rcsb.org/pdb).
 

135 

Water and co-crystal ligand molecules were eliminated from the structures, molecular 136 

docking study was performed using Surflex-dock implemented in SYBYL-X2.0, The ligands 137 

and protein preparation steps for the docking protocol were carried out in SYBYL-X 2.0, then 138 

results were analyzed using Discovery Studio
41 

and MOLCAD module implemented SYBYL-139 

X 2.0. 140 

The MOLCAD program (Molecular Computer Aided Design) was employed to visualize the 141 

binding mode between the protein and ligand. MOLCAD calculates and exhibits the surfaces 142 

of channels and cavities, as well as the separating surface between protein subunits.
42 143 

 144 

2.8 Pharmacokinetic Profile  145 

 146 

The chemical structure of the compound was submitted in the form of canonical 147 

simplified molecular input line entry system (SMILE), to estimate several in silico 148 

pharmacokinetic 0parameters using the Swiss ADME tool 
43 

the pharmacokinetic profile of 149 

the compound was evaluated. Gastrointestinal absorption, Blood-Brain Barrier penetration, 150 

Skin Permeation, synthetic associability and drug-likeness prediction like Lipinski,
44

 and 151 

Veber rules,
45

 interaction of molecules with cytochromes P450 (CYP) and bioavailability 152 

score. 153 

3. RESULTS AND DISCUSSION 154 

3.1 3D QSAR studies 155 

 156 

CoMFA and CoMSIA 3D-QSAR models were derived using DNA gyrase inhibitors. 157 



The predicted and experimental activity values and their residual values for both the training 158 

and test sets of CoMFA and CoMSIA models are given in Table 1. 159 

  160 

The results of CoMFA and CoMSIA SYBYL, studies are summarized in Table 2, The q
2
, 161 

R
2
, F, and SEE values were computed as defined in PLS analysis showed a q

2 
value of 0,758 162 

and R
2
of 0,96 for CoMFA analysis, a non-cross-validated PLS analysis results in a 163 

conventional R
2 

of 0,944, F = 128, and a standard error of estimation (SEE) of 0,113 for 164 

CoMFA analysis. 165 

The steric and electrostatic contributions were 0.576 and 0.246 respectively. These 166 

results indicate that steric field contributed highest to the binding affinity. 167 

CoMSIA model was obtained by using the combination of steric, electrostatic, 168 

hydrophobic, H-bond donor and H-bond acceptor fields, the statistical results obtained from a 169 

combination of these five fields with the four components are (q
2
= 0,744, R

2
= 0,97, F =527, 170 

SEE = 0,097). 171 

The corresponding field contributions are 0,116 (steric), 0,201 (electrostatic), 0,253 172 

(hydrophobic), 0,211 (HBD) and 0,169 (HBA), this is suggesting that the hydrophobicity of 173 

the molecule influences their inhibitory potential. 174 

 175 

Table 1 : Calculated data for the 3D-QSAR model 176 

 177 

 178 

The higher value of F, greater the probability that the QSAR 179 

equation is significant.
47 

The F values for the CoMFA and CoMSIA 180 

models were 128 and 527 respectively. The F value stands for the degree 181 

of statistical confidence. 182 

Predicted versus experimental final pIC50 values for CoMFA and 183 

CoMSIA models and their residues (for the training and test sets) are given 184 

in table 2. 185 

The correlation between the predicted and the experimental pIC50 of 186 

training and test sets is depicted in Figure 4 for CoMFA and CoMSIA 187 

model R
2
 q

2
 F SEE ONC 

Field contribution 
R

2
pred 

STR Ele Hyd HBD HBA 

CoMFA 0,96 0,758 128 0,113 3 0,574 0,426    0,783 

CoMSIA 0,97 0,744 527 0,101 4 0,166 0,201 0,253 0,211 0,169 0,625 



analysis, illustrate the predicted activities using the CoMFA model are in 188 

good agreement with the experimental data, suggesting that the CoMFA 189 

model should have a satisfactory predictive ability. Results show that 190 

prediction by the CoMSIA model is reasonably accurate. 191 

Finally, the predictability of the proposed models was confirmed 192 

using external verification and the R
2
predvalues were 0,783 and 0,625for 193 

CoMFA and CoMSIA models respectively, the results of these statistics 194 

indicated good stability and strong predictive power for the CoMFA and 195 

CoMSIA models. 196 

Histogram of residual values obtained from CoMFA and CoMSIA 197 

analysis is depicted in Figure4.They suggest the absence of any outlier 198 

compound in the training set whose residual activity is above one. 199 

There is a slight statistical difference between CoMFA and CoMSIA 200 

models that indicate the five fields contribute almost as much to the 201 

relationship. 202 

 203 

Table 2. Experimental and calculated activity (pIC50) for staphylococcus aureus   inhibitors 204 

