© creative

Scientific paper

Synthesis, X-Ray Structure Determination and Related Physical Properties of Thiazolidinone Derivative by DFT Quantum Chemical Method

Youcef Megrouss,^{1,*} Fayssal Triki Baara,² Nourdine Boukabcha,¹ Abdelkader Chouaih,¹ Antonis Hatzidimitriou,³ Ayada Djafri,² Fodil Hamzaoui⁴

¹ LTPS Laboratory, University Abdelhamid Ibn Badis - Mostaganem, 27000 Mostaganem, Algeria

² Laboratory of Applied Organic Synthesis (LSOA), Department of Chemistry, Faculty of Sciences, University of Oran-1 Ahmed Ben Bella, 31000 Oran, Algeria

³ Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece

⁴ LPFM Académie de Montpellier, France

* Corresponding author: E-mail: youmeg@hotmail.fr

Received: 02-20-2019

Abstract

In this paper we report the synthesis and characterization of the (Z)-3-N-(ethyl)-2-N-((3-methoxyphenyl)imino)thiazolidine-4-one by means of FT-IR, 1 H and 13 C NMR and by single crystal X-ray diffraction. The experimental determination of the crystal structure of the compound has been achieved using X-ray diffraction data. The important characteristic of the structure is the existence of a dihedral angle formed by the benzene and thiazolidinone rings being equal to 86.0° indicating an absence of π - π stacking as well as that the structure is non planar. In the crystal, the molecules are linked by C-H···O and C-H···N hydrogen bonds, these bonds being responsible for the three-dimensional molecular structure packing. In order to compare the experimental results with those of the theoretical calculation, quantum chemical DFT calculations were carried out using B3LYP/6-311G(d,p) basis set. In this context, the molecular electrostatic potential around the molecule and HOMO–LUMO energy levels were also computed. The dipole moment orientations were determined in order to understand the nature of inter- and intramolecular charge transfer. Finally, the stability of the title compound was confirmed throughout the calculation of the chemical reactivity descriptors.

Keywords: X-ray diffraction; single crystal; DFT calculations; spectroscopy; FT-IR; ¹H and ¹³C NMR.

1. Introduction

Heterocyclic compounds are the major family of organic compounds; in medicinal chemistry thiazole derivatives are of great importance for their chemical and pharmacological properties, consequently thiazole derivatives have an extended range of pharmacological applications. Over the years, interesting biological activities were combined with thiazole derivatives. These materials are extremely necessary with wide range of synthetic, pharmaceutical and industrial applications and are famous for their biological activities. Recently, in drug development the application of thiazoles was required for the treatment

of allergies,⁵ hypertension,⁶ inflammation,⁷ schizophrenia,⁸ bacterial⁹ and HIV infections,¹⁰ as hypnotics¹¹ and more recently for pain treatment,¹² as fibrinogen receptor antagonists with antithrombotic activity.¹³ In addition, thiazolidinones and thiazoles present a very powerful activity as anti mycobacterium in tuberculosis.¹⁴ In this context, we have tried to realize the synthesis of the title compound, to characterize and perform its structural analysis as well as the theoretical density functional theory (DFT) calculations. In this work we present the synthesis, single crystal structure, IR and NMR spectroscopic characterizations as well as DFT calculations of this new thiazole derivative compound, namely the (*Z*)-3-*N*-(ethyl)-2-*N*²-((3-methoxyphenyl)imi-

no)thiazolidine-4-one. Furthermore, theoretical vibrational frequencies and ¹H and ¹³C NMR chemical shifts were calculated and compared to the experimental values. Additional parameters as molecular orbitals and chemical reactivity descriptors are evaluated in order to confirm the stability of the title compound. Finally, the molecular electrostatic potential was computed to determine electrophilic and nucleophilic regions of the title molecule.

2. Experimental

2. 1. Synthesis and Crystallization

An equimolar solution of N-ethyl-3-N-(3-methoxyphenyl)thiourea and ethyl bromoacetate in absolute ethanol in the presence of sodium acetate was refluxed for 6 h. The solvent was removed by vacuum distillation and the residue was isolated, washed with cold water, filtered, dried and crystallized from ethanol to yield (Z)-3-N-(ethyl)-2-N-((3-methoxyphenyl)imino)thiazolidin-4-one as presented in the scheme 1.

Scheme 1. Reaction sequence for the title compound synthesis.

2. 2. Spectral Data Measurements

Infrared (IR) spectrum of the molecule (Z)-3-N-(ethyl)-2-N'-((3-methoxyphenyl)imino)thiazolidine-4-one was recorded in the range 500–4000cm⁻¹ on a Nicolet FT-IR 6700 spectrometer using sample prepared as KBr pellets. ¹H NMR (500 MHz) and ¹³C NMR (125 MHz) spectra of the molecule using CDCl₃ as the solvent were recorded on Bruker AC250 spectrometer at 298 K.

