Scientific paper

Phase Equilibria in the Ag_2 Te-PbTe-Sb₂Te₃ System and Thermodynamic Properties of the $(2PbTe)_{1-x}(AgSbTe_2)_x$ Solid Solutions

Leyla Farhad Mashadiyeva,¹ Shabnam Hamlet Mansimova,² Dunya Mahammad Babanly,¹,³ Yusif Amirali Yusibov,⁴ Dilqam Babir Tagiyev¹ and Mahammad Baba Babanly¹,²,*

¹ Institute of Catalysis and Inorganic Chemistry, Azerbaijan National Academy of Science, Baku, Azerbaijan

² Baku State University, Chemistry Department, Baku, Azerbaijan

³ Azerbaijan State Oil and Industry University, Baku, Azerbaijan

⁴ Ganja State University, Chemistry Department, Ganja, Azerbaijan

* Corresponding author: E-mail: babanlymb@gmail.com

Received: 13-29-2019

Abstract

Phase equilibria in the $Ag_2Te-PbTe-Sb_2Te_3$ system were experimentally investigated by means of differential thermal analysis, powder X-ray diffraction techniques and electromotive force (EMF) measurement method. A liquidus surface projection of the system, 750 K and 300 K isothermal sections, as well as five vertical sections of the phase diagram, were constructed. The primary crystallization fields of phases and homogeneity range of phases were also determined. The character and temperature of the various nonvariant and monovariant equilibria were identified. The studied system is characterized by the formation of a wide continuous band of a high-temperature cubic structured solid solution (β -phase) between PbTe and $Ag_{1-x}Sb_{1+x}Te_{2+x}$ intermediate phase. The partial molar thermodynamic functions of lead telluride in alloys and standard integral thermodynamic functions of the β -solid solutions along the 2PbTe-"AgSbTe₂" section were calculated based on the EMF measurements results.

Keywords: Ag-Sb-Pb-Te system; silver telluride; lead telluride; antimony telluride; phase equilibria; solid solution; thermodynamic functions.

1. Introduction

Complex silver-containing chalcogenides are among the advanced functional materials.^{1–3} Thanks to the mobility of silver ions, these phases have mixed ion-electron conductivity and can be widely used in semiconductors, electrochemical energy storage materials, electrodes of fuel cells and batteries, etc.^{4,5}

Alloys formed in $Ag_2X-A^{IV}X-B^V_2X_3$ systems (where $A^{IV} = Ge$, Sn, Pb; $B^V = Sb$, Bi; X = S, Se, Te) are good thermoelectric materials with a high thermoelectric figure of merit $ZT.^{6-10}$ Besides, phases $A^{IV}B^V_2X_4$, $A^{IV}B^V_4X_7$, etc. which are formed on the boundary quasi-binary systems of the $Ag_2X-A^{IV}X-B^V_2X_3$ systems possess topological surface states and can be used in spintronics and quantum

computing.^{11–14} Great interest is complex telluride phases formed in these systems with excellent thermoelectric properties, such as Ge-Sb-Ag-Te (named as TAGS) and Pb-Sb-Ag-Te (denoted as LAST).^{15–19} It is known that the development of new multicomponent materials is based on data on the phase equilibria of the corresponding systems and thermodynamic properties of phases formed in them.^{20–24}

Herein, we present the phase relationships in the $Ag_2Te-PbTe-Sb_2Te_3$ system over the entire concentration range. Also, we report the thermodynamic properties of the $(2PbTe)_{1-x}(AgSbTe_2)_x$ solid solution formed in the system. Earlier we report the self-consistent phase equilibria description and thermodynamic study result in such silver-based multi-component telluride systems

 $Ag_2Te-PbTe-Bi_2Te_3,^{25}$ $Ag_2Te-SnTe-Bi_2Te_3,^{26}$ and $Ag_2Te-SnTe-Sb_2Te_3,^{27,28}$ In all these studied systems, high-temperature solid solutions with a cubic structure along the $A^{\rm IV}Te-AgB^{\rm V}{}_2Te_3$ section are formed.

2. Literature Review

2. 1. Starting Compounds

The starting binary compounds of the Ag₂Te-PbTe-Sb₂Te₃ system are well known. Ag₂Te melts congruently at 1233 K and has three polymorph modifications.²⁹ Its room-temperature modification (RT-Ag₂Te) crystallizes in the monoclinic system $(P2_1/c \text{ space group; lattice pa-}$ rameters: a = 0.809 nm; b = 0.448 nm; c = 0.896; $\beta =$ 112.55°) and remains stable up to 378 K with tellurium excess and up to 418 K with silver excess.³⁰ Intermediate-temperature modification (IT-Ag₂Te) crystallizes in the face-centered cubic system $(Fm\bar{3}m \text{ space group}; a =$ 0.6648 nm,31) transforms into high temperature body-centered cubic form (HT-Ag₂Te; $Im\bar{3}m$ space group; a = 0.529 nm,32) at 1075 K. PbTe melts congruently at 1197 K,29 and crystallizes in in the $Fm\bar{3}m$ face-centered cubic crystal structure with cell parameter; $a = 6.6461(3) \text{ nm.}^{33} \text{ Sb}_2\text{Te}_3$ melts congruently at 893 K,²⁹ and crystallizes in the rhombohedral tetradymite type of structure ($R\bar{3}m$ space group) with parameters: a = 0.4264 nm; c = 3.0458 nm.

2. 2. Boundary Quasi-Binary Systems

The boundary quasi-binary systems of the Ag₂Te-PbTe-Sb₂Te₃ system were studied well.

The Ag_2 Te-PbTe system has a T-x diagram of eutectic type with limited mutual solubility of the components. The eutectic has the composition 38 mol % PbTe and crystallizes at 967 K, 36 (35 mol % PbTe and 973 K, 35). The solubility of the starting components in each other is 12–15% at the eutectic temperature. 37

Phase diagrams of the Ag₂Te-Sb₂Te₃ pseudobinary system were elaborated separately in. 38,39 A previously reported in,40 phase with the nominal composition of Ag₂SbTe₂ does not exist. In fact, the only ternary intermediate phase Ag_{1-x}Sb_{1+x}Te_{2+x} with variable composition $(0.08 < x < 0.41,^{38})$, which crystallizes in the NaCl structure type ($Fm\bar{3}m$ space group; a = 0.6078 nm,³⁸) is thermodynamically stable. However, earlier reports differ about the temperature and compositional region of this phase.^{38,39} Further investigations of the Ag-Sb-Te ternary system confirmed that this phase is only stable in a limited temperature range (633 K < T < 847 K) and it decomposes into solid solutions based on starting Sb₂Te₃ and IT-Ag₂Te compounds below 633 K.41-43 The decomposition process was additionally confirmed by temperature-dependent X-ray diffraction analysis,44 and electrochemical measurements. 45 The homogeneity range of the Ag_{1-x}Sb_{1+x}Te_{2+x} phase varies with temperature from 35 to 45 mol% Sb₂Te₃.