of set training and test set for the CoMFA and CoMSIA models. 205 

Compounds pIC50 

exp.
 33

 

pIC50 pred. 

CoMFA residue CoMSIA residue 

1 3,290 3,255 0,035 3,272 0,018 

2 3,590 3,420 0,170 3,451 0,139 

3 4.000 4,080 -0,080 4,131 -0,131 

4 4.000 4,090 -0,090 4,033 -0,033 

5 4,220 4,420 -0,200 4,240 -0,020 

6 5.000 5,020 -0,020 5,018 -0,018 

7 3,890 3,733 0,157 3,725 0,165 

8 3,890 3,771 0,119 3,862 0,028 

9 4.000 4,065 -0,065 4,012 -0,012 

10 4.000 4,035 -0,035 4,005 -0,005 

11 4.000 4,014 -0,014 4,029 -0,029 

12 5.000 4,715 0,285 4,801 0,199 

13 5.000 5,107 -0,107 5,125 -0,125 

14 4,190 4,160 0,030 4,176 0,014 

15 4,490 4,302 0,188 4,373 0,117 

16 4,490 4,242 0,248 4,337 0,153 



17 4,490 4,493 -0,003 4,530 -0,040 

18 3,290 3,224 0,066 3,390 -0,100 

19 3,590 3,515 0,075 3,584 0,006 

20 3,590 3,459 0,131 3,608 -0,018 

21 T 3,590 3,532 0,058 3,755 -0,165 

22 T 4,190 3,964 0,226 4,079 0,111 

23 T 3,890 3,685 0,205 3,772 0,118 

24 T 4,220 4,331 -0,111 4,345 -0,125 

25 T 4,090 4,320 -0,230 4,320 -0,230 

26 T 5.000 4.884 -0,156 4,666 0,178 

27T 3,890 3,517 0,373 3,751 0,139 

  
 

 

Fig.3. Graph of staphylococcus aureus inhibitors predicted activity of training and test set 206 

from a) CoMFA and b) CoMSIA analysis. 207 

 208 



 

 

Fig.4. Histogram of residual values from A) COMFA analysis B) COMSIA analysis 209 

3.2 Model validation results 210 

The Table 3 shows statistical parameters associated with CoMFA and CoMSIA 211 

models.  All the calculated parameters indicated that both models showed a good 212 

predictive power. It could be observed that all the Golbraikh–Tropsha criteria criteria: 213 

𝑟𝑝𝑟𝑒𝑑
2 0,6.0,85<K<1,15.0,85<K’<1.1, 𝑅°2is close to 1, 𝑅′°2is close to 1 and  214 

|𝑅0
2 − 𝑅°

′2|0.3were fulfilled. 215 

 216 

Table3. Predictive power results for the external test set; Golbraikh and Tropsha criteria 217 

MODEL 𝒓𝒑𝒓𝒆𝒅
𝟐  K K’ 𝑹°𝟐 𝑹′°𝟐 |𝑹𝟎

𝟐 − 𝑹°
′𝟐| 

CoMFA

  

0.783 0.976 1.021 0.941 

 

0.965 

 

0.02 

CoMSIA 0.666 0.990 1.007 0.991 0.992 0.001 

 218 



3.3 CoMFA and CoMSIA contour maps 219 

 220 

To visualize the information content of the derived 3D-QSAR model, CoMFA and 221 

CoMSIA contour maps were generated to rationalize the regions in 3D space around the 222 

molecules where changes in the steric, electrostatic, steric, hydrophobic, H-bond donor, and 223 

