Scientific paper

# New Approaches for the Synthesis and Ctytotoxicity of Thiazoles Derived from Cyclohexanone

### Nermeen S. Abbas<sup>1,\*</sup> and Ebtsam A. Ahmed<sup>1</sup>

<sup>1</sup> Department of Chemistry, Faculty of Science, Helwan University, Cairo, A. R. Egypt

\* Corresponding author: E-mail: nermeen\_gomaa@yahoo.com Tel: 01017942034

Received: 26-04-2014

#### **Abstract**

A new class of substituted thiazole derivatives **6a–c** which showed promising anticancer activity was synthesized via the reaction of cyclohexanone with phenylisothiocyanate with a good yield. The latter compounds reacted with benzendiazonium chloride to form corresponding 5-phenylazothiazole derivatives **8a** and **8b**, respectively. Moreover, the reaction of thiazole derivatives **6a–c** with each of elemental sulfur and either of malononitrile or ethyl cyanoacetate gave the thiophene derivatives **10a–e**, respectively. Compounds **10a–e** were subjected to a series of heterocyclization reactions to give heterocyclic derivatives. Their cytotoxicity against four human tumor cells lines was measured and showed promising anticancer activity.

Keywords: Cyclohexanone; thiophene; thiazole; phenylazo

#### 1. Introduction

Thiazole is a core structural motif present in a variety of natural products, such as vitamin B1 (thiamine) and penicillin. Thiazole derivatives also exhibit a broad spectrum of medicinal and biological properties, such as antibacterial, antifungal, anti-inflammatory, antiviral, antimalarial4 and anti-HIV activities.5 Thiazole analogs have also been reported as ligands at estrogen receptors, 6 neuropeptide Y5,7 adenosine receptors,8 and act as inhibitors of human platelet aggregation factor, <sup>9</sup> urokinase <sup>10</sup> and poly (ADP-Ribose) polymerase-1. 11 Selena-zoles have been reported to possess antibacterial, 12 and superoxide anion scavenging activity, 13 and exhibit cytotoxicity and DNA fragmentation effects in human HT-1080 fibrosarcoma cells.<sup>14</sup> In this work, we present the Hantsch reaction of cyclohexanone that involves its reaction with phenyl isothiocyanate in basic solution followed by heterocyclization reactions.

#### 2. Results and Discussion

#### 2. 1. Chemistry

The reaction of cyclohexanone 1 with phenyl isothiocyanate in dimethylformamide solution containing

potassium hydroxide gave the intermediate potassium sulphide salt 3. The latter intermediate interact with either α-chloroacetone (4a), ethyl 2-chloro acetate (4b) or 2-bromo-1-phenylethanone (4c) to give the intermediate thioether derivatives 5a-c, respectively which was cyclized spontaneously to the thiazole derivatives **6a-c**. The structures of the latter products were assigned on the basis of analytical and spectral data. Thus, the <sup>1</sup>H NMR of **6a** showed the presence of a multiplet at  $\delta$ 1.81–1.89 ppm corresponding to the presence of three CH<sub>2</sub> groups, a triplet at  $\delta$  2.45–2.49 indicating the presence of CH<sub>2</sub> group, a doublet at δ 2.51 ppm corresponding to the presence of methyl group, a singlet at  $\delta$  6.96 ppm indicating the presence of thiazole H-3 and a multiplet at  $\delta$  7.09–7.51 ppm corresponding to the presence of the of benzene ring's protons. The high yields of compounds 6a,b encouraged us to make further work. Thus, either of compound 6a or 6b reacted with benzenediazonium chloride to form the corresponding 5phenylazothiazole derivatives 8a and 8b, respectively (Scheme 1).

Compounds **6a–c** showed interesting activity towards Gewald's thiophene reaction. Thus, the reaction of either **6a**, **6b** or **6c** with each of elemental sulfur and either of malononitrile (**9a**) or ethyl cyanoacetate (**9b**) gave the thiophene derivatives **10a–e**, respectively. The

Scheme 1. Synthesis of the thiazole derivatives 6a-c and 5-phenylazothiazole derivatives 8a,b.

structures of the latter products were established on the basis of their respective analytical and spectral data. Thus, the  $^{1}$ H NMR spectrum of **10a**, as an example, showed beside the expected signals, singlet at  $\delta$  4.16 ppm (D<sub>2</sub>O exchangeable) corresponding to the presence of the NH<sub>2</sub> and a singlet at  $\delta$  6.87 ppm for the presence of of the thiazole H-3. Compounds **10a,c** reacted with benzenediazonium chloride to give the phenylazo derivatives **11a** and **11b**, respectively. On the other hand, the 2-aminothieno group present in **10a** and **10c** reacted with

ethyl cyanoacetate to give the amido derivatives **12a** and **12b**, respectively. The analytical and spectral data of the latter products were the tools of their structural elucidation (Scheme 2).

Moreover, the reaction of compounds 10a,c with benzaldehyde gave the Schiff's bases 14a,b, respectively.

Finally we moved towards the uses of the cyclohexanone (1) to form tetrahydrobenzothiazole derivatives. Thus, the reaction of 1 with each of elemental sulfur and

Scheme 2. Synthesis of the thiazole derivatives 10a-e and the reaction of 10a,c with benzendiazonium chloride and ethyl cyanoacetate to give phenylazo derivatives 11a,b and amido derivatives 12a,b.

phenylisothiocyanate gave the 4,5,6,7-tetrahydro-3-phenylbenzo[*d*]thiazole-2(3H)-thione (**15**). The latter reacted with either hydrazine hydrate (**16a**) or phenylhydrazine (**16b**) to give the hydrazone derivatives **17a** and **17b**, respectively (Scheme 3).

## 2. 2. Antitumor and Normal Cell Line Activity Tests

#### 2. 2. 1. Chemicals

Fetal bovine serum (FBS) and L-glutamine, were purchased from Gibco Invitrogen Co. (Scotland, UK).

Scheme 3. Synthesis of the Schiff's bases 14a,b, the 4,5,6,7-tetrahydro-3-phenylbenzo[d]thiazole-2(3H)-thione 15 and the hydrazone derivatives 17a,b.

RPMI-1640 medium was purchased from Cambrex (New Jersey, USA). Dimethyl sulfoxide (DMSO), doxorubicin, penicillin, streptomycin and sulforhodamine B (SRB) were purchased from Sigma Chemical Co. (Saint Louis, USA).