Recent works are devoted to the search for optimal compositions of this nonstoichiometric phase, which exhibits a high thermoelectric figure of merit. The eutectic of the Ag₂Te-Sb₂Te₃ system crystallizes at 70 mol% Ag₂Te and 817 K. 38

The phase diagram of the PbTe–Sb₂Te₃ boundary system reported in, ⁴⁸ was characterized by formation only ternary compound Pb₂Sb₆Te₁₁, at approximately the eutectic composition on peritectic reaction at 860 K. Shelimova et al., ⁴⁹ showed formation in this system also PbSb₂Te₄ and PbSb₄Te₇ compounds with a layered structure. However, further studies on this system, ^{50,51} have not confirmed the last compounds. These studies indicated the formation of only the Pb₂Sb₆Te₁₁ metastable ternary compound with a 7-layer rhombohedral structure. This metastable phase is stable at high temperatures and decomposes on cooling into PbTe and Sb₂Te₃. However, solidification processing always yields the Pb₂Sb₆Te₁₁ phase as a constituent phase observable at room temperature. ^{50,51} There is an eutectic reaction between Pb₂Sb₆Te₁₁ and Sb₂Te₃ at 855 K.⁴⁸

3. Experimental Part

3. 1. Synthesis

All starting compounds Ag_2 Te, PbTe, and Sb_2 Te₃ of the title system were prepared by melting of elements in evacuated ($\sim 10^{-3}$ Pa) silica ampoules at temperatures ~ 50 K higher than their melting points.²⁹ High purity simple substances from the Evochem Advanced Materials GMBH Company (Germany) of were used for synthesis: silver in granules (Ag-00047; 99.999%), antimony in granules (Sb-00002; 99.9999%), lead in granules (Pb-00005; 99.9995%), tellurium pieces (Te-00005; 99.9999%). Silver telluride Ag_2 Te was additionally annealed at 1200 K for 3 hours and

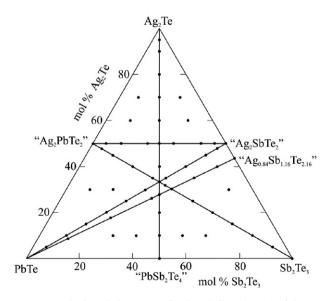


Fig. 1. Studied isopleth sections (lines) and alloys (points) of the $Ag_2Te-PbTe-Sb_2Te_3$ system

then was quenched with cold water in order to obtain a homogeneous stoichiometric composition. All starting compounds have been identified using differential thermal analysis and powder X-ray diffraction techniques.

More than sixty alloys of the $Ag_2Te-PbTe-Sb_2Te_3$ system (Fig. 1) were prepared from the pre-synthesized initial compounds also by vacuum alloying. Considering that the non-stoichiometric phase $Ag_{1-x}Sb_{1+x}Te_{2+x}$ decomposes upon cooling, 2 series of PbTe-"AgSb Te_2 " and PbTe-"Ag $Sb_{1.16}Te_{2.16}$ " alloys with the same compositions were prepared. Alloys from the first series were slowly cooled to 750 K after alloying and then annealed at this temperature for about 700 hours. Alloys from the second series were quenched in cold water after alloying and then also annealed at 750 K (700 h). All alloys after annealing were cooled to room temperature in the off-furnace mode.

3. 2. Analysis

Differential thermal analysis (DTA) and powder X-ray diffraction (PXRD) techniques were employed to analyze both starting compounds and alloys. Thermal analysis of the equilibrated alloys was carried out using a NETZSCH 404 F1 Pegasus system. The DTA measurement was performed between room temperature and ~1300 K with a heating and cooling rate of 10 K min⁻¹ under the inert gas (Ar) flow. Temperatures of thermal effects were taken mainly from the heating curves. NETZSCH Proteus Software was used for the evaluation of the DTA data. The PXRD analysis was performed on a Bruker D8 ADVANCE diffractometer, with CuKa₁ radiation. PXRD patterns were indexed by using TopasV3.0 software by Bruker.

The electromotive force (EMF) method with glycerol electrolyte, 52 was used for the thermodynamic study of the $(2PbTe)_x(AgSbTe_2)_{1-x}$ solid solutions. Concentration chains of the following type were constructed and their EMF was measured in the temperature range of 300-450 K:

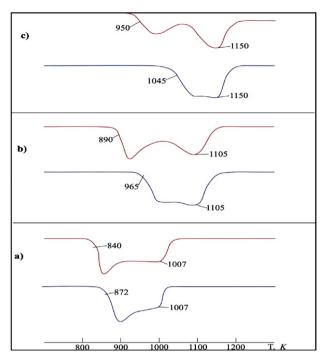
(-) PbTe (s) | liquid electrolyte, Pb²⁺ |
$$(2PbTe)_{x}(AgSbTe_{2})_{1-x} (s) (+)$$
 (1)

Similar electrochemical cells were previously successfully used for thermodynamic studies of several chalcogenide and other inorganic systems. Equilibrium alloys $(2PbTe)_x(AgSbTe_2)_{1-x}$ with compositions x=0.1; 0.15; 0.2; 0.4; 0.6; 0.8 were synthesized by fusing the elementary components in the required ratios into evacuated to $\sim 10^{-2}$ Pa and sealed quartz ampoules. To maximally approximate the alloys to the equilibrium state, the cast non-homogenized samples obtained by quenching the melts from 1100 K were ground into powder, thoroughly mixed, pressed into tablets weighing 0.3–0.5 g and annealed first at 750 K (500 hours), and then at 450 K (200 h.). Synthesized alloys were identified by PXRD.

To prepare electrodes the PbTe (left electrode) and annealed alloys $(2PbTe)_x(AgSbTe_2)_{1-x}$ (right electrodes) were powdered and pressed onto molybdenum current leads in the form of tablets with a diameter of ~0.6 cm and a thickness of ~0.3 cm.

A solution of KCl in glycerol with the addition of $PbCl_2$ was used as the electrolyte. In order to prevent the presence of moisture and oxygen in the electrolyte anhydrous, chemically pure salts were used, as well as glycerin was previously dehydrated and outgassed by pumping at $\sim 400~\rm K$.

The electrochemical cell described in,⁵³ was assembled. EMF measurements were carried out in an inert atmosphere using a high-voltage digital voltmeter V7-91. Before starting the measurements, the electrochemical cell was kept at ~350 K for 40–60 h, after which the first equilibrium EMF values were obtained. Subsequent measurements were carried out every 3–4 hours after the establishment of a certain temperature. The EMF values, which, regardless of the direction of the temperature change did not differ from each other at a given temperature by more than 0.2 mV, were considered to be equilibrium.


Results and Discussion

We have constructed the self-consistent phase diagram of the quasi-ternary $Ag_2Te-PbTe-Sb_2Te_3$ system as well as determined thermodynamic functions of the PbTe-"AgSbTe₂" solid solution by the combined analysis of all our experimental results and the data found in the literature on the phase equilibria for the boundary quasibinary systems.

4. 1. The Sections PbTe-"AgSbTe₂" and PbTe-"Ag_{0.84}Sb_{1.16}Te_{2.16}"

As mentioned above in Experimental Part, two series of alloys were prepared along these sections. Fig. 2 shows heating curves for PbTe-"AgSbTe₂" alloys of both series with compositions 60, 80 and 90 mol% PbTe. As can be seen, the melting onset temperatures of the two series of alloys are very different. For samples of the 1st series (red curves) obtained by slow cooling, the melting onset temperatures are significantly (up to 100°) lower than the samples of the 2nd series (blue curves). Increasing the annealing time up to 1000 h did not change the DTA curves of alloys of the 2nd series, whereas for alloys of the 1st series some (~10–20°) rise in the temperatures of the onset of melting was observed.

