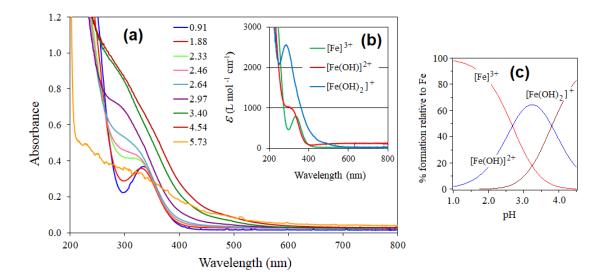
Supplementary Material for the paper

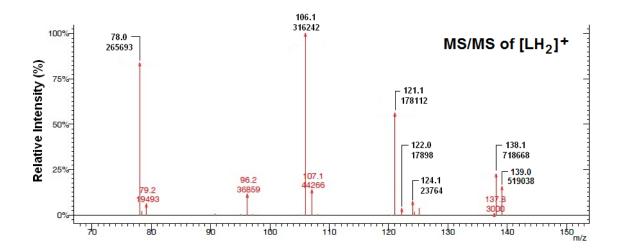
Spectroscopic determination of metal-ligand coordination by biologically active 2-picolinehydroxamic acid with iron(III) and oxovanadium(IV) in aqueous solutions

Magdalena Woźniczka, Mirosława Świątek, Joanna Gądek-Sobczyńska, Beata Pasternak, Aleksander Kufelnicki

- Page 3. **Fig. S1.** (a) UV-Vis spectra of iron(III) chloride within the pH range 0.91 5.73, $C_{\text{FeCl}_3} = 5.0 \times 10^{-4} \text{ mol L}^{-1}$. (b) Molar absorption coefficients for various Fe(III) aqua-hydroxo complexes. (c) Species distribution curves as a function of pH for the Fe(III) aqua-hydroxo complexes.
- Page 4. **Fig. S2.** Tandem mass spectrum of $[LH_2]^+ m/z = 139.0$, $C_{PicHA} = 1.0 \times 10^{-2} \text{ mol L}^{-1}$.
- Page 4. **Fig. S3.** Negative-ion ESI–MS spectrum for the complexes formed in the FeCl₃/PicHA system at ligand-to-metal molar ratio 4:1, pH 1.6, $C_{\text{Fe(III)}} = 2.5 \times 10^{-4} \text{ mol L}^{-1}$. Explanation of the signal described in the text: $m/z = 256.0 \text{ [Fe(III)} + \text{fragment ion } m/z = 78 + 3\text{Cl} + \text{OH}]^{-1}$.
- Page 5. **Fig. S4.** (a) Negative-ion ESI–MS spectrum for the complexes formed in the FeCl₃/PicHA system at ligand-to-metal molar ratio 4:1, pH 3.2, $C_{\text{Fe(III)}} = 2.5 \times 10^{-4} \text{ mol L}^{-1}$. Explanation of the signal described in the text:


m/z = 269.0 [Fe(II) + fragment ion m/z = 122 + NaOH + 3OH].

(b) Positive-ion ESI–MS spectrum for the complexes formed in the FeCl₃/PicHA system at ligand-to-metal molar ratio 4:1, pH 3.2, $C_{\text{Fe(III)}} = 2.5 \times 10^{-4} \text{ mol L}^{-1}$. Explanation of the signals described in the text:


 $m/z = 197.0 [Fe(II) + fragment ion <math>m/z = 106 + Cl]^{+}$

m/z = 255.0 [Fe(II) + fragment ion m/z = 106 + NaCl + Cl]⁺.