#### 2. 2. 2. 1. Cell cultures

Was obtained from the European Collection of cell Cultures (ECACC, Salisbury, UK) and human gastric cancer (NUGC), human liver cancer (HA22T and HEPG2), human breast cancer (MCF) and normal fibroblast cells (WI38) were kindly provided by the National Cancer Institute (NCI, Cairo, Egypt). They grow as monolayer and routinely maintained in RPMI-1640 medium supplemented with 5% heat inactivated FBS, 2 mM glutamine and antibiotics (penicillin 100 U/mL, streptomycin 100 lg/mL), at 37 °C in a humidified atmosphere containing 5%  $\rm CO_2$ . Exponentially growing cells were obtained by plating  $1.5 \times 10^5$  cells/mL for the seven human cancer cell li-

nes including cells derived from  $0.75 \times 10^4$  cells/mL followed by 24 h of incubation. The effect of the vehicle solvent (DMSO) on the growth of these cell lines was evaluated in all the experiments by exposing untreated control cells to the maximum concentration (0.5%) of DMSO used in each assay.

The heterocyclic compounds, prepared in this study, were evaluated according to standard protocols for their in vitro cytotoxicity against four human cancer cell lines including cells derived from human gastric cancer (NUGC), human liver cancer (HA22T and HEPG2), human breast cancer (MCF), and a normal fibroblast cells (WI38). All of IC $_{50}$  values were listed in Table 1. Some heterocyclic compounds was observed with significant cytotoxicity against most of the cancer cell lines tested (IC $_{50}$  = 10–1000 nM). Normal fibroblasts cells (WI38) were affected to a much lesser extent (IC50>10,000 nM). The reference compound used is the CHS-828 which is a pyridyl cyanoguanidine anti-tumor agent.

**Table 1.** Cytotoxicity of novel pregnenlone derivatives against a variety of cancer cell lines  $[IC_{50}^{\ \ b}(nM)]$ 

| Compd   | Cytotoxocity (IC <sub>50</sub> in nM) |       |       |      |      |
|---------|---------------------------------------|-------|-------|------|------|
| -       | NUGC                                  | HA22T | HEPG2 | MCF  | WI38 |
| 6a      | 2276                                  | 3276  | 2711  | 1790 | Na   |
| 6b      | 512                                   | 1120  | 420   | 338  | Na   |
| 6c      | 3342                                  | 3310  | 1328  | 3243 | Na   |
| 8a      | 2228                                  | 2100  | 1140  | 3860 | Na   |
| 8b      | 2120                                  | 1140  | 2250  | 325  | Na   |
| 10a     | 1655                                  | 2167  | 2799  | 3270 | Na   |
| 10b     | 2101                                  | 2258  | 2166  | 2330 | Na   |
| 10c     | 38                                    | 35    | 2577  | 255  | Na   |
| 10d     | 1255                                  | 230   | 2177  | 288  | Na   |
| 10e     | 2544                                  | 2176  | 2179  | 380  | Na   |
| 11a     | 1222                                  | 2063  | 2528  | 1140 | Na   |
| 11b     | 38                                    | 120   | 337   | 3148 | Na   |
| 12a     | 122                                   | 59    | 2326  | 1264 | Na   |
| 12b     | 84                                    | 233   | 250   | 338  | Na   |
| 14a     | 2165                                  | 3266  | 3330  | 2281 | Na   |
| 14b     | 3270                                  | 760   | 1285  | 180  | Na   |
| 15      | 1355                                  | 262   | 1186  | 3230 | Na   |
| 17a     | 1135                                  | 1278  | 2359  | 2555 | Na   |
| 17b     | 22                                    | 3063  | 84    | 2711 | Na   |
| CHS 828 | 25                                    | 2067  | 1245  | 18   | Na   |

<sup>a</sup>NUGC, gastric cancer, HA22T, liver cancer, HEPG2, liver cancer; MCF, breast cancer; WI38, normal fibroblast cells.

#### 2. 2. Structure Activity Relationship

From table 1 it is clear that the thiazoles moiety was found to be crucial for the cytotoxic effect of cyclic compounds 6-17. Compounds 6b,10c,11b,12a,12b and17b exhibited optimal cytotoxic effect against cancer cell lines, with IC<sub>50</sub>'s in the nM range. Comparing the cytotoxicity of compounds 6a and 6b, it is obvious that the cytotoxicity of **6b** is higher than that of **6a**. Thus, substituting the methyl group by the hydroxyl group increase the cytotoxicity. Morever, 5-phenyl azothiazole derivatives 8a and 8b remarkable that compound 8b showed high cytotoxicity against MCF cell line with IC<sub>50</sub> value 325 nM. Similarly, Comparing the cytotoxicity of thiophene compounds 10a-e, one can say that compound 10c with R=OH and X=CN showed the highest cytotoxicity among the five thiophene compounds against NUGC, HA22T, MCF cell lines with IC50 values 38, 35 and 255 nM respectively. This is attributed to the presence of the hydroxyl group and the introduction of the cyano group. Similarly comparing of 11a and 11b, it is obvious that the presence of OH group in 11b is responsible for its reactivity against NUGC, HA22T and HEPG2 over 11a.

Considering the amido derivatives **12a** and **12b**, it is clear that compound **12b** bearing the OH group show much cytotoxicity over **12a**. Considering the 4,5,6,7-te-trahydrobenzo[b]thiophene-3-carbonitrile **14a,b** against MCF cell line is higher than that of **14a**. Such high cytotoxicity of **14b** is attributed to the presence of OH group in

the thiazole moiety together with 3-cyano group of the thiophene moiety.

It is obvious that the presence of phenyl group associated with nitrogen atom in tetrahydrobenzo[d]thiazol-2(3H)-thione moiety **15** is responsible for the high cytotoxicity against HA22T with IC<sub>50</sub> value 262 nM.

Similarly, considering the 2,3,4,5,6,7-hexahydrobenzo[d]thiazole derivatives **17a–b** where compound **17b** show high cytotoxicity against NUGC and HEPG2 cell lines with  $IC_{50}$  values 22 and 84 nM, respectively.