These results show that the 2nd series samples can be considered practically in equilibrium. Therefore, data from DTA curves of the 2nd series alloys were used to construct the phase diagram of the PbTe-"AgSbTe $_2$ " system (Fig. 3). The PbTe-"AgSbTe $_2$ " system is characterized by the formation of wide (up to 70 mol%) solid solutions based on PbTe (β -phase), but the system is generally

Fig. 2. Fragments of the DTA curves for the PbTe-"AgSbTe₂" system alloys with the compositions 60 (a), 80 (b) and 90 (c) mol% PbTe. DTA curves for the samples from the 1st series are red, and from the 2nd series are blue

non-quasi-binary. The reason is the non-individuality of the starting component "AgSbTe₂" which is a two-phase alloy $Ag_2Te + Ag_{1-x}Sb_{1+x}Te_{2+x}$. ^{38,39}

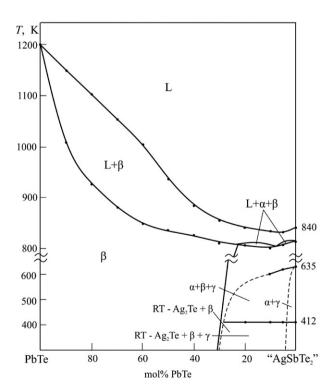


Fig. 3. PbTe-"AgSbTe $_2$ " vertical section of the phase diagram of the Ag $_2$ Te-PbTe-Sb $_2$ Te $_3$ system

The powder X-ray analysis results confirmed the formation of a wide area (30–100 mol% PbTe) of a solid solution with a cubic structure in the studied section. PbTe-poor alloys are three-phase. For example, Fig. 4 represents a powder X-ray pattern of alloy with composition 20 mol% PbTe and 80 mol% "AgSbTe₂". As can be seen from Fig. 4 the PXRD pattern of this alloy consists of a set of reflection lines of the RT-Ag₂Te, β -phase, and γ -phase based on Sb₂Te₃.

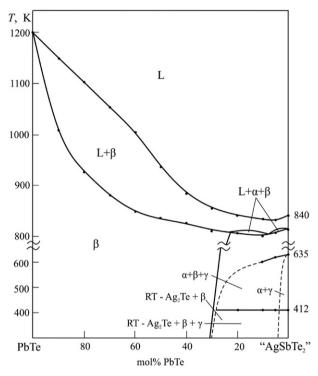


Fig. 4. PXRD patterns and phase composition for alloy with composion 20 mol% PbTe-80 mol% "AgSbTe₂"

A characteristic feature of the PbTe-"AgSbTe $_2$ " system is a very large temperature range of crystallization (melting) of the β -phase (up to 150°). For this reason, slow cooling of melts leads to strong segregation and inhomogeneity of solid solutions in composition, which makes it difficult to achieve an equilibrium state of the samples. Inhomogeneity of solid solutions in composition in the 1st series alloys is demonstrated by a powder X-ray patterns of an alloy with a composition of 70 mol% PbTe (Fig. 5 a, b). As can be seen, X-ray patterns of samples of this alloy, obtained in two various ways, differ sharply. The sample from the 1st series has very diffuse reflection peaks, while the alloy from the 2nd series has a very high-quality X-ray pattern showing much smoother peaks with minimum noise.

The phase equilibria along the 2PbTe-" $Ag_{0.84}$ $Sb_{1.16}Te_{2.16}$ " section (Fig. 6) is qualitatively similar to the PbTe-" $AgSbTe_2$ " section. The system is non-quasibinary due to the peritectic melting of the " $Ag_{0.84}Sb_{1.16}Te_{2.16}$ "

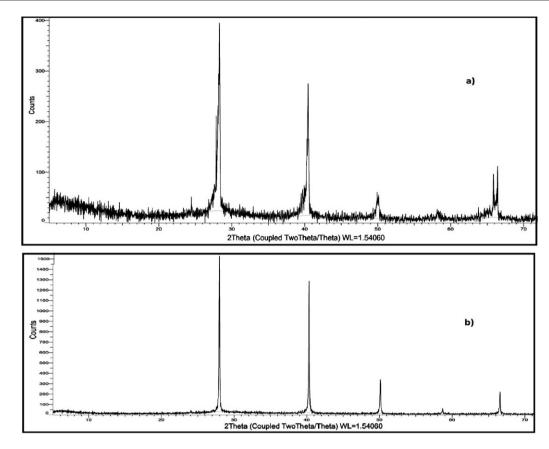


Fig. 5. Powder X-ray patterns of alloy with composition of 70 mol% PbTe: a) a sample from the 1st series; b) a sample from the 2nd series

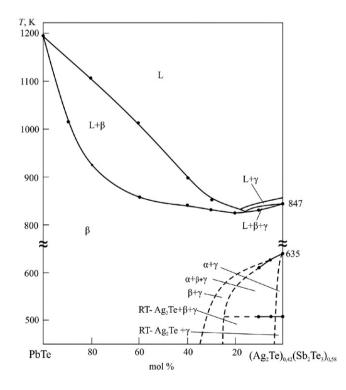


Fig. 6. 2PbTe-" $Ag_{0.84}Sb_{1.16}Te_{2.16}$ " vertical section of the phase diagram of the $Ag_2Te-PbTe-Sb_2Te_3$ system

phase and its decay into $Ag_2Te + Sb_2Te_3$ below 635 K. This, in turn, leads to the decomposition of β -solid solutions formed in this section in the 0–40 mol% PbTe composition range and, as a result, the $\alpha + \beta + \gamma$, $\beta + \gamma$, $\alpha + \gamma$, etc. fields are formed in the system (α -phase is a solid solution based on an IT- Ag_2Te).

Using TopasV3.0 software the lattice parameters of the β -phase were calculated (Table 1) and the concentration dependence of these parameters was plotted (Fig. 7). As can be seen from Fig. 7, the lattice parameters are a linear function of the composition. An insignificant positive deviation of this dependence on the Vegard law is probably caused by elastic deformation of the β -phase'

 $\label{thm:continuous} \textbf{Table 1.} \ Crystallographic parameters of the b-solid solutions for the 2PbSe-"Ag_{0.84}Sb_{1.16}Te_{2.16}" system$

Composition, mol%	Cubic lattice parameter; <i>a, nm</i>	
$Ag_{0.84}Sb_{1.16}Te_{2.16}$		
0 (PbTe)	0.6463(7)	
20	0.6401(7)	
40	0.6326(6)	
60	0.6252(7)	
80	0.6173(3)	
$100 (Ag_{0.84}Sb_{1.16}Te_{2.16})$	0.6077(8)	

crystal lattice, due to the large difference in the crystal radius of antimony (0,09 nm) compared to silver (0.129 nm) and lead (0.133 nm). Crystal radii data were taken from.⁵⁷

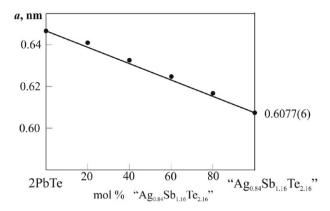


Fig. 7. Concentration dependence of cubic lattice parameter for $\beta\text{-phase}$ along the 2PbTe-"Ag $_{0.84}\text{Sb}_{1.16}\text{Te}_{2.16}$ " section

4. 2. Solid-Phase Equilibria

The isothermal sections at 750 K and 300 K of the phase diagram of the Ag₂Te-PbTe-Sb₂Te₃ system have been constructed.

The isothermal sections at 750 K. A homogeneity range of the intermediate phase $Ag_{1-x}Sb_{1+x}Te_{2+x}$ along PbTe-Sb₂Te₃ section is 40–44 mol% Sb₂Te₃ at 750 K.³⁸ A wide (up to 8 mol%) continuous band of β-solid solution is formed in the $Ag_2Te-PbTe-Sb_2Te_3$ system at 750 K (Fig. 8a). The width of a β-solid solutions is 3–4 mol% in the $Ag_2Te-Sb_2Te_3$ section and expands up to 7–8 mol% with a change in composition towards PbTe. The PbTe-" $Ag_{0.84}Sb_{1.16}Te_{2.16}$ " section is completely in the homogene-

ity area of the β -phase. The PbTe-"AgSbTe₂" section in the composition range of 25–100 mol% PbTe passes through the β -phase homogeneity area, and at <25 mol% PbTe passes into the two-phase region $\alpha + \beta$. The β -phase forms connode lines with α -phase and γ -phase.