2. 3. X-Ray Data Collection and Processing

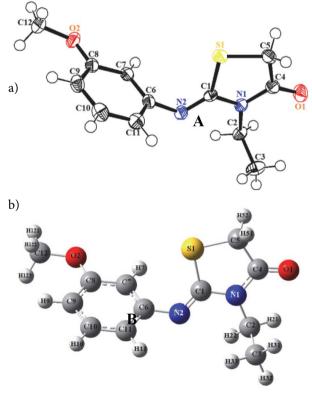
A transparent-yellowish parallelepiped crystal was selected and separated from the mother liquor, immediately cooled to 130 K and mounted on a Bruker Kappa APEX 2 diffractometer, equipped with a Triumph monochromator using MoKa radiation. The crystal presented no decay during the data collection. The frames collected (running φ and ω scans) were integrated with the Bruker SAINT Software package, 15 using a narrow-frame algorithm. Data were corrected using the SADABS program. 16 The structure was solved by the SUPERFLIP package. 17 Crystals program package version 14.40 has been used for the refinement and all the rest subsequent calculations through full-matrix least-squares on F^2 . All non-hydrogen

atoms have been refined anisotropically. Hydrogen atoms were found at their expected positions and refined using proper riding constraints to the pivot atoms. Molecular illustrations were made through the MoPro-viewer crystallographic program. ¹⁹ Crystallographic and experimental details are summarized in Table 1.

Table 1. Crystallographic and experimental details.

Crystal data	
Chemical formula	$C_{12}H_{14}N_2O_2S$
$M_{ m r}$	250.32
Crystal system	Monoclinic
Space group	C2/c
a (Å)	23.7067 (19)
b (Å)	6.8884 (6)
c (Å)	15.7244 (12)
β (°)	111.6504 (17)
$V(Å^3)$	2386.66 (18)
Z	8
$\mu (\mathrm{mm^{-1}})$	0.26
Crystal size (mm)	$0.31 \times 0.28 \times 0.19$
Diffractometer	Bruker Kappa Apex2
Absorption correction	Numerical
	Analytical Absorption
	(De Meulenaer & Tompa, 1965)
T_{\min} , T_{\max}	0.93, 0.95
Radiation type, λ (Å)	Mo <i>K</i> α, 0.71073
Temperature (K)	130
Measured	17268
Independent	
Observed $[I > 2.0\sigma(I)]$	3006
2843	
$R_{\rm int}$	0.015
$R[F^2 > 2\sigma(F^2)]$	0.029
$wR(F^2)$	0.066
S	1.00
No. of reflections	2843
No. of parameters	154
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	0.33, 0.21

3. DFT Calculations


In this theoretical study, the hybrid functional B3LYP with the 6-311G (d, p)²⁰ basis set were used in all calculations by using the Gaussian 09 program,²¹ the X-ray structure was used as starting geometry to optimize a molecular structure of the investigation compound. Vibrational frequencies were calculated and the Gauss-view molecular visualization program²² and VEDA software²³ were used for the assignment. Additionally, ¹H and ¹³C NMR chemical shifts were calculated using the same level of theory. The theoretical calculation also allowed us to compute the energy values of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO). Furthermore, the molecular electrostatic

potential was calculated with B3LYP/6-311G(d, p) to highlight the electrophilic and nucleophulic attack sites.

4. Results and Discussion

4. 1. Structure Description

The molecular geometry of the title compound is defined by the presence of two fragments, methoxyphenyl and thiazolidine rings forming a dihedral angle of 86°. Detailed results containing atomic positions and thermal parameters are given in the CIF file. Selected bond lengths, bond and torsion angles for all atoms by X-ray diffraction and theoretical calculations are listed in Tables 2, 3 and 4, respectively. An ORTEPIII diagram²⁴ of the title compound showing the X-ray structure with thermal ellipsoids of the different atoms and the theoretical structure are given in Figure 1. In our study we employed full geometry optimization for the molecule without symmetry constraint. The results of our calculations showed that S1-C5, S1-C1, C1-N1, N1-C2, N1-C4, C6-N2 and O 2-C8 bonds exhibit single bond characteristics, while C4-O2 (1.23 Å) and N2-C1 (1.26 Å) bonds show typical double bond characteristics.²⁵ The amine N2 atom exhibits a geometry that is typical for an sp² rather than an sp³ atom hybridisation. In addition, the difference in the thiazole ring bonds between theoretical calculation and experimental values does not exceed 0.13 Å. Bond angles C6-N2-C1, C2-N1-C4 and C1-N1-C4 are also near 120° (119.56°, 121.08