#### 3. Experimental

#### 3. 1. General

All melting points are uncorrected. IR spectra were recorded as KBr discs on a Pye Unicam SP-1000 spectrophotometer.  $^1H$  and  $^{13}C$  NMR spectra were measured on a Varian EM-390-200 MHZ in  $CD_3SOCD_3$  as the solvent using TMS as the internal standard and chemical shifts are expressed as  $\delta.$  Analytical data were obtained from the micro analytical Data Unit at Cairo University, Giza, Egypt. Physical and spectral data of compound 15 was reported in the litrature.  $^{15-21}$ 

### 3. 1. 1. General Procedure for the Synthesis of Thiazole Derivatives 6a-c

To a solution of cyclohexanone (9.8 g, 0.1 mol) in DMF (40 ml) containing potassium hydroxide (5.6 g, 0.1 mol), phenylisothiocyanate (13 mL, 0.1 mol) was added. The reaction mixture was stirring overnight then either chloroacetone (9.2 mL, 0.1 mol), ethyl chloroacetate (12.3 mL, 0.1 mol) or phenacyl bromide (19.9 g, 0.1 mol) was added. The reaction mixture was stirring overnight then poured onto ice/water containing a few drops of HCl. The formed solid product was collected by filtration and crystallized from the proper solvent.

### 6-(4-Methyl-3-phenylthiazol-2(3*H*)-ylidene)cyclohex-1-enol (6a)

Reddish brown crystals from ethanol, yield 85% (23 g), m.p. 137–140 °C. *Anal.* Calculated for  $C_{16}H_{17}NOS$  (271.38): C, 70.81; H, 6.31; N, 5.16; S, 11.82. Found: C, 71.02; H, 6.52; N, 5.32; S, 11.90. MS: m/e 271 (M<sup>+</sup>, 11%), IR, v: 3131 (CH, aromatic), 2960, 2855 (CH<sub>3</sub>, CH<sub>2</sub>), 1720 (C=O), 1656 (C=C),  $^{1}$ H-NMR,  $\delta$ : 1.81–1.89 (m, 6H, 3CH<sub>2</sub>), 2.45–2.49 (t, 2H, CH<sub>2</sub>), 2.51 (d, 3H, CH<sub>3</sub>), 6.96 (s, 1H, , thiazole H-3), 7.09–7.51(m, 5H,  $C_{6}H_{5}$ ),  $^{13}$ C-NMR,  $\delta$ : 19.1 (CH<sub>3</sub>), 21.3, 23.4, 26.4, 38.9 (4CH<sub>2</sub>), 105.9 (thiazole C-3), 115.7 (C=C), 120.5, 121.0, 129.4, 137.9 (Ar), 139.8 (C-CH<sub>3</sub>), 145.2 (thiazole C-5), 183.5 (C=O).

### 2-(2-Hydroxycyclohex-2-en-1-ylidene)-3-phenylthia-zolidin-4-one (6b)

Yellow crystals from ethanol, yield 83% (22.6 g), m.p.

164–167 °C. *Anal*. Calculated for  $C_{15}H_{15}NO_2S$  (273.35): C, 65.91; H, 5.53; N, 5.12; S, 11.73. Found: C, 65.88; H, 5.56; N, 5.18; S, 11.78. MS: *m/e* 273 (M<sup>+</sup>, 66.6%), IR, v: 3452-3328 (OH), 3044 (CH, aromatic), 2954 (CH<sub>2</sub>), 1635 (C=C), <sup>1</sup>H-NMR, δ: 1.83–1.89 (m, 6H, 3CH<sub>2</sub>), 2.45–2.49 (t, 2H, CH<sub>2</sub>), 6.96 (t, 1H, thiazole H-3), 7.12–7.50 (m, 5H, C<sub>6</sub>H<sub>5</sub>), 9.76 (s, 1H, OH), <sup>13</sup>C-NMR, δ: 22.7, 23.8, 24.9, 39.7 (4CH<sub>2</sub>), 71.2 (thiazole C-3), 116.1 (C=C), 120.5, 123.1, 129.5, 140.9 (Ar), 149.9 (thiazole C-5), 165.2 (C-OH), 183.7 (C=O).

### **6-(3,4-Diphenylthiazol-2(3***H***)-ylidene)cyclohex-1-enol (6c)**

Yellow crystals from ethanol, yield 70% (23.3 g), m.p. 174–176 °C. Anal. Calculated for  $C_{21}H_{19}NOS$  (333.45): C, 75.64; H, 5.74; N, 4.20; S, 9.62. Found: C, 75.70; H, 5.71; N, 4.22; S, 9.65. MS: *m/e* 333 (M<sup>+</sup>, 24%), IR, v: 3056 (CH, aromatic), 2856 (CH<sub>2</sub>), 1725 (C=O), 1648 (C=C), <sup>1</sup>H-NMR, δ: 1.81–1.90 (m, 6H, 3CH<sub>2</sub>), 2.45-2.48 (t, 2H, CH<sub>2</sub>), 6.89 (s, 1H, thiazole H-3), 7.00–7.29 (m, 10H, 2C<sub>6</sub>H<sub>5</sub>), <sup>13</sup>C-NMR, δ: 21.8, 22.5, 25.4, 40.1 (4CH<sub>2</sub>), 108.9 (thiazole C-3), 115.9 (C=C), 121.9, 123.2, 127.8, 129.4, 129.6, 130.8, 133.0, 138.5 (Ar), 141.2 (thiazole C-2), 148.3 (thiazole C-5), 184.5 (C=O).

### 3. 1. 2. General Procedure for the Synthesis of 5-phenylazothiazole Derivatives 8a,b

To a cold solution of either **6a** (2.71 g, 0.01 mol) or **6b** (2.73 g, 0.01 mol) in ethanol (40 mL) containing sodium acetate (2.5 g) a cold solution of the diazonium salt [prepared by the addition of sodium nitrite solution (0.70 g, 0.01 mol) to a cold solution of aniline (0.94 g, 0.01 mol) in concentrated hydrochloric acid (12 mL) with continuous stirring] was added while stirring. The formed solid product, upon stirring at room temperature was collected by filtration and crystallized using a suitable solvent.

### 6-(4-Methyl-3-phenyl-5-(phenyldiazenyl)thiazol-2(3*H*) -ylidene)cyclohex-1-enol (8a)

Yellow crystals from ethanol, yield 80% (30 g), m.p. 123–125 °C. *Anal.* Calculated for  $C_{22}H_{21}N_3OS$  (375.49): C, 70.37; H, 5.64; N, 11.19; S, 8.54. Found: C, 70.35; H, 5.67; N, 11.16; S, 8.55. MS: *m/e* 375 (M<sup>+</sup>, 61.9%), IR, v: 3032 (CH, aromatic), 2930, 2815 (CH<sub>3</sub>, CH<sub>2</sub>), 1712 (C=O), 1636 (C=C), 1497 (N=N),  $^1H$ -NMR,  $\delta$ : 1.80–1.87 (m, 6H, 3CH<sub>2</sub>), 2.45–2.48 (t, 2H, CH<sub>2</sub>), 2.51 (s, 3H, CH<sub>3</sub>), 6.99–7.88 (m, 10H, 2C<sub>6</sub>H<sub>5</sub>),  $^{13}$ C-NMR,  $\delta$ : 14.3 (CH<sub>3</sub>), 23.2, 25.9, 26.3, 38.6 (4CH<sub>2</sub>), 105.1 (thiazole C-3), 118.0 (C=C), 120.5, 121.0, 123.1, 126.8, 128.2, 129.4, 139.8, 140.1 (Ar), 142.1 (C-CH<sub>3</sub>), 148.2 (thiazole C-5), 183.5 (C=O).