H-bond acceptor fields were predicted to increase or decrease the activity. 224 

 A thorough analysis of the contours obtained determines the vital physicochemical 225 

properties responsible in determining the activity and explores the crucial importance of 226 

various substituents in their 3D orientation. 227 

The visualization of the results of the CoMFA and CoMSIA models have been performed 228 

using the StDev*Coeff mapping option contoured by contribution, the default level of contour 229 

with contribution, 80% for favored region and 20% for disfavored region was set during 230 

contour analysis. 231 

The CoMFA and CoMSIA steric and electrostatic contour maps were shown in Fig, 5a, b 232 

using compound 13 the most active of the series as a reference structure explaining the key 233 

structural features required for inhibitory activity. 234 

The steric contour maps of the CoMFA and CoMSIA models are shown in yellow and 235 

green colors, the green contours represent regions of high steric tolerance (80% contribution) 236 

while the yellow contours represent regions of low steric bulk tolerance (20% contribution).  237 

In the contour map of steric field (Figure 5 a), a large green contour was observed near 238 

the naphthalene ring, suggesting the bulky substituent was favored at this region. 239 

Therefore, it is reasonable for the activity order of those compounds, 240 

17(pIC50=4.49)>16(pIC50=4.46)>14(pIC50=4.19)>2(pIC50=2,59)>1(pIC50=2,5), with the 241 

corresponding R1 substituent pyrene, 9H-xanthene, Phenyl, Methyl and H respectively.(The 242 

figure 9 shows the location of the radicals R1 and R2). 243 

It is clear that the N methyleneamino (the link between ring and thienopyrimidine) is 244 

surrounded by most of the yellow areas; the phenomenon demonstrates that bulky groups are 245 

unfavorable for increasing the activity. 246 



a 

 

c 

b  
 

d 

Fig.5.CoMFAandCoMSIA STDEV*COEFF contour maps: a) steric, b) electrostatic, c) 247 

Hydrophobic, d) hydrogen-bond acceptor and hydrogen-bond donor fields; based on the most 248 

active compound 13. 249 

 250 

The electrostatic field (Figure 5b) is indicated by Two blue regions were found near the 251 

R1 and R2position, which can explain the fact that the activity of compounds25 (R2= NH2 ) 252 

and15 (R2=H) are less potent than the compound 14 (R2= C2H5,therefore, it is reasonable for 253 

the activity order of thosecompounds,14 (R1=C2H5) >12(R1=CH3)>11(R1=NH2), because  that 254 

substitution of electropositive groups at this position would increase the activity and 255 

emphasizes that the electronegative environment is undesirable at this position. 256 

The red contour surrounding the oxygen atoms of the methoxy group sheds light on the 257 

fact that the activities of compound13 (R2= O-CH3) is higher than that of the compound16 258 

(R2 = H), and which can explain the fact that the activity of compound30 which have three 259 

group methoxy around the naphtalenering where any electronegative group at this region 260 

would increase the activity. 261 



CoMSIA contribution maps denote those areas within the specified region where the 262 

presence of a group with a particular physicochemical property will be favored or disfavored 263 

for good inhibitory activity. 264 

CoMSIA calculates both steric and electrostatic fields, as in CoMFA, but additionally uses 265 

hydrophobic, HBD and HBA fields, favored and disfavored levels fixed at 80% and 20%, 266 

respectively. 267 

The CoMSIA hydrophobic contour map is shown in Fig 5c, represented by yellow (80% 268 

contribution) and gray (20% contribution) colored contours. 269 

Yellow colored contours indicated the regions where hydrophobic groups on ligands are 270 

favored and gray colored contours represent those areas where hydrophobic groups are 271 

unflavored (or favorable for hydrophilic groups on ligands). 272 

The calculated CoMSIA hydrophobic contours (Fig. 5c) display favorable hydrophobic 273 

substituents (yellow polyhedral) in proximity of the naphtalenering, Unfavorable areas 274 

(white) are located around the thienopyrimidine and the substituent R1, and in proximity of 275 

the R2: methoxy group. 276 

Presence of a big white contour near R1 substituents of thienopyrimidine ring shows the 277 

importance of hydrophilic groups on the antibacterial activity in this region. 278 