The isothermal sections at 300 K (Fig. 8b). The decomposition of the $Ag_{1-x}Sb_{1+x}Te_{2+x}$ intermediate phase below 635 K leads to partial decomposition of the β-phase in the composition range of <25 mol% PbTe and the following heterogeneous regions are formed: RT-Ag₂Te + β + γ and RT-Ag₂Te + γ.

The location and borders of phase areas on the solid-phase equilibrium diagrams (Fig. 8a, b) were established by using the PXRD technique (for example, powder X-ray pattern of the alloy #1 from Fig. 8b is presented in Fig. 4) and confirmed by the DTA, as well as by the EMF technique (*see sections 4.5*).

4. 3. The Liquidus Surface Projection

The liquidus surface of the $Ag_2Te-PbTe-Sb_2Te_3$ system consists of 4 fields corresponding to primary crystallization of the α -, β - and γ - phases, as well as ternary compound $Pb_2Sb_6Te_{11}$ (Fig. 9). The α -phase primary crystallization area is separated from the α' -phase based on HT-Ag₂Te by the dashed line. Largest crystallization field in the system belongs to β -phase (field 2 in Fig. 9). This region is divided into 2 parts by the curve M_1M_2 connecting the minimum points of M_1 and M_2 . The primary crystallization area of the ternary $Pb_2Sb_6Te_{11}$ compound is very small (field 4 in Fig. 9). Transitional equilibrium U limits the extent of this area inside the concentration triangle. This is in good agreement with data, 50,51 on a narrow temperature range for the existence of compound $Pb_2Sb_6Te_{11}$.

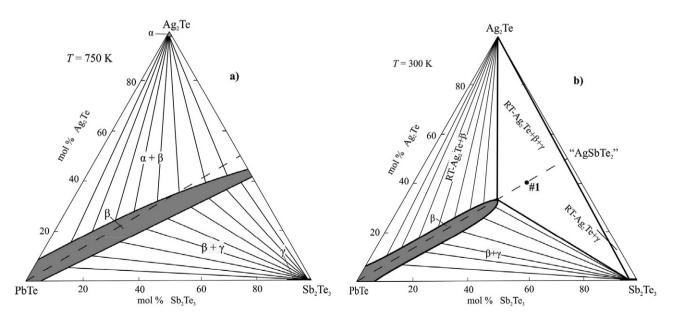
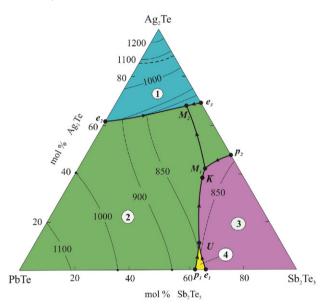



Fig. 8. (a) 750 K and (b) 300 K isothermal sections of the phase diagram of the Ag, Te-PbTe-Sb₂Te₃ system

Point or	Equilibrium	Composi	tion, mol%	T, K
curve in	Fig. 9	Ag_2Te	Sb_2Te_3	
P_1	$L + \beta \leftrightarrow Pb_2Sb_6Te_{11}$	_	62	860
P_2	$L + \gamma \leftrightarrow Pb_2Sb_6Te_{11}$	48	52	847
e_1	$L \leftrightarrow Pb_2Sb_6Te_{11} + \gamma$	_	66	855
e_2	$L \leftrightarrow \alpha + \beta$	62	_	967
e_3	$L \leftrightarrow \alpha + Ag_{1-x}Sb_{1+x}Te_{2+x}$	70	30	813
U	$L + Pb_2Sb_6Te_{11} \leftrightarrow \beta + \gamma$	11	59	847
M_1	$L + \gamma \leftrightarrow \beta$	42	46	825
M_2	$L \leftrightarrow \alpha + \beta$	68	27	805
P_1U	$L + \beta \leftrightarrow Pb_2Sb_6Te_{11}$			860-847
e_1U	$L \leftrightarrow Pb_2Sb_6Te_{11} + \gamma$			855-847
UK	$L \leftrightarrow \beta + \gamma$			847-830
KM_1	$L + \gamma \leftrightarrow \beta$			830-825
$P_2 M_1$	$L + \gamma \leftrightarrow \beta$			847-825
M_1M_2	$L \leftrightarrow \gamma$			825-805
e_2M_2	$L \leftrightarrow \alpha + \beta$			967-805
e_3M_2	$L \rightarrow \alpha + \beta$			813-805

Table 2. Nonvariant and monovariant equilibria in the ${\rm Ag_2Te\text{-}PbTe\text{-}Sb_2Te_3}$ system

The primary crystallization fields of the phases are bordered by peritectic (p_1U , p_2M1) and eutectic (e_2M_2 , M_2e_3 , e_1U , UM_1) curves (Fig. 9). Types and temperatures for all nonvariant and monovariant equilibria in the $Ag_2Te-SnTe-Sb_2Te_3$ system are listed in Table 2.

Fig. 9. The liquidus surface projection of the $Ag_2Te-PbTe-Sb_2Te_3$ system. Primary crystallization fields of phases: $1-\alpha$ (α'); $2-\beta$; $3-\gamma$ and $4-Pb_2Sb_6Te_{11}$

4. 4. Isopleth Sections

In the context of a liquidus surface projection (Fig.9, Table 2) we consider three isopleth sections which almost completely cover a studied quasi-ternary system.

The section "AgPb_{0.5}Te"-"AgSbTe₂" (Fig. 10) passes through the region of primary crystallization of the

β-phase and intersects the curve M_1M_2 . Therefore, a minimum point is observed on the liquidus curve of this section. Below liquidus, crystallization proceeds according to a monovariant eutectic reaction $L \leftrightarrow \alpha + \beta$ (Fig. 10, Table 2, curves e_2M_2 , e_3M_2) and, as a result, a two-phase region $\alpha + \beta$ is formed in the subsolidus. The processes occurring in the system below 635 K and associated with the decomposition of the "Ag_{1-x}Sb_{1+x}Te_{2+x}" phase were described above.

The section Ag_2Te -« $PbSb_2Te_4$ » (Fig. 11) passes through the areas of primary crystallization of α' , α and β phases. Below the liquidus in the composition range of 0–25 mol% Ag_2 Te the univariant processes $L + \beta \leftrightarrow$

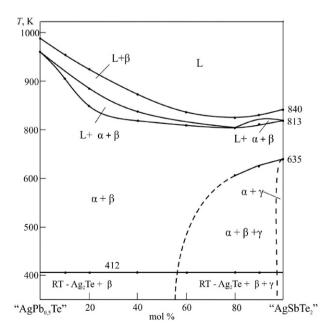


Figure 10. Isopleth section "AgPb_{0.5}Te"-"AgSbTe₂"

Pb₂Sb₆Te₁₁ and L \leftrightarrow β + γ occur and the two-phase region β + γ is formed. In the composition range 25–35 mol% Ag₂Te, crystallization continues according to the L \leftrightarrow β scheme. In the composition range 25–35 mol% Ag₂Te, as a result of the crystallization process L \leftrightarrow α + β a two-phase region RT-Ag₂Te + β is formed in the system due to the α \leftrightarrow RT-Ag₂Te phase transition. Note that due to the formation of α' and α solid solutions, the phase transition temperature α' \leftrightarrow α (~1080 K) increases slightly compared to pure Ag₂Te, which leads to the establishment of the L + α' \leftrightarrow α (p') peritonic equilibrium in the system.