### 2-(2-Hydroxycyclohex-2-en-1-ylidene)-3-phenyl-5-(2-phenylhydrazono)-thiazolidin-4-one (8b)

Brown crystals from ethanol, yield 80% (32.7 g), m.p.

123–125 °C. *Anal.* Calculated for  $C_{21}H_{19}N_3O_2S$  (377.46): C, 66.82; H, 5.07; N, 11.13; S, 8.49. Found: C, 66.80; H, 5.10; N, 11.16; S, 8.52. MS: m/e 377 (M<sup>+</sup>, 24%), IR, v: 3431–3295 (OH), 3046 (CH, aromatic), 2861 (CH<sub>2</sub>), 1724 (C=O), 1636 (C=C), 1490 (N=N), <sup>1</sup>H-NMR,  $\delta$ : 1.81–1.89 (m, 6H, 3CH<sub>2</sub>), 2.44–2.48 (t, 2H, CH<sub>2</sub>), 7.09–7.58 (m, 10H, 2C<sub>6</sub>H<sub>5</sub>), 9.98 (s, 1H, OH), <sup>13</sup>C-NMR,  $\delta$ : 21.5, 23.9, 28.1, 38.6 (4CH<sub>2</sub>), 86.0 (thiazole C-3), 115.1 (C=C), 120.7, 122.4, 124.6, 129.2, 129.4, 133.1, 140.3, 145.8 (Ar), 146.9 (thiazole C-5), 166.3 (C-OH), 185.9 (C=O).

## 3. 1. 3. General Procedure for the Synthesis of Tetrahydrobenzo[b] Thiophene Derivatives 10a-e

To a solution of either **6a** (2.7g, 0.01 mol), **6b** (2.8 g, 0.01 mol) or **6c** (3.3 g, 0.01 mol) in 1,4-dioxane (40 mL) containing triethylamine(1 mL) either malononitrile (0.66 g, 0.01 mol) or ethyl cyanoacetate (1.13 g, 0.01 mol) was added followed by elemental sulfur (0.32 g, 0.01 mol). The reaction mixture was heated under reflux for 3 h then poured onto an acidified crushed ice and filtrated off. The solid product, formed in each case was crystallized from suitable solvent.

## 2-Amino-4-(4-methyl-3-phenylthiazol-2(3*H*)-ylidene)-4,5,6,7-tetrahydro-benzo[*b*]thiophene-3-carbonitrile (10a)

Reddish brown crystals from ethanol, yield 71% (25 g), m.p. 113–115 °C. *Anal*. Calculated for  $C_{19}H_{17}N_3S_2$  (351.49): C, 64.91; H, 4.87; N, 11.95; S, 18.25. Found: C, 64.90; H, 4.84; N, 11.98; S, 18.27. MS: *m/e* 351(M<sup>+</sup>-1, 20%), IR, v: 3436–3315 (NH<sub>2</sub>), 3046 (CH, aromatic), 2935, 2810 (CH<sub>3</sub>, CH<sub>2</sub>), 2210 (CN), 1636 (C=C), <sup>1</sup>H-NMR, δ: 2.45–2.48 (m, 6H, 3CH<sub>2</sub>), 2.52 (d, 3H, CH<sub>3</sub>), 4.16 (s, 2H, NH<sub>2</sub>), 6.87 (s, 1H, thiazole H-3)), 7.11–7.23 (m, 5H,  $C_6H_5$ ), <sup>13</sup>C-NMR, δ: 18.9 (CH<sub>3</sub>), 26.9, 28.4, 30.2 (3CH<sub>2</sub>), 96.0 (C-CN), 111.9 (thiazole C-3), 114.5 (C=C), 116.0 (CN), 120.5, 122.3 (Ar), 124.6 (thiophene C-4), 129.2 (Ar), 133.1 (thiophene C-5), 139.4 (Ar), 140.3 (thiazole C-5)) 145.9 (C-CH<sub>3</sub>), 149.0 (C-NH<sub>2</sub>).

## Ethyl-2-amino-4-(4-methyl-3-phenylthiazol-2(3H)-ylidene)-4,5,6,7-tetrahydro-benzo[b]thiophene-3-carboxylate (10b)

Brown crystals from ethanol, yield 60% (23.8 g), m.p. 195–197 °C. *Anal*. Calculated for  $C_{21}H_{22}N_2O_2S_2$  (398.54): C, 63.29; H, 5.56; N, 7.03; S, 16.09. Found: C, 63.30; H, 5.58; N, 7.00; S, 16.07. MS: *m/e* 398 (M<sup>+</sup>, 12%), IR, v: 3426–3320 (NH<sub>2</sub>), 3058 (CH, aromatic), 2930, 2813 (CH<sub>3</sub>, CH<sub>2</sub>), 1758 (C=O), 1639 (C=C), <sup>1</sup>H-NMR, δ: 1.15 (t, 3H, CH<sub>3</sub> ester), 2.44–2.49 (m, 6H, 3CH<sub>2</sub>), 2.51 (d, 3H, CH<sub>3</sub>), 4.03 (q, 2H, CH<sub>2</sub> ester), 4.16 (s, 2H, NH<sub>2</sub>), 6.88 (s, 1H, thiazol H-3), 7.25–7.52 (m, 5H,  $C_6H_5$ ), <sup>13</sup>C-NMR, δ:

14.2, 17.2 (2CH<sub>3</sub>), 23.3, 27.2, 31.3 (3CH<sub>2</sub>), 61.9 (O-CH<sub>2</sub>), 103.9 (thiazole C-3), 113.2 (C=C), 120.5, 122.6 (Ar), 124.6 (thiophene C-4), 125.3 (Ar), 128.9 (thiophene C-5), 133.1 (thiophene C-3), 138.4 (Ar), 139.4 (thiazole C-5), 141.0 (C-CH<sub>2</sub>), 147.2 (C-NH<sub>2</sub>), 165.6 (C=O).