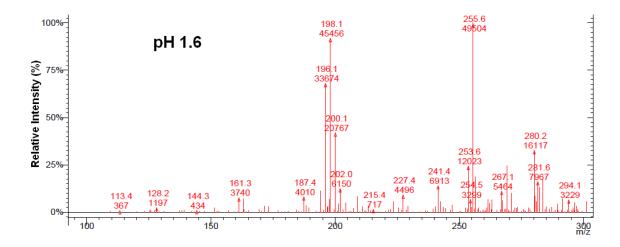

- Page 6. **Fig. S5.** (a) Negative-ion ESI–MS spectrum for the complexes formed in the FeCl₃/PicHA system at ligand-to-metal molar ratio 4:1, pH 6.5, $C_{\text{Fe(III)}} = 2.5 \times 10^{-4} \text{ mol L}^{-1}$.
 - **(b)** Positive-ion ESI–MS spectrum for the complexes formed in the FeCl₃/PicHA system at ligand-to-metal molar ratio 4:1, pH 6.5, $C_{\text{Fe(III)}} = 2.5 \times 10^{-4} \text{ mol L}^{-1}$. Explanation of the signal described in the text: $m/z = 303.0 \text{ [Fe(II)} + 2 \text{fragment ions } m/z = 106 + \text{Cl}]^+$.
- Page 7. **Fig. S6.** Positive-ion ESI–MS spectrum for the complexes formed in the VOSO₄/PicHA system at ligand-to-metal molar ratio 2:1, pH 1.4, $C_{\text{VO(IV)}} = 2.5 \times 10^{-3} \text{ mol L}^{-1}$. Explanation of the signals described in the text: $m/z = 282.0 \text{ [VOL + fragment ion } m/z = 78]^+$ $m/z = 283.0 \text{ [L + fragment ion } m/z = 122 + \text{Na} + \text{H}]^+$ $m/z = 326.0 \text{ [VOL + fragment ion } m/z = 122]^+$ $m/z = 567.0 \text{ [(VO)₂L₂ + SO₄ + NaOH + Na]}^+$.
- Page 8. **Fig. S7** Positive-ion ESI–MS spectrum for the complexes formed in the VOSO₄/PicHA system at ligand-to-metal molar ratio 2:1, pH 2.6, $C_{\text{VO(IV)}}$ = 2.5×10^{-3} mol L⁻¹.

Fig. S1. (a) UV-Vis spectra of iron(III) chloride within the pH range 0.91 - 5.73, $C_{\text{FeCl}_3} = 5.0 \times 10^{-4} \text{ mol L}^{-1}$. (b) Molar absorption coefficients for various Fe(III) aqua-hydroxo complexes. (c) Species distribution curves as a function of pH for the Fe(III) aqua-hydroxo complexes.

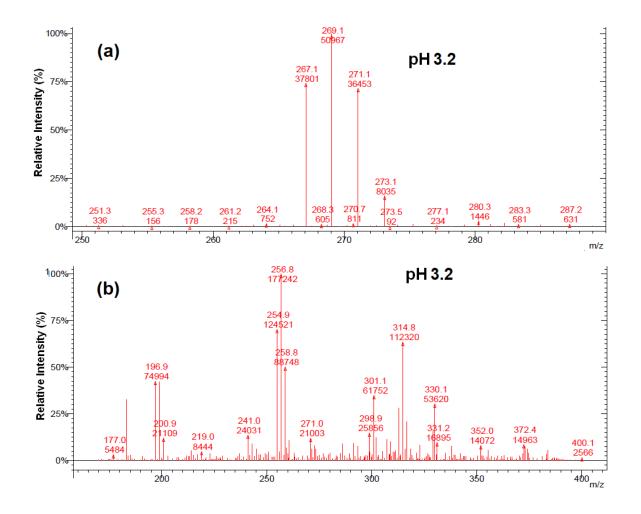
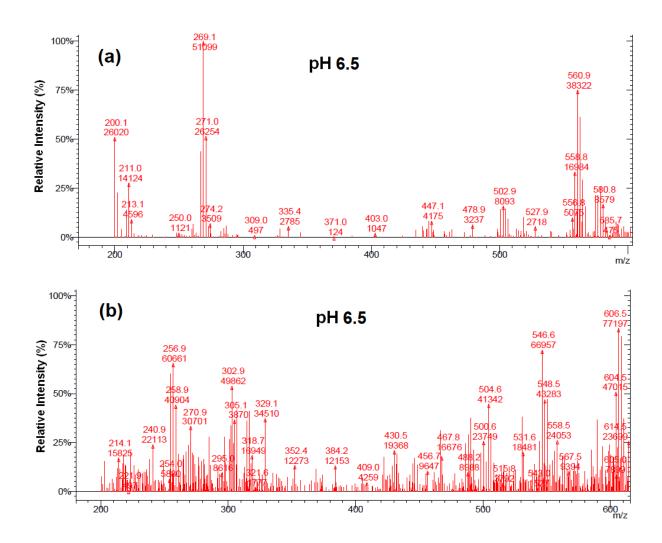


Fig. S2. Tandem mass spectrum of $[LH_2]^+ - m/z = 139.0$, $C_{PicHA} = 1.0 \times 10^{-2} \text{ mol L}^{-1}$.

Fig. S3. Negative-ion ESI–MS spectrum for the complexes formed in the FeCl₃/PicHA system at ligand-to-metal molar ratio 4:1, pH 1.6, $C_{\text{Fe(III)}} = 2.5 \times 10^{-4} \text{ mol L}^{-1}$. Explanation of the signal described in the text:

m/z = 256.0 [Fe(III) + fragment ion m/z = 78 + 3Cl + OH]⁻.