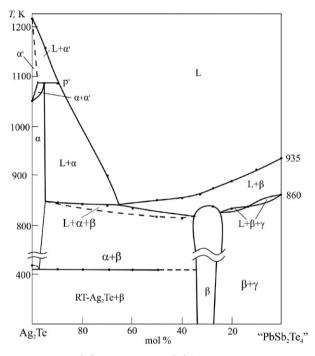


Figure 11. Isopleth section Ag₂Te-«PbSb₂Te₄»

The section "AgPb_{0.5}Te"-Sb₂Te₃ (Fig. 12) passes through the regions of primary crystallization of β and γ phases. Further, the crystallization process continues according to the monovariant reactions L ↔ α + β (0–30 mol% Sb2Te3), L ↔ β + γ (40–90 mol% Sb2Te3) and L + γ ↔ β (90–98 mol% Sb2Te3). In the range of compositions ~30–38 mol% Sb2Te3, crystallization proceeds according to the L ↔ β reaction and ends with the formation of the β-phase.

4. 5. Thermodynamic Properties of the (2 PbTe)_{1-x}(AgSbTe₂)_x Solid Solution Obtained with EMF Measurements

Measurements of the EMF of the chains of type (1) showed that the EMF values for samples $(2PbTe)_x(AgS-bTe_2)_{1-x}$ with compositions x=0.1, 0.15 and 0.2 are the same, and with further increase of the concentration of

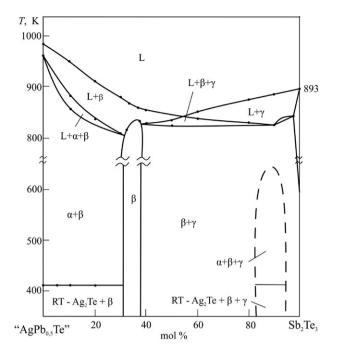
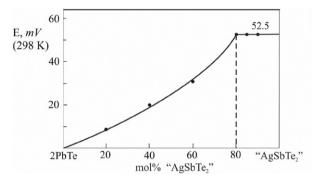



Figure 12. Isopleth section "AgPb_{0.5}Te" - Sb₂Te₃

Figure 13. Concentration dependence of the EMF of chains of type (1) at 298 K for the 2PbTe-"AgSbTe₂" alloys

PbTe the values of EMF continuously decrease (Fig. 13). This indicates that in this system up to 80 mol.% solid solutions are produced based on PbTe.

Analysis of the temperature dependences of the EMF showed that for all samples they are linear (Fig.14). Therefore, the experimental data were processed by the least-squares method in the approximation of the linear temperature dependence of the EMF. For this purpose, the "Microsoft Office Excel 2010" software was used.

The obtained linear equations are presented in Table 3 in the following form recommended in, ⁵²:

$$E = a + bT \pm t \left[(S_E^2 / n) + S_b^2 \cdot (T - \overline{T})^2 \right]^{1/2}$$
 (2)

Here n is the number of pairs of values of E and T; S_E and S_b are the dispersions of individual measurements of EMF and coefficient b, respectively; \bar{T} is average absolute temperature, t is Student's test. With a confidence level of

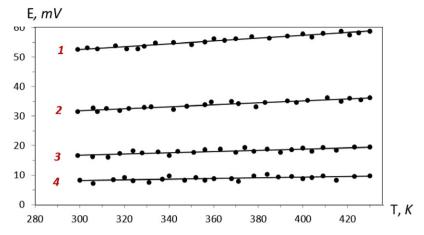


Figure 14. Temperature dependences of the EMF of chains of type (1) for the 2PbTe-"AgSbTe₂" alloys: $\mathbf{1}$ – (2PbTe)_{0.2}(AgSbTe₂)_{0.8}; $\mathbf{2}$ – (2PbTe)_{0.4}(AgSbTe₂)_{0.6}; $\mathbf{3}$ – (2PbTe)_{0.6}(AgSbTe₂)_{0.4}; $\mathbf{4}$ – (2PbTe)_{0.8}(AgSbTe₂)_{0.2}

95% and the number of experimental points $n \ge 20$ the Student's test is $t \ge 2$.

The partial molar functions of PbTe ($\Delta \bar{Z}_{PbTe}$) in alloys at 298.15 K were calculated from the data of Table 3 according to the following relations,⁵⁸:

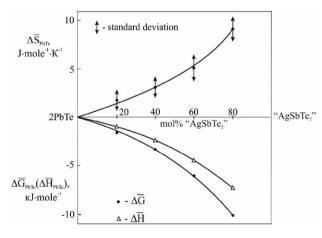
$$\Delta \overline{G}_{PbTe} = -zFE \tag{3}$$

$$\Delta \overline{S}_{PbTe} = zF \left(\frac{\partial E}{\partial T} \right)_{P} = zFb \tag{4}$$

$$\Delta \overline{H}_{PbTe} = -zF \left[E + T \left(\frac{\partial E}{\partial T} \right)_{P} \right] = -zFa \qquad (5)$$

Table 3. Temperature dependences of the EMF of cells of type (1) for the $(2PbTe)_x(AgSbTe_2)_{1-x}$ alloys in the 300, 450 K temperature range

Composition	$E, mV = a + bT \pm t \times S_E(T)$	
(2PbTe) _{0.2} (AgSbTe ₂) _{0.8}	$38.2 + 0.048T \pm 2 \left[\frac{1.5}{24} + 4.8 \cdot 10^{-5} (T - 363.3)^{2} \right]^{\frac{1}{2}}$	
$(2\text{PbTe})_{0.4}(\text{AgSbTe}_2)_{0.6}$	$23.6 + 0.027T \pm 2 \left[\frac{1.8}{24} + 5.4 \cdot 10^{-5} (T - 362.6)^2 \right]^{\frac{1}{2}}$	
$(2\text{PbTe})_{0.6}(\text{AgSbTe}_2)_{0.4}$	$12.2 + 0.016T \pm 2 \left[\frac{1.1}{24} + 3.5 \cdot 10^{-5} (T - 363.6)^2 \right]^{\frac{1}{2}}$	
(2PbTe) _{0.8} (AgSbTe ₂) _{0.2}	$5.8 + 0.009T \pm 2 \left[\frac{1.2}{24} + 3.7 \cdot 10^{-5} (T - 361.7)^2 \right]^{\frac{1}{2}}$	


and listed in Table 4. As can be seen from Fig. 15, all these functions are continuous functions of the composition in the field $x \ge 0.2$.

The partial molar functions of PbTe are the difference between the partial molar values of lead in (2PbTe) $_x(AgSbTe_2)_{1-x}$ solid solutions ($\Delta \bar{Z}_{Pb}$) and in pure PbTe:

$$\Delta \overline{Z}_{PbTe} = \Delta \overline{Z}_{Pb} - \Delta \overline{Z}'_{Pb} \tag{6}$$

где $Z \equiv G$ (или H).

PbTe is the only compound of the Pb-Te system and

Figure 15. Concentration dependences of partial thermodynamic functions of PbTe in the 2PbTe-"AgSbTe₂" solid solutions at 298 K.