As shown in Fig.5d, the magenta contours indicate hydrogen bond-accepting groups increase 279 

the inhibitory activity, whereas the red contours indicate hydrogen bond-accepting groups 280 

decrease the activity, a magenta contour located on the amino between thienopyrimidine and 281 

naphtalene around the N atom in the ring pyrimidone suggested that hydrogen bond-accepting 282 

groups were favored. 283 

 284 

3.4 Docking Analysis 285 

 286 

Molecular docking is a computational approach that finds best binding orientation 287 

between two biomolecules the ligand and the protein.
46 288 

The Protein-Ligand interaction plays a vital role in structural based drug design
47

. 289 

In our present study, docking of tested compounds with the primary drug pathway for S. 290 

aureus was performed, subsequently, the active compound 13 and inactive compound1were 291 

docked into the ligand-binding pocket of DNA gyrase B protein (code PDB:3G7B), as 292 

described in Fig.6. 293 



 

 294 

Fig.6 Three-dimensional structure of the receptor proteins DNA gyrase Bin complex with the 295 

compound 13. 296 

 297 

Docking interactions with two compounds (13 and 1) are shown in the Figs. 7a–c, 298 

respectively. 299 

For the low active compound, the Docking results shows carbon-hydrogen bond with 300 

Gly85Asp81 and Arg84 residues, pi-alkyl interaction with Ile86 residue. 301 

While compound 13is stabilized by a number of hydrophobic contacts with the residues Ile 302 

86, Pro87 and Ile 51 residues, as shown in Fig.7, the ligand 13displayedthree hydrogen bond 303 

interactions, one of the hydrogen bonds was observed between NH group val130 and O-atom 304 

of methoxy group at distance of 2,38Å. 305 

Another hydrogen bond was observed between of Thr173 and one of the nitrogen atoms of 306 

the pyrimidinone ring at a distance of 2,5 Å, the third bond was observed between Asn54 and 307 

NH- group. 308 

The key amino acid residues within the docking complex model involved in the 309 

interaction between the two compounds (most active, and low active) were Gly 85 and Arg48 310 

corroborating the studies of Berk et al. 
48 311 

The type and the position of interactions were suggested by contour map analysis. This 312 

supports the validity of our results. 313 



 

 

 

Fig.7.Two-dimensional depiction of the docked conformations of Ligand 13 and ligand 1 with 314 

enzyme DNA gyrase protein 315 

 316 

To further visualize the binding mode, the molecular computer aided design program 317 

(MOLCAD) was conducted, MOLCAD could calculate and display the cavity depth (CD), 318 

electrostatic potential (EP), lipophilic potential LP), and hydrogen bond site (HB) of the 319 

binding pocket, which can be used to find the sites that act attractively on ligands by matching 320 

opposite colors. 321 

In Figure 8(CD) , the MOLCAD Multi-Channel cavity depth potential surfaces structure 322 

of the binding site within the compound13is displayed and the cavity depth color ramp ranged 323 

from blue (low depth values = outside of the pocket) to ORANG (high depth values = cavities 324 

deep inside the pocket), In Figure 8(CD), the R1 position naphthalene of compound 13 is 325 

observed in a blue area, revealing that this position was embedded deep inside the ATP 326 

pocket, It can be simply inferred that a bulky group at R1 position maybe favorable, Since the 327 

thienopyrimidine site was oriented to a light Yellow/Orange area, which illustrated a minor 328 



group was anchored into a favorable region, this suggests that minor groups may benefit the 329 

potency. 330 

 331 

 332 

CD EP 

 

LP 

 

HB 

Fig.8. MOLCAD surfaces of the binding site of DNA gyrase protein with molecule 13 333 