## 2-Amino-4-(4-oxo-3-phenylthiazolidin-2-ylidene)-4,5,6,7-tetrahydro-benzo[b]thiophene-3-carbonitrile (10c)

Reddish brown crystals from ethanol, yield 74% (26 g), m.p. 143–145 °C. *Anal*. Calculated for  $C_{18}H_{15}N_3OS_2$  (353.46): C, 61.16; H, 4.28; N, 11.89; S, 18.14. Found: C, 61.13; H, 4.30; N, 11.85; S, 18.19. MS: *m/e* 353 (M<sup>+</sup>-1, 41%), IR, v: 3435–3323 (NH<sub>2</sub>), 3046 (CH, aromatic), 2838 (CH<sub>2</sub>), 2208 (CN), 1643 (C=C), <sup>1</sup>H-NMR, δ: 2.45-2.49 (m, 6H, 3CH<sub>2</sub>), 4.16 (s, 2H, NH<sub>2</sub>), 6.81 (s, 1H, thiazole H-3), 7.12–7.50 (m, 5H, C<sub>6</sub>H<sub>5</sub>), 9.76 (s, 1H, OH), <sup>13</sup>C-NMR, δ: 22.0, 27.3, 34.5 (3CH<sub>2</sub>), 72.2 (C-CN), 108.2 (thiazole C-3), 113.7 (C=C), 116.9 (CN), 121.0, 123.1(Ar), 125.6 (thiophene C-4), 129.4 (Ar), 133.0 (thiophene C-5), 137.9 (Ar), 142.9 (thiazole C-5), 149.9 (C-NH<sub>2</sub>), 163.9 (C-OH).

## Ethyl 2-amino-4-(4-oxo-3-phenylthiazolidin-2-ylide-ne)-4,5,6,7-tetrahydro-benzo[b]thiophene-3-carboxylate (10d)

Brown crystals from ethanol, yield 60% (24 g), m.p. 133–135 °C. *Anal.* Calculated for  $C_{20}H_{20}N_2O_3S_2$  (400.51): C, 59.98; H, 5.03; N, 6.99; S, 16.01. Found: C, 60.01; H, 5.07; N, 7.03; S, 15.99. MS: *m/e* 400 (M<sup>+</sup>, 10.7%), IR, v: 3455–3329 (OH, NH<sub>2</sub>), 3061 (CH, aromatic), 2970, 2815 (CH<sub>3</sub>, CH<sub>2</sub>), 1757 (C=O), 1644 (C=C), <sup>1</sup>H-NMR, δ: 1.16 (t, 3H, CH<sub>3</sub> ester), 2.45-2.48 (m, 6H, 3CH<sub>2</sub>), 4.06 (q, 2H, CH<sub>2</sub>), 4.16 (s, 2H, NH<sub>2</sub>), 6.79 (s, 1H, thiazole H-3), 7.25–7.52 (m, 5H,  $C_6H_5$ ), 9.80 (s, 1H, OH), <sup>13</sup>C-NMR, δ: 15.2 (CH<sub>3</sub>), 21.9, 23.4, 29.8 (3CH<sub>2</sub>), 61.2 (OCH<sub>2</sub>), 110.9 (thiazole C-3), 113.1 (C=C), 122.1, 124.6 (Ar), 125.9 (thiophene C-4), 128.6 (Ar), 129.5 (thiophene C-5), 134.6 (thiophene C-3), 137.5 (Ar), 141.5 (thiazole C-5), 149.5 (C-NH<sub>2</sub>),159.9 (C-OH), 166.5 (C=O).

### 2-Amino-4-(3,4-diphenylthiazol-2(3*H*)-ylidene)4,5,6,7-tetrahydro-benzo[*b*]thiophene-3-carbonitrile (10e)

Brown crystals from ethanol, yield 60% (24.7 g), m.p. 193–195 °C. *Anal.* Calculated for  $C_{24}H_{19}N_3S_2$  (413.56): C, 69.70; H, 4.63; N, 10.16; S, 15.51. Found: C, 69.68; H, 4.69; N, 10.19; S, 15.55. MS: *m/e* 413 (M<sup>+</sup>, 100%), IR, v: 3433–3358 (NH<sub>2</sub>), 3052 (CH, aromatic), 2852 (CH<sub>2</sub>), 2367 (CN), 1616 (C=C), <sup>1</sup>H-NMR, δ: 2.44–2.47 (m, 6H, 3CH<sub>2</sub>), 4.16 (m, 2H, NH<sub>2</sub>), 6.88 (s, 1H, thiazole-H-3), 7.03–7.35 (m, 10H, 2C<sub>6</sub>H<sub>5</sub>), <sup>13</sup>C-NMR, δ: 23.3, 28.7, 32.4 (3CH<sub>2</sub>), 80.1 (C-CN), 108.7 (thiazole C-3), 112.3 (C=C), 115.7 (CN), 120.9, 122.8 (Ar), 125.6 (thiophene C-4), 128.5 (Ar), 128.9 (thiophene C-5), 129.2, 129.4, 130.5, 132.7, 134.2 (Ar), 136.9 (thiazole C-5), 137.8 (thiazole C-2), 141.2 (C-NH<sub>2</sub>).

### 3. 1. 4 General Procedure for the Synthesis of Phenylazo Derivatives 11a,b

To a cold solution of either **10a** (3.5 g, 0.01 mol) or **10c** (3.5 g, 0.01 mol) in ethanol (40 mL) containing sodium acetate (2.5 g) a cold solution of the diazonium salt [prepared by the addition of sodium nitrite solution (0.70 g, 0.01 mol) to a cold solution of aniline (0.94 g, 0.01 mol) in concentrated hydrochloric acid (12 mL) with continuous stirring] was added while stirring. The formed solid product, upon stirring at room temperature was collected by filtration and crystallized using a suitable solvent

## 2-Amino-4-(4-methyl-3-phenyl-5-(phenyldiazenyl) thiazol-2(3*H*)-ylidene)-4,5,6,7-tetrahydrobenzo[*b*] thiophene-3-carbonitrile (11a)