Fig. S4. (a) Negative-ion ESI–MS spectrum for the complexes formed in the FeCl₃/PicHA system at ligand-to-metal molar ratio 4:1, pH 3.2, $C_{\text{Fe(III)}} = 2.5 \times 10^{-4} \text{ mol}$ L⁻¹. Explanation of the signal described in the text:

m/z = 269.0 [Fe(II) + fragment ion m/z = 122 + NaOH + 3OH].

(b) Positive-ion ESI–MS spectrum for the complexes formed in the FeCl₃/PicHA system at ligand-to-metal molar ratio 4:1, pH 3.2, $C_{\text{Fe(III)}} = 2.5 \times 10^{-4} \text{ mol L}^{-1}$. Explanation of the signals described in the text:

 $m/z = 197.0 [Fe(II) + fragment ion m/z = 106+Cl]^+$

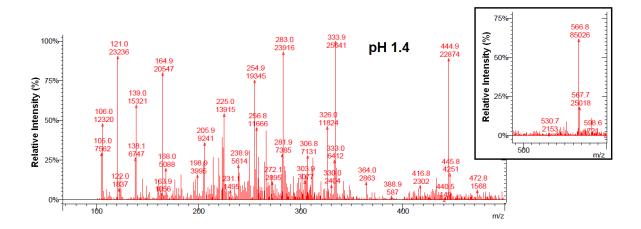
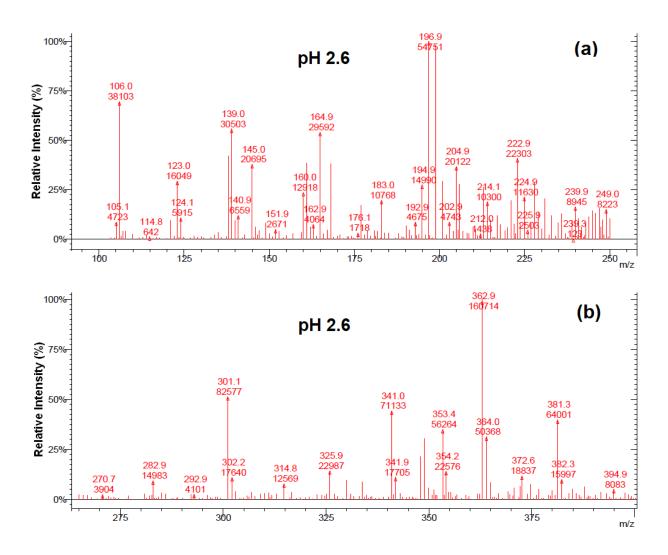

m/z = 255.0 [Fe(II) + fragment ion m/z = 106 + NaCl + Cl]⁺.

Fig. S5. (a) Negative-ion ESI–MS spectrum for the complexes formed in the FeCl₃/PicHA system at ligand-to-metal molar ratio 4:1, pH 6.5, $C_{\text{Fe(III)}} = 2.5 \times 10^{-4} \text{ mol}$ L⁻¹.

(b) Positive-ion ESI–MS spectrum for the complexes formed in the FeCl₃/PicHA system at ligand-to-metal molar ratio 4:1, pH 6.5, $C_{\text{Fe(III)}} = 2.5 \times 10^{-4} \text{ mol L}^{-1}$. Explanation of the signal described in the text:

 $m/z = 303.0 [Fe(II) + 2fragment ions m/z = 106 + C1]^{+}$.


Fig. S6. Positive-ion ESI–MS spectrum for the complexes formed in the VOSO₄/PicHA system at ligand-to-metal molar ratio 2:1, pH 1.4, $C_{\text{VO(IV)}} = 2.5 \times 10^{-3} \text{ mol L}^{-1}$. Explanation of the signals described in the text:

 $m/z = 282.0 \text{ [VOL + fragment ion } m/z = 78]^+$

 $m/z = 283.0 [L + fragment ion <math>m/z = 122 + Na + H]^{+}$

 $m/z = 326.0 \text{ [VOL + fragment ion } m/z = 122]^+$

 $m/z = 567.0 [(VO)_2L_2 + SO_4 + NaOH + Na]^+.$

Fig. S7. Positive-ion ESI–MS spectrum for the complexes formed in the VOSO₄/PicHA system at ligand-to-metal molar ratio 2:1, pH 2.6, $C_{\text{VO(IV)}} = 2.5 \times 10^{-3} \text{ mol L}^{-1}$.