In Fig. 8( EP), the MOLCAD electrostatic potential surface of the binding region was 334 

demonstrated with the color ramp for EP ranging from red (most positive) to bleu (most 335 

negative), the position R1 group was found in a blue area, which indicated that electron-336 

donating properties at this site were essential for the potency; the sulfo group was in a yellow 337 

area, which suggested that electron-with drawing properties would be favored; the -CH2CH3 338 

radical was anchored in a green area which suggested that an electron-donating substituent at 339 

this position would be essential for the potency. 340 

These results were well compared with the corresponding CoMFA and CoMSIA 341 

electrostatic contour maps. 342 

Figure 8 (HB) a displayed the MOLCAD hydrogen bonding sites of the binding 343 

surfaces, ligands can be docked to proteins by matching the patterns displayed on the surface, 344 



the color ramp for HB ranges from red (hydrogen donors) to blue (hydrogen acceptors). The 345 

nitrogen of thienopyrimidine ring and N methyleneamino of compound 13 was found in the 346 

red surface, which suggested that the surface of this site are hydrogen bond donors, and a 347 

hydrogen bond acceptor substituent would be favorable; and the naphthalene ring of 348 

compound 13 was found in the blue surface, which indicated that the surface of this region are 349 

hydrogen bond acceptors, and a hydrogen bond donor substituent be favored. 350 

The observations taken from this hydrogen bonding sites satisfactorily matched to the 351 

corresponding CoMSIA hydrogen bond donor contour maps. 352 

Figure 8 (LP) showed the MOLCAD lipophilic potential surface of the binding area, the 353 

color ramp for LP ranges from brown (highest lipophilic area of the surface) to blue (highest 354 

hydrophilic area). The R1 position was oriented to a brown region, suggesting that a 355 

hydrophobic substituent may be favored; the methylene amino was oriented to a blue area, 356 

which indicated that a hydrophilic group would be favorable. The observations taken from 357 

Fig. 8 satisfactorily matched those of the CoMSIA hydrophobic contour map. 358 

Combined 3D-QSAR and molecular docking analysis is corroborated and these results 359 

will help to better interpret the structure-activity relationship of these DNA gyrase inhibitors 360 

and provide valuable information into rational drug design. 361 

 362 

3.5 New compounds design and activity prediction 363 

 364 

Based on the established two sets of 3D-QSAR models and related analysis results, the 365 

compound 13 was used as a template to modify its molecular structure, and five new 366 

compounds were designed. The structures of the new compounds are shown in Table 4. 367 

We substituted R1 and R2 parts with proper groups according to the contour maps. The 368 

activities of these designed structures towards Staphylococcus aureus antagonist were almost 369 

better compared to that of reported thienopyrimidine derivatives. 370 

 371 



 372 

Fig.9. Structure-activity relationship representation. 373 

 374 

Table 3. Structures of newly designed molecules and their predicted pIC50 based on CoMFA 375 

and CoMSIA 3D-QSARmodels. 376 

 Smile R1 R2 COMFA COMSIA 

13 CCc1nc2sc3c(c2c(=O)n1/N=C\c1ccc2c(c1)ccc

(c2)OC)CCCC3 

CH2CH3 OCH3 5.107 5.125 

A CCCc1nc2sc3c(c2c(=O)n1N=Cc1ccc2cc(OC(

C)C)ccc2c1)CCCC3 

-(CH2)2CH3 OCH(CH3)2 5.129 5.125 

B CCOc1ccc2cc(C=Nn3c(CC(C)C)nc4sc5c(c4c3

=O)CCCC5)ccc2c1 

CH2CH(CH3)2 OCH2CH3 5.181 5.135 

C NC1=CC2=CC=C(\C=N\N3C(=O)C4=C(SC5

=C4CCCC5)N=C3C3CCCCC3)C=C2C=C1 

C6H11 NH2 5.124 5.126 

D CCCCC1=NC2=C(C3=C(CCCC3)S2)C(=O)N

1N=CC1=CC=CC2=C1C=CC(=C2)N(C)C 

(CH2)3CH3 N(CH3)2 5.218 5.154 

E CCCCCc1nc2sc3c(c2c(=O)n1/N=C/c1ccc2c(c

1)cc(cc2)NC)CCCC3 

(CH2)4CH3 CH3NH 5.137 5.128 

 377 

3.6 Drug-likeness, bioavailability, synthetic accessibility and alerts for PAINS  378 

 379 

Drug likeness may be defined as a complex balance of various molecular properties and 380 

structural features, which determine whether a particular molecule is drug or nondrug. 381 