Table 4. Relative partial thermodynamic functions of PbTe in the 2PbTe-AgSbTe2 alloys at 298 K

Composition	$-\Delta ar{G}_{PbTe} \ \kappa extbf{ extit{K}} imes extbf{ extit{mole}}^{-1}$	$-\Delta ar{m{H}}_{\! ext{pbTe}} \ \kappa m{J} imes m{mole}^{-1}$	$ \begin{array}{c} -\Delta \bar{\S}_{\text{bTe}} \\ J \times K^{-1} \times mole^{-1} \end{array} $
(2PbTe) _{0.2} (AgSbTe ₂) _{0.8}	10,13±0.20	7,37±0.97	9,26±2,67
$(2PbTe)_{0.4}(AgSbTe_2)_{0.6}$	6,11±0.21	4,56±1,03	5,21±2,84
$(2PbTe)_{0.6}(AgSbTe_2)_{0.4}$	$3,27\pm0.17$	$2,35\pm0.83$	$3,09\pm2,28$
$(2\text{PbTe})_{0.8}(\text{AgSbTe}_2)_{0.2}$	$1,64\pm0.18$	1.12±0.85	1,74±2,34

has an almost constant stoichiometric composition.³⁴ According to, ⁵⁸ in such cases:

$$\Delta \overline{Z}'_{Pb} = \Delta_f Z^0(PbTe) \tag{7}$$

Considering relations (6) and (7), the partial molar functions of lead in solid solutions $(2PbTe)_x(AgSbTe_2)_{1-x}$ can be calculated from the relation:

$$\Delta \overline{Z}_{Pb} = \Delta \overline{Z}_{PbTe} + \Delta_f Z^0 (PbTe) \tag{8}$$

The values obtained by the relation (8) are presented in Table 5.

The calculation of standard thermodynamic functions of the formation of a solid solution of the limiting composition $(2PbTe)_{0.2}(AgSbTe_2)_{0.8}$, which is in equilibrium with Ag_2Te and Sb_2Te_3 , was performed using the following potential-forming reaction:

$$PbTe + Ag_2Te + Sb_2Te_3 = 2.5 (2PbTe)_{0.2} (AgSbTe_2)_{0.8}$$

and entropy can be calculated from the relation:

$$S^{0}[(2PbTe)_{0.2}(AgSbTe_{2})_{0.8}] = 0.4S_{PbTe} + 0.4S^{0}(PbTe) + 0.4S^{0}(Ag_{2}Te) + 0.4S^{0}(Sb_{2}Te_{2})$$
(10).

Standard integral thermodynamic functions of the formation of solid solutions with compositions x = 0.4; 0.6 and 0.8 were calculated by integrating the Gibbs-Duhem equation:

$$\Delta_{f} Z^{0}[(2\text{PbTe})_{x}(\text{AgSbTe}_{2})_{1-x}] = 2(1-x)$$

$$\int_{0.2}^{x} \frac{\Delta \overline{Z}_{PbTe}}{(1-x)^{2}} dx + x\Delta_{f} Z^{0}[(2\text{PbTe})_{0.2}(\text{AgSbTe}_{2})_{0.8}]$$
(11)

Errors were found by the method of accumulation of errors. The first term on the right side of equation (11) was determined by integrating by means of the trapezoid method using the "Microsoft Office Excel 2010" software.

Literature data on corresponding standard integral thermodynamic functions of the Ag₂Te, PbTe and Sb₂Te₃

Table 5. Relative partial thermodynamic functions of lead in the $2PbTe-AgSbTe_2$ alloys at 298~K

Composition	−∆Ģ̄ _b кЈ mole ⁻¹	$-\Delta ar{m{H}}_{\!\!\! b}$ к J mol e^{-1}	$-\Delta \bar{\S}_{b}$ $J \times K^{-1} \ mole^{-1}$
$(2PbTe)_{0.2}(AgSbTe_2)_{0.8}$	77,43±1,70	75,97±1,57	4,90±4,77
$(2PbTe)_{0.4}(AgSbTe_2)_{0.6}$	73,41±1,71	73,16±1,63	$0,84\pm4,94$
$(2PbTe)_{0.6}(AgSbTe_2)_{0.4}$	$70,57\pm1,67$	$70,95\pm1,43$	$-1,74\pm4,38$
$(2\text{PbTe})_{0.8}(\text{AgSbTe}_2)_{0.2}$	68,94±1,68	69,72±1,45	$-2,62\pm4,44$

Table 6. Standard integral thermodynamic functions of the (2PbTe)_{1-x}(AgSbTe₂)_x solid solutions

Phase	$-\Delta_{\rm f} { m G}^{\circ}$ (298 K) κJ mole ⁻¹	$-\Delta_{\rm f}{ m H}^{ m o}~(298~K)$ $\kappa J~mole^{-1}$	S° (298 K), $J \times K^{-1} mole^{-1}$
PbTe, ⁵⁸	67.3±1.5	68.6±0.6	110.0±2.1
Sb ₂ Te ₃ , ⁵⁸	56.9±1.0	56.5±0.4	246.4±2.1
Ag_2Te^{59}	40.2 ± 0.3	35.0±0.5	152.0±2.0
$(2PbTe)_{0,9}(AgSbTe_2)_{0,1}$	128.5±2.8	130.0 ± 1.2	217.6±4.1
$(2PbTe)_{0.8}(AgSbTe_2)_{0.2}$	119.0±2.5	121.9±1.1	218.4±3.9
*,** & = *,=	122.2±2.9*	122.3±2.5*	220.0±3.5*
$(2PbTe)_{0.6}(AgSbTe_2)_{0.4}$	104.3±2.0	104.2±0.9	213.7±3.4
2 0,0 1	106.4±2.3*	105.2±2.0*	216.1±3.5*
$(2PbTe)_{0,4}(AgSbTe_2)_{0,6}$	86.3±1.6	85.4±0.9	208.2±3.5
. , 0,11. 0 2,0,0	89.1±1.8*	86.8±1.5*	211.5±3.8*
$(2PbTe)_{0.2}(AgSbTe_2)_{0.8}$	67.3±1.1	66.0±0.7	202.2±3.0
70,21 0 270,0	69.8±1.2*	67.0±0.9*	204.9±3.7*

^{*} these values are obtained by the EMF method with solid electrolyte,61

According to this reaction, the standard Gibbs free energy of formation and the enthalpy of formation (2PbTe)_{0.2}(AgSbTe₂)_{0.8} can be calculated by the relation:

$$\Delta_{f}Z^{0}[(2\text{PbTe})_{0.2}(\text{AgSbTe}_{2})_{0.8}] = 0.4\Delta \overline{Z}_{PbTe} + + 0.4\Delta_{f}Z^{0}(PbTe) + 0.4\Delta_{f}Z^{0}(Ag_{2}Te) + 0.4\Delta_{f}Z^{0}(Sb_{2}Te_{3})$$
(9),

compounds in addition to own experimental results (Table 4), were used at calculations of equations (9) and (10) (Table 6).

The values of standard enthalpies of formation and entropies for PbTe and Sb₂Te₃ were taken from Ref.⁵⁸ For the Ag₂Te compound, the data of,⁵⁹ obtained by the EMF

method were used. Using the EMF method with solid Ag ⁺ conducting electrolyte,⁶⁰ thermodynamic data for investigated solid solutions previously were obtained in,⁶¹ and also are listed in Table 6. As can be seen, the results obtained by two modifications of the EMF method, agree within the margin of inaccuracies.

5. Conclusion

A complete description of the phase equilibria in the quasi-ternary $Ag_2Te-PbTe-Sb_2Te_3$ system, including 750 and 300 K isothermal sections and five isopleth sections of the phase diagram, as well as liquidus surface projection, were obtained. This system characterized by the formation of a wide continuous high-temperature solid solution (β -phase) with a cubic structure between PbTe and " Ag_{1-} $_xSb_{1-x}Te_{2-x}$ " intermediate phase. Below 635 K, a solid-state decomposition of the β -phase occurs and subsequently the formation of the α - and γ -phases based correspondingly on IT-Ag_Te and Sb_Te_3 were observed.