Reddish brown crystals from ethanol, yield 85% (38.6 g), m.p. 85–87 °C. *Anal.* Calculated for  $C_{25}H_{21}N_5S_2$  (455.60): C, 65.91; H, 4.65; N, 15.37; S, 14.08. Found: C, 69.94; H, 4.69; N, 15.33; S, 14.04. MS: *m/e* 455 (M<sup>+</sup>, 11%), IR, v: 3457–3325 (NH<sub>2</sub>), 3059 (CH, aromatic), 2990, 2813 (CH<sub>3</sub>, CH<sub>2</sub>), 2204 (CN), 1644 (C=C), 1492 (N=N), <sup>1</sup>H-NMR,  $\delta$ : 2.43-2.46 (m, 6H, 3CH<sub>2</sub>), 2.55 (s, 3H, CH<sub>3</sub>), 4.16 (s, 2H, NH<sub>2</sub>), 7.38-7.64 (m, 10H, 2C<sub>6</sub>H<sub>5</sub>), <sup>13</sup>C-NMR,  $\delta$ : 14.0 (CH<sub>3</sub>), 23.3, 26.7, 31.3 (3CH<sub>2</sub>), 72.9 (C-CN), 106.9 (C-N=N), 112.9 (C=C), 116.0 (CN), 120.5, 121.3, 123.1 (Ar), 124.5 (thiophene C-4), 128.7, 129.2, 129.7 (Ar), 133.1 (thiophene C-5), 137.8 (thiazole C-5), 140.8 (Ar), 141.3 (C-CH<sub>3</sub>), 147.5 (Ar), 149.9 (C-NH<sub>2</sub>).

## 2-Amino-4-(4-oxo-3-phenyl-5-(phenyldiazenyl)thiazolidin-2-ylidene)-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carbonitrile (11b)

Reddish brown crystals from ethanol, yield 85% (38.8 g), m.p. 109–111 °C. *Anal*. Calculated for  $C_{24}H_{19}N_5OS_2$  (457.57): C, 63.00; H, 4.19; N, 15.31; S, 14.02. Found: C, 62.97; H, 4.21; N, 15.33; S, 14.06. MS: *m/e* 457 (M<sup>+</sup>, 25.7%), IR, v: 3480–3327 (OH, NH<sub>2</sub>), 3047 (CH, aromatic), 2833 (CH<sub>2</sub>), 2210 (CN), 1639 (C=C), 1496 (N=N), <sup>1</sup>H-NMR,  $\delta$ : 2.43–2.48 (m, 6H, 3CH<sub>2</sub>), 4.16 (s, 2H, NH<sub>2</sub>), 7.09–7.56 (m, 10H, 2C<sub>6</sub>H<sub>5</sub>), 9.98 (s, 1H, OH), <sup>13</sup>C-NMR,  $\delta$ : 22.4, 27.1, 30.9 (3CH<sub>2</sub>), 73.9 (C-N=N), 82.4 (C-CN), 113.5 (C=C), 116.0 (CN), 120.3, 121.9, 122.4 (Ar), 123.9 (thiophene C-4), 124.6, 128.7, 129.2 (Ar), 131.5 (thiophene C-5), 137.4 (thiazole C-5), 140.7, 144.5 (Ar), 146.9 (C-NH<sub>2</sub>), 168.7 (C-OH).

## 3. 1. 5. General Procedure for the Synthesis of Amido Derivatives 12a,b

To a solution of either **10a** (3.5 g, 0.01 mol) or **10c** (3.5 g, 0.01 mol) in DMF (40 mL) ethyl cyanoacetate (1.13 mL, 0.01 mol) was added. The reaction mixture in each case was heated under reflux for 3 h then pour into an acidified crushed ice and the precipitated solid product was filtrated and crystallized from the suitable solvent.

## 2-Cyano-*N*-(3-cyano-4-(4-methyl-3-phenylthiazol-2(3*H*)-ylidene)-4,5,6,7-tetrahydrobenzo[*b*]thiophen-2-yl)acetamide (12a)

Reddish brown crystals from ethanol, yield 65% (27.2 g), m.p. 188–190 °C. *Anal.* Calculated for  $C_{22}H_{18}N_4OS_2$  (418.53): C, 63.13; H, 4.33; N, 13.39; S, 15.32. Found: C, 63.16; H, 4.29; N, 13.35; S, 15.29. MS: *m/e* 418 (M<sup>+</sup>, 60%), IR, v: 3465-3324 (NH), 3049 (CH, aromatic), 2992, 2810 (CH<sub>3</sub>, CH<sub>2</sub>), 2345-2206 (2CN), 1723 (C=O),1643 (C=C),  $^1$ H-NMR,  $\delta$ : 2.43–2.46 (s, 6H, 3CH<sub>2</sub>), 2.73 (s, 3H, CH<sub>3</sub>), 2.88 (s, 2H, CH<sub>2</sub>), 6.88 (s, 1H, thiazole H-3), 7.24–7.57 (m, 5H, C<sub>6</sub>H<sub>5</sub>), 10.23 (s, 1H, NH).  $^{13}$ C-NMR,  $\delta$ : 16.9 (CH<sub>3</sub>), 23.1, 24.9, 26.2, 31.1 (4CH<sub>2</sub>), 86.9 (C-CN), 112.4 (thiazole C-3), 115.9 (C=C), 119.1, 121.4 (2CN), 124.7, 125.9, 129.8 (Ar), 132.9 (thiophene C-5), 133.3 (thiophene C-4), 137.3 (thiazole C-5), 140.4 (Ar), 141.5 (C-CH<sub>3</sub>), 146.8 (C-NH), 166.2 (C=O).

## 2-Cyano-N-(3-cyano-4-(4-oxo-3-phenylthiazolidin-2-ylidene)-4,5,6,7-tetrahydro-benzo[b]thiophen-2-yl)acetamide (12b)

Brown crystals from ethanol, yield 75% (27.2 g), m.p. 188-190 °C. *Anal*. Calculated for  $C_{21}H_{16}N_4O_2S_2$  (420.51): C, 59.98; H, 3.84; N, 13.32; S, 15.25. Found: C, 60.01; H, 3.80; N, 13.35; S, 15.29. MS: *m/e* 420 (M<sup>+</sup>, 45.30%), IR, v: 3475–3323 (OH, NH), 3047 (CH, aromatic), 2854 (CH<sub>2</sub>), 2342–2205 (2CN), 1724 (C=O), 1642 (C=C), <sup>1</sup>H-NMR,  $\delta$  2.43–2.47 (m, 6H, 3CH<sub>2</sub>), 2.73 (s, 2H, CH<sub>2</sub>), 6.86 (s, 1H, thiazole H-3), 7.07–7.54 (m, 5H, C<sub>6</sub>H<sub>5</sub>), 9.93 (s, 1H, OH), 10.17 (s, 1H, NH), <sup>13</sup>C-NMR,  $\delta$ : 23.2, 24.8, 26.8, 30.9 (4CH<sub>2</sub>), 72.3 (thiazole C-3), 90.4 (C-CN), 113.9 (C=C), 115.2, 119.6 (2CN), 122.2, 122.9, 124.6 (Ar), 129.5 (thiophene C-5), 132.8 (thiophene C-4), 137.9 (thiazole C-5), 141.2 (Ar), 148.6 (C-NH), 162.5 (C=O), 168.2 (C-OH).