Probably, the most widely used filter is Lipinski’s Rule-of-five, which proposes that 382 

molecules with poor permeation and oral absorption have molecular weight > 500, logP > 5, 383 

more than 5 hydrogen-bond donor and more than 10 acceptor groups.
44

 All the molecules 384 

exhibited drug likeness characteristics according to Lipinski rules. The other significant 385 

properties such as total polar surface area (TPSA) and the number of rotatable bonds and 386 

molar refractivity were also calculated. The results are depicted in Table 5. TPSA of a 387 



compound is less than 140 Å
2
 and the number of rotatable bonds is less than 10, as the 388 

number of rotatable bonds increases, the molecule becomes more flexible and more adaptable 389 

for efficient interaction with a particular binding pocket
49

. Interestingly the compounds E, D 390 

and A have 6–7 rotatable bonds and flexible. 391 

So, Lipinski and Veber rules are validated, therefore, theoretically, there would not have 392 

a problem with oral bioavailability for all proposed compounds. 393 

 394 

Table 3. Prediction of molecular properties descriptors of the new compounds design 395 

 396 

Compounds MW 

g/mol 

logP H-bond A H-bond D log S 

mol/L 

n.rot REF TPSA 

(Å2) 

S.A 

score 

F

% 

PAINS 

alert 

13 417.52 4.30 4 0 -6.06 4 124.52 84.72 3.92 55 0 

A 459.60 4.80 4 0 -6.88 6 138.94 84.70 4.30 55 0 

B 458.62 4.93 3 0 -7.30 3 138.94 71.83 4.15 55 0 

C 456.60 4.18 3 1 -6.93 3 139.54 101.5 4.32 55 0 

D 458.62 4.74 3 0 -6.80 6 141.85 78.73 4.46 55 0 

E 458.62 4.78 3 1 -6.99 7 141.75 87.52 4.38 55 0 

 397 

Drug oral bioavailability is the fractional extent of the drug dosage that finally reaches 398 

the therapeutic site of action and is quantitatively symbolized as % F, acceptable probability 399 

score is 55%, which indicates that it passed the rule of five. The compounds showed a score 400 

of  55%, indicating good bioavailability. 401 

For the discovery of oral administrative drugs, solubility is one of the major descriptors. 402 

Highly water solubility was useful for deliver active ingredient in sufficient quantity in small 403 

volume of such pharmaceutical dosage. These values are the decimal logarithm of the molar 404 

solubility in water (log S). From the results appear in the table 5, it can be said that the 405 

compounds tested has poorly water solubility. Low water solubility translates to slow 406 

absorption and action. 407 

Activity artifacts in assays present a major problem for biological screening and 408 

medicinal chemistry. Such artifacts are often caused by compounds that form aggregates or 409 

are reactive under assay conditions. Many pan assay interference compounds (PAINS) have 410 

been proposed to cause false-positive assay readouts.
50

 411 

The PAINS violations of proposed compounds are given in table 5. Almost all the compounds 412 

showed zero PAINS alert and can be used as lead compounds. 413 

One of the key aspects of CADD (Computer aided design and drafting) activities is help 414 

for the selection of most promising molecule which was synthesized and subjected for 415 



biological study is the synthetic accessibility (SA). For given molecule, SA score is the 416 

summation of the fragments and corrected by the terms describing size and complexity such 417 

as macrocycles, chiral centers, or spiro functions. The SA score ranges from 1 (very easy) to 418 

10 (very difficult).
51

The obtained values were in the range of 3-5 revealed that the compounds 419 

here have easy synthesis route. 420 

 421 

3.7 ADME evaluation of the new candidates. 422 

 423 

The pharmacokinetic studies were performed using online SwissADME tool, the 424 

calculated absorption, distribution and metabolism parameters are presented in Table 6and 425 

Table 7 respectively. 426 

Transdermal delivery systems are attractive for both topical and systemic therapeutics. 427 

However, the skin barrier, which protects the body from physical and chemical attacks, also 428 

hinders the delivery of the required drug dose through the skin to a target organ.
52 

429 

The results in the table show that the all the compounds found (table 6) to be poorly 430 

permeable to skin as all compounds have Kp negative values. 431 

Moreover, other parameters used to measure the adsorption and distribution of these drugs is 432 

through human intestinal absorption (HIA) or gastrointestinal (GI) adsorption data. These data 433 

show that all the compounds are predicted to be well absorbed, except for the compound C, 434 

whose absorption is weak. This result is also evident in the BOILED-Egg model. (FIG9) 435 