The formation of a wide (up to 80 mol%) region of solid solutions based on PbTe along the 2PbTe-"AgSbTe₂" section was confirmed by measuring EMF of the concentration chains concerning to the PbTe electrode. A new mutually agreed complex of data on standard partial thermodynamic functions of PbTe and lead, as well as integral thermodynamic functions of β -solid solutions along the above section was obtained. This data is in agreement with the results obtained earlier by the EMF method with solid Ag $^+$ conductive electrolyte. 61

The presented results can be used for the design of new LAST alloys, which are of great interest as thermoelectric materials.

6. References

- Applications of Chalcogenides: S, Se, and Te / Ed. Ahluwalia G. K, 2016, Cham.: Springer, 461p.
- 2. A. V. Kolobov, J. Tominaga, Chalcogenides, 2012, Springer.
- 3. M. -R. Gao, Y. -F. Xu, J. Jiang, S. -H. Yu, *Chemical Society Reviews*, **2013**, 42(7), 2986. **DOI:**10.1007/978-3-642-28705-3
- I. Riess, Solid State Ion., 2003, 157, 1–17.
 DOI:10.1039/c2cs35310e
- H. Wada, M. Ishii, M. Onoda, M. Tansho, A. Sato, Solid State Ionics, 1996, 86–88, 159–163.
 DOI:10.1016/S0167-2738(02)00182-0
- C. Gayner, K. K. Kar, *Progress in Materials Science*, 2016, 83, 330–382. DOI:10.1016/j.pmatsci. 2016.07.002
- A. V. Shevelkov, Russ. Chem. Rev., 2008, 77 (1), 1–19.
 DOI:10.1070/RC2008v077n01ABEH003746
- 8. F. Tesfaye, M. Moroz, Journal of Electronic Research and Application, 2018, 2 (2), 28–41. DOI:10.26689/jera.v2i2.337
- G. Tan, F. Shi, H. Sun, L. -D. Zhao, C. Uher, V. P. Dravid, M. G. Kanatzidis, J. Mater. Chem. A, 2014, 2, 20849–20854.

- **DOI:**10.1039/C4TA05530F
- A. Dahshan, H. H. Hegazy, K. A. Aly, P. Sharma, *Physica B: Condensed Matter*, **2017**, 526, 117–121.
 DOI:10.1016/j. physb. 2017.09.097
- D. Niesner, S. Otto, V. Hermann, Th. Fauster, T. V. Menshchikova, S. V. Eremeev, Z. S. Aliev, I. R. Amiraslanov, P. M. Echenique, M. B. Babanly, E. V. Chulkov, *Physical Review B*, 2014, 89, 081404–081404–5.
 - DOI:10.1103/PhysRevB.89.081404
- 12. M. Papagno, S. Eremeev, J. Fujii, Z. Aliev, M. B. Babanly, S. Mahatha, I. Vobornik, N. Mam, D. Pacile, E. Chulkov, *ACS Nano*, **2016**, *10* (3), 3518–3524.
 - DOI:10.1021/acsnano.5b07750
- T. Okuda, T. Maegawa, M. Ye, K. Shirai, T. Warashina, K. Miyamoto, K. Kuroda, M. Arita, Z. S. Aliev, I. R. Amiraslanov, M. B. Babanly, E. V. Chulkov, S. V. Eremeev, A. Kimura, H. Namatame, M. Taniguchi, *Phys. Rev. Lett. (American Phys. Soc.)*, 2013, 111, 205803-5.
 - DOI:10.1103/PhysRevLett.111.206803
- 14. D. Pacile, S. V. Eremeev, M. Caputo, M. Pisarra, O. De Luca, I. Grimaldi, J. Fujii, Z. S. Aliev, M. B. Babanly, I. Vobornik, R. G. Agostino, A. Goldoni, E. V. Chulkov, M. Papagno. *Physica status solidi (RRL) Rapid Research Letters*, 2018, 12 (12), 1800341–8. DOI:10.1002/pssr.201800341
- I. Horichok, R. Ahiska, D. Freik, L. Nykyruy, S. Mudry, O. Matkivskiy, T. Semko, *Journal of Electronic Materials*, 2016, 45(3), 1576–1583. DOI:10.1007/s11664-015-4122-9
- J. Liu, L. M. Peng, Applied Mechanics and Materials, 2014, 456, 490–493.
 - DOI:10.4028/www.scientific.net/AMM. 456. 490
- Y. Chen, B. He, T. J. Zhu, X. B. Zhao, Journal of Physics D: Applied Physics, 2012, 45(11), 115302.
 DOI:10.1088/0022-3727/45/11/115302
- B. Kusz, T. Miruszewski, B. Bochentyn, M. Łapiński,
 J. Karczewski, *Journal of Electronic Materials*, 2016, 45(2), 1085–1093. DOI:10.1007/s11664-015-4251-1
- A. Kumar, P. A. Vermeulen, B. J. Kooi, J. Rao, L. van Eijck, S. Schwarzmüller, O. Oeckler, G. R. Blake. *Inorganic Chemistry*, 2017, 56(24), 15091–15100.
 DOI:10.1021/acs.inorgchem.7b02433
- M. B. Babanly, E. V. Chulkov, Z. S. Aliev, A. V. Shevel'kov, I.
 R. Amiraslanov, *Russ. J. Inorg. Chem.*, 2017, 62(13), 1703–1729. DOI:10.1134/S0036023617130034
- 21. P. Villars, A. Prince, H. Okamoto, Handbook of Ternary Alloy Phase Diagrams (10 volume set). American Technical Publishers, **1995**, 15000 p.
- G. Gottstein Physical Foundations of Material Science, Springer, 2004, 502 p. DOI:10.1007/978-3-662-09291-0
- F. M. Mammadov, I. R. Amiraslanov, Y. A. Aliyeva, S. S. Ragimov, L. F. Mashadiyeva, M. B. Babanly, *Acta Chim. Slov.*, 2019, 66, 1–7. DOI:10.17344/acsi.2019.4988
- S. Z. Imamaliyeva, G. I. Alakbarzade, M. A. Mahmudova, I. R. Amiraslanov, M. B. Babanly, *Acta Chim. Slov.*, **2018**, 65, 365–371. **DOI**:10.17344/acsi.2017.4053
- D. M. Babanly, I. I. Aliev, K. N. Babanly, Yu. A. Yusibov, *Russ. J. Inorg. Chem.*, 2011, 56 (9), 1472–1477.