### 3. 1. 6. General Procedure for the Synthesis of Shiff's Bases 14a,b

To a solution of either **10a** (3.5 g, 0.01 mol) or **10c** (3.5 g, 0.01 mol) in 1,4-dioxane (40 mL) containing 3 drops of piperidine, benzaldehyde (1.06 mL, 0.01 mol) was added. The reaction mixture in each case was heated under reflux for 2 h then poured onto ice/water containing a few drops of HCl. The formed solid product was collected by filtration and crystallized from the proper solvent.

## 2-(Benzylideneamino)-4-(4-methyl-3-phenylthiazol-2(3H)-ylidene)-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carbonitrile (14a)

Brown crystals from ethanol, yield 60% (26.3 g), m.p. 100–103 °C. *Anal.* Calculated for  $C_{26}H_{21}N_3S_2$  (439.60): C, 71.04; H, 4.82; N, 9.56; S, 14.59. Found: C, 70.99; H, 4.80; N, 9.55; S, 14.60. MS: *m/e* 441 (M<sup>+</sup>-2, 2%), IR, ν: 3046 (CH, aromatic), 2978, 2811 (CH<sub>3</sub>, CH<sub>2</sub>), 2274 (CN), 1636 (C=C), 1587 (C=N), <sup>1</sup>H-NMR, δ: 2.44–2.47 (m, 6H,

3CH<sub>2</sub>), 2.54 (d, 3H, CH<sub>3</sub>), 6.88 (s, 1H, thiazole-H-3), 7.07 (s, 1H, N=CH), 7.10–7.52 (m, 10H, 2C<sub>6</sub>H<sub>5</sub>),  $^{13}$ C-NMR,  $\delta$ : 17.8 (CH<sub>3</sub>), 21.3, 25.6, 30.9 (3CH<sub>2</sub>), 79.2 (C-CN), 108.4 (thiazole C-3), 112.9 (C=C), 115.9 (CN), 121.3, 122.4 (Ar), 124.5 (thiophene C-4), 125.0, 128.7, 129.2, 131.9, 134.2 (Ar), 133.4 (thiophene C-5), 137.6 (Thiazole C-5), 140.2 (Ar), 141.9 (C-CH<sub>3</sub>), 150.9 (thiophene C-2), 158.9 (N=C).

## 2-(Benzylideneamino)-4-(4-oxo-3-phenylthiazolidin-2-ylidene)-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carbonitrile (14b)

Yellow crystals from ethanol, yield 75% (33 g), m.p. 120-123 °C. Anal. Calculated for  $C_{25}H_{19}N_3OS_2$  (441.57): C, 68.00; H, 4.34; N, 9.52; S, 14.52. Found: C, 68.03; H, 4.36; N, 9.55; S, 14.55. MS: m/e 441 (M<sup>+</sup>, 21%), IR, v: 3425-3343 (OH), 3051 (CH, aromatic), 2810 (CH<sub>2</sub>), 2208 (CN), 1646 (C=C), 1553 (C=N), <sup>1</sup>H-NMR, δ: 2.45-2.48 (m, 6H, 3CH<sub>2</sub>), 6.85 (s, 1H, thiazole-H-3), 6.98 (s, 1H, N=CH), 7.13–7.53 (m, 10H, 2C<sub>6</sub>H<sub>5</sub>), 9.82 (s, 1H, OH), <sup>13</sup>C-NMR, δ: 23.2, 26.3, 31.1 (3CH<sub>2</sub>), 80.1 (C-CN), 107.9 (thiazole C-3), 114.1 (C=C), 116.1 (CN), 122.2, 123.1 (Ar), 124.9 (thiophene C-4), 128.6, 129.1, 129.9, 131.1, 136.7 (Ar), 137.8 (thiophene C-5), 139.9 (thiazole C-5), 141.1 (Ar), 153.2 (C-OH), 155.3 (thiophene C-2), 159.9 (N=C).

## 3. 1. 8. General Procedure for the Synthesis of Hydrazone Derivatives 17a,b

To a solution of **15** (2.5 g, 0.01 mol) in ethanol (20 mL) either of hydrazine hydrate (0.5 mL, 0.01 mol) or phenyl hydrazine (1.08 mL, 0.01 mol) was added. The reaction mixture was heated under reflux for 3 h. The reaction mixture was left a side at room temperature to cool, The solid product was collected by filtration and crystallized from a proper solvent.

### 2-Hydrazono-3-phenyl-2,3,4,5,5,6,7-hexahydroben-zo[*b*]thiazole (17a)

Yellow crystals from ethanol, yield 60% (14.7 g), m.p. 153–155 °C. Anal. Calculated for  $C_{13}H_{15}N_3S$  (245.34): C, 63.64; H, 6.16; N, 17.13; S, 13.07. Found: C, 63.61; H, 6.12; N, 17.10; S, 13.10. MS: *m/e* 245 (M<sup>+</sup>, 17%), IR, v: 3340–3315 (NH<sub>2</sub>), 3021 (CH, aromatic), 2815 (CH<sub>2</sub>), 1630 (C=C), 1545 (C=N), <sup>1</sup>H-NMR, δ: 1.81-1.93 (m, 4H, 2CH<sub>2</sub>), 2.44–2.49 (m, 4H, 2CH<sub>2</sub>), 5.02 (s, 2H, NH<sub>2</sub>), 7.13–7.45 (m, 5H,  $C_6H_5$ ), <sup>13</sup>C-NMR, δ: 20.1, 21.3, 23.7, 25.9 (4CH<sub>2</sub>), 93.3 ( S-C=C), 122.4, 125.9, 129.5, 140.9 (Ar), 147.8 (N-C=C), 150.0 (C=N).