The Blood–brain partitioning and brain distribution are critical properties for drugs 436 

targeting the central nervous system. The Compounds tested are predicted as non-brain 437 

penetrant thus, side effects at this level may be diminished.  438 

The BOILED-Egg model is of great support for the users to apprehend the concepts of 439 

absorption and distribution, and to figure out what type of chemical modifications must be 440 

made to the small molecule to obtain the desired absorption and distribution, in an intuitive 441 

and iterative way.
53

 442 



 443 

 444 

 445 

Table 4. Predicted ADME properties for new inhibitors 446 

 447 

 448 

 449 

 450 

 451 

 452 

 453 

Inside circle [yellow] depicts BBB- blood brain barrier, none of the compounds are in 454 

this region. The white region that is outer to yellow depicts the human intestinal absorption. 455 

Almost all compound lies in this white area. Only molecule C is lying outside [grey area] 456 

which indicates poor intestinal absorption. 457 

 458 

 

Fig.10. BOILED-Egg model 459 

The study on the potential of compounds to inhibit the cytochrome P450 (CYP) 460 

enzymes is important in determining their possible drug interactions and toxicity.
54

 461 

Approximately over 50 % of therapeutic molecules are substrate of five major isoforms 462 

Compound GI absorption BBB Permeable log Kp (cm/s) 

13 

A 

B 

C 

D 

E 

high 

high 

high 

low 

high 

high 

yes 

no 

no 

no 

no 

no 

-5.85 

-4.42 

-3.93 

-4.54 

-4.49 

-4.20 



(CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4). These enzymes are involved in 463 

metabolism of drugs.
55

 464 

Moreover, the compound design presented was found to be substrates of CYP1A2 and 465 

CYP2D6. 466 

The compound Dis predicted not to be inhibitors of three of CYP isoenzymes. This fact 467 

is very useful, because this compound is expected not to have CYP metabolism interactions 468 

with other drugs, and this compound could present a reduced Hepatic toxicity risk. All 469 

compounds are found to be substrates of P-Gp, lipophilic substances of low molecular weight 470 

tend to be substrates for P-glycoprotein.
56

 471 

 472 

Table 5.  Metabolism prediction for new inhibitors 473 

 

Compound 

 

P-Gp 

Substrata 

CYP1A2 

Inhibitor 

 

CYP2C19 

inhibitor 

CYP2C9 

inhibitor 

CYP2D6 

Inhibitor 

 

CYP3A4 

Inhibitor 

 

13 

A 

B 

C  

D 

E 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

no 

no 

no 

no 

no 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

no 

no 

no 

no 

no 

no 

yes 

yes 

yes 

yes 

no 

yes 

4. CONCLUSION 474 

 475 

In this study, CoMFA and CoMSIA 3D-QSAR models were developed for a series of 476 

thienopyrimidine derivatives that has antimicrobial potency against Staphylococcus aureus; 477 

the two models have good statistical results in terms of q
2
 and R

2 
values. 478 

The good predictive ability of CoMFA and CoMSIA observed for the test set of 479 

compounds indicates that these models could be successfully used for predicting the pIC50 480 

values. Moreover, based on the contour’s maps of the CoMFA/CoMSIA models, Steric, 481 

electrostatic and hydrophobic significant regions were identified to enhance bioactivity as 482 

well as H-bond interactions. Docking study was performed to analyze and identify the 483 

interactions of possible antimicrobial compounds (The best effective compound being 484 



compound 13 and the weakest compound1) in the active site of DNA gyrase. These results 485 

provided crucial clues for designing novel Staphylococcus aureus antagonists with high 486 

predicted potent activity. A set of 5 novel derivatives were designed by utilizing the structure-487 

activity relationship taken from the present study. In silico analyzes of absorption, 488 

distribution, metabolism and excretion were carried out on these new molecules to investigate 489 

their activities in compliance with the standard. These five novel lead molecules have better 490 

pharmacological properties compared to the study series. The information obtained from this 491 

study can further be used for the design of potent inhibitors of S. aureus DNA gyrase enzyme. 492 

 493 
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