DOI:10.1134/S0036023611090038

- L. F. Mashadiyeva, J. O. Kevser, I. I. Aliev, Y. A. Yusibov, D. B. Taghiyev, Z. S. Aliev, M. B. Babanlı, *J. Alloys . Compd.*, 2017, 724, 641–648. DOI:10.1016/j.jallcom.2017.06.338
- L. F. Mashadiyeva, J. O. Kevser, I. I. Aliev, Y. A. Yusibov, D. B. Taghiyev, Z. S. Aliev, M. B. Babanlı, *Phase equilibria and diffusion*, 2017, 38 (5), 603–614.
 DOI:10.1007/s11669-017-0583-2
- L. F. Mashadieva, Yu. A. Yusibov, Dzh. Kevser, M. B. Babanly, Russ. J. Phys. Chem. A, 2017, 91 (9), 1642–1646.
 DOI:10.1134/S0036024417090187
- 29. T. B. Massalski (Ed.), Binary Alloy Phase Diagrams, second ed., ASM International, Materials Park, Ohio, **1990**, p. 3589.
- 30. A. Lee, A., J. L. de Boer, *Acta Cryst. C*, **1993**, *49*, 1444–1446. **DOI:**10.1107/S0108270193003294
- 31. J. Schneider, H. Schulz, *Z. Kristallogr.*, **1993**, *203*, 1–15. **DOI:**10.1524/zkri. 1993. 203. Part-1. 1
- 32. A. J. Frueh, Am. Mineral., 1961, 46, p. 654-660.
- P. B. Pereira, I. Sergueev, S. Gorsse, J. Dadda, E. Müller, R. P. Hermann, *Physica Status Solidi (b)*, **2012**, 250(7), 1300–1307.
 DOI:10.1002/pssb.201248412
- 34. T. L. Anderson, H. B. Krause, *Acta Crystallogr. B*, **1974**, *30*, 1307–1310. **DOI:**10.1107/S0567740874004729
- 35. F. Wald, J. Less Common. Met., **1967**, 13 (6), 579–590. **DOI:**10.1016/0022-5088(67)90103-8
- 36. R. Blachnik, B. Gather, *J. Less_Common. Met.*, **1978**, *60* (1), 25–32. **DOI**:10.1016/0022-5088(78)90086-3
- K. Bergum, T. Ikeda, G. Jeffrey-Snyder, *Journal of Solid State Chemistry*, 2011, 184(9), p. 2543–2552.
 DOI:10.1016/j.jssc.2011.07.012
- 38. G. Petzow, G. Effenberg: "Ternary Alloys", Wiley-VCH Verlag, Weinheim, 1988, 2, p. 554
- R. M. Marin-Ayral, B. Legendre, G. Brun, B. Liautard, J. C. Tedenac, *Thermochimica Acta*, 1988, 131, 37–45.
 DOI:10.1016/0040-6031(88)80055-8
- 40. S. Geller, J. H. Wernick, *Acta Crystallogr.*, **1959**, *12*, 46. **DOI:**10.1107/S0365110X59000135
- 41. H. J. Wu, S. W. Chen, *Acta Mater.*, **2011**, *59*, 6463–6472. **DOI:**10.1016/j. actamat. 2011.07.010
- 42. P. M. Wyzga, K. T. Wojciechowski, *J. Electron. Mater.*, **2016**, 45, 1548–1554. **DOI:**10.1007/s11664-015-4102-0
- 43. K. T. Wojciechowski, M. Schmidt, *Phys. Rev. B*, **2009**, *79*, 184202–7. **DOI:**10.1103/PhysRevB.79.184202
- 44. B. Du, Y. Yan, X. Tang, *J. Electron. Mater.*, **2015**, *44*, 2118–2123. **DOI**:10.1007/s11664-015-3682-z
- 45. M. Aspiala, P. Taskinen, *J. Chem. Thermodyn.* **2016**, 93, 261–266. **DOI**:10.1016/j.jct.2015.08.025
- P. Wyżga, I. Veremchuk, U. Burkhardt, P. Simon, Y. Grin, K. Wojciechowski, *Applied Sciences*, 2018, 8(1), 52–70.
 DOI:10.3390/app8010052

- H. Matsushita, E. Hagiwara, A. Katsui, *Journal of Materials Science*, 2004, 39(20), 6299–6301.
 DOI:10.1023/B:JMSC.0000043599.86325.ba
- N. K. Abrikosov, E. L. Elagina, M. A. Popova, *Inorg. Mater.*, 1965, 1, 1944–1946.
- L. E. Shelimova, O. G. Karpinskii, T. E. Svechnikova, E. S. Avilov, M. A. Kretova, V. S. Zemskov, *Inorganic Materials*, 2004, 40(12), 1264–1270. DOI:10.1007/s10789-005-0007-2
- T. Ikeda, S. M. Haile, V. A. Ravi, H. Azizgolshani, F. Gascoin,
 G. J. Snyder, *Acta Mater.*, 2007, 55, 1227–1239.
 DOI:10.1016/j. actamat. 2006. 09. 036
- T. Ikeda, J. Synder, MRS Proceedings, 2010, 1267–5.
 DOI:10.1557/PROC-1267-DD06-07
- A. G. Morachevskiy, G. F. Voronin, V. A. Geyderikh, I. B. Kutsenok, Electrochemical research methods in the thermodynamics of metal systems, "Akademkniga", 2003, 334 p. (*In Russian*)
- S. Z. Imamaliyeva, S. S. Musayeva, D. M. Babanly, Y. I. Jafarov, D. B. Tagiyev, M. B. Babanly, *Thermochimica Acta*, 2019, 679, 178319–7. DOI:10.1016/j.tca.2019.178319
- D. M. Babanly, L. F. Mashadieva, M. B. Babanly, *Inorganic Materials*, 2017, 53(5), 519–524.
 DOI:10.1134/S002016851705003X
- 55. M. Rozman, U. Bren, M. Lukšič, R. F. Godec, G. Bokias, A. N. Kalarakis, E. Stathatos, *Electrochimica Acta*, **2018**, 283, 1105–1114. **DOI:**10.1016/j.electacta. 2018.07.052
- S. Z. Imamalieva, D. M. Babanly, T. M. Gasanly, D. B. Tagiev,
 M. B. Babanly. Russian Journal of Physical Chemistry A,
 2018, 92(11), 2111–2117. DOI:10.1134/S0036024418110158
- 57. R. D. Shannon, Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides, Acta Crystallographica, 1976, A32, p. 751–767 (Digital version: Database of Ionic Radii; DOI:10.1107/S0567739476001551
- 58. Data base of thermal constants of substances (Digital version, In: Yorish V. S., Yungman V. S. (Ed.), **2006**, http://www.chem.msu.ru/cgi-bin/tkv).
- M. V. Voronin, E. G. Osadchii, E. A. Brichkina, *Physics and Chemistry of Minerals*, 2017, 44(9), 639–653.
 DOI:10.1007/s00269-017-0889-y
- 60. L. F. Mashadieva, Sh. G. Mansimova, Yu. A. Yusibov, M. B. Babanly, *Russian Journal of Electrochemistry*, **2018**, *54* (1), 106–111. **DOI**:10.1134/S102319351711009X
- 61. M. B. Babanly, Y. A. Yusibov, N. B. Babanly, The EMF method with solid-state electrolyte in the thermodynamic investigation of ternary Copper and Silver Chalcogenides. Electromotive force and measurement in several systems. / Ed. Kara S. InTech. Org. 2011. P. 57. DOI:10.5772/28934

Povzetek

Raziskovali smo fazna ravnotežja v sistemu Ag_2 Te-PbTe-Sb $_2$ Te $_3$ z metodami diferencialne termične analize, praškovne rentgenske difrakcije in meritvami elektromotorne sile (EMF). Konstruirali smo površinsko projekcijo sistema, izotermalne odseke pri 750 K in 300 K, ter pet vertikalnih odsekov faznega diagram. Določili smo primarna kristalizacijska področja in območja homogenosti faz. Identificirali smo vrsto in temperature različnih nevariantnih in monovariantnih ravnotežij. Značilnost preučevanega sistema je nastanek širokega zveznega pasu visokotemperaturne kubične trdne raztopine (β -faza) med PbTe in $Ag_{1-x}Sb_{1+x}Te_{2+x}$. Na osnovi rezultatov meritev EMF smo izračunali parcialne molarne termodinamske funkcije svinčevega telurida v zlitinah in standardne integralne termodinamske funkcije β -trdnih raztopin vzdolž odseka 2PbTe-«AgSbTe $_2$ «.

Except when otherwise noted, articles in this journal are published under the terms and conditions of the Creative Commons Attribution 4.0 International License