### 3-Phenyl-2-(2-phenylhydrazono) -2,3,4,5,5,6,7-hexahydrobenzo[*b*]thiazole (17b)

Yellow crystals from ethanol, yield 65% (23.4 g), m.p. 150–152 °C. *Anal.* Calculated for  $C_{19}H_{19}N_3S$  (321.44): C, 70.99; H, 5.96; N, 13.07; S, 9.98. Found: C, 71.00; H,

5.99; N, 13.10; S, 10.00. MS: m/e 321 ( $M^+$ , 83%), IR, v: 3432–3310 (NH), 3032 (CH, aromatic), 2820 (CH<sub>2</sub>), 1632 (C=C), 1556 (C=N), <sup>1</sup>H-NMR  $\delta$ : 1.84–1.93 (m, 4H, 2CH<sub>2</sub>), 2.44–2.49 (m, 4H, 2CH<sub>2</sub>), 7.13–7.45 (m, 10H, 2C<sub>6</sub>H<sub>5</sub>), 8.70 (s, 1H, NH), <sup>13</sup>C-NMR,  $\delta$ : 20.3, 21.1, 22.3, 25.6 (4CH<sub>2</sub>), 95.6 (S-C=C), 118.6, 122.4, 122.9, 123.6, 125.7, 128.9, 139.9, 142.0 (Ar), 144.5 (N-C=C), 148.2 (C=N).

#### 4. Conclusion

In summary, we have shown here in that our strategy is compatible with the synthesis of new class of substituted thiazole derivatives. Cytotoxicity of newly synthesized products was evaluated against the cancer cell lines. The results showed that compounds **6b**, **10c**, **11b**, **12a**, **12b** and **17b** exhibited optimal cytotoxic effect against cancer cell lines, with  $IC_{50}$ 's in the nM rang.

#### 5. References

- S. K. Bharti, G. Nath, R. Tilak, S. K. Singh, Eur. J. Med. Chem. 2010, 45, 651–660.
- B. V. Yang, D. S. Weinstein, L. M. Doweyko, H. Gong, W. Vaccaro, T. Huynh, H. Y. Xiao, A. M. Doweyko, L. Mckay, D. A. Holloway, J. E. Somerville, S. Habte, M. Cunningham, M. McMahon, R. Townsend, D. Shuster, J. H. Dodd, S. G. Nadler, J. C. Barrish, *J. Med. Chem.* 2010, 53, 8241–8251.
- F. C. Spector, L. Liang, H. Giordano, M. Sivaraja, M. G. Peterson, *J. Virol.* 1998, 72, 6979–6987.
- G. C. Diego, D. Frederic, F. Tzu-Shean, T. N. Aloysius, Y. Yassir, L. W. Karen, W. Quoc, R. Eileen, N. B. Jeremy, W. David, J. W. Michael, W. Sergio, A. C. Susanand, C. Kelly, J. Med. Chem. 2011, 54, 7713–7719.
- F. W. Bell, A. S. Cantrell, M. Hoberg, S. R. Jaskunas, N. G. Johansson, C. L. Jordan, M. D. Kinnick, P. Lind, J. M. Morin, *J. Med. Chem.* 1995, 38, 4929–4936.

- B. E. Fink, D. S. Mortensen, S. R. Stauffer, Z. D. Aron, J. A. Kalzenellenbogen, *Chem. Biol.* 1999, 6, 205–219.
- B. Matteo, P. L. Colin, M. Angelica, S. Catia, A. P. Domenica, B. Jonathan, G. Thorsten, D. F. Romano, Z. Laura, C. Laura, *Bioorg. Med. Chem. Lett.* 2010, 20, 4741–4744.
- E. W. van Tilburg, P. A. M. van der Klein, M. de Groote, M.
  W. Beukers, A. P. Jzerman, *Bioorg. Med. Chem. Lett.* 2001, 11, 2017–2019.
- 9. B. Umadevi, Eur. J. Med. Chem. 2007, 42, 1144-1150.
- K. J. Wilson, C. R. Illig, N. Subasinghe, J. B. Hoffman, M. J. Rudolph, R. Soll, C. J. Molloy, R. Bone, D. Green, T. Randall, M. Zhang, F. A. Lewandowski, Z. Zhou, C. Sharp, D. Maguire, B. Grasberger, R. L. Desjarlais, J. Spurlino, *Bioorg. Med. Chem. Lett.* 2001, *11*, 915–918.
- W. T. Zhang, J. L. Ruan, P. F. Wu, F. C. Jiang, L. N. Zhang,
  W. Fang, X. L. Chen, Y. Wang, B. S. Cao, G. Y. Chen, Y. J.
  Zhu, J. Gu, J. G. Chen, J. Med. Chem. 2009, 52, 718–725.
- G. Gebeyehu, V. E. Marquez, A. V. J. Med. Chem. 1985, 28, 99–105.
- A. Sekhiguchi, A. Nishina, H. Kimura, R. Heifukumoto, K. Kanoh, H. Ishihara, M. Koketsu, *Chem. Pharm. Bull.* 2005, 53, 1439–1442.
- 14. M. Koketsua, H. Ishihara, W. Wu, K. Murakami, I. Saiki, *Eur. J.Pharm. Sci.* **1999**, *9*, 157–161.
- R. Mayer, K. Gewald, Angew. Chem. Internat. Edit. 1967, 6, 294–306.
- H. Tripathy, M. K. Das, B. Sahu, B. C. Dash, G. N. Mahapatra, Journal of the Indian Chemical Society 1973, 50 (6), 417–419.
- H. Spies, K. Gewald. R. Mayer, Journal fuer Praktische Chemie 1972, 314 (3-4), 646–648.
- 18. Y. Usui, Yokugaku Zasshi 1968, 88 (12), 1535-1544.
- 19. Y. Usui, Tokko Koho 1969, JP 44000538 B419690111.
- 20. E. B. Knott, Journal of the Chemical Society **1965**, *6*, 3793-
- 21. H. Hartmann, R. Mayer, Zeitschrift fuer Chemie **1965**, *5* (*4*), 152–153.

#### **Povzetek**

Z reakcijo med cikloheksanonom in fenilizotiocianati smo z dobrimi izkoristki pripravili nov razred substituiranih tiazolnih derivatov 6a–c, ki kažejo obetavno aktivnost proti raku. Spojine 6 smo reagirali z benzendiazonijevim kloridom in pripravili 5-fenilazotiazolna derivata 8a in 8b. Tiazolne produkte 6a–c smo ob prisotnosti elementarnega žvepla in malononitrila oz. etil cianoacetata pretvorili v tiofenske derivate 10a–e. Spojine 10a–e smo z vrsto heterociklizacijskih reakcij pretvorili v različne heterociklične derivate. Ugotovili smo, da mnoge izmed teh spojin kažejo obetavno aktivnost proti človeškim tumorskim celičnim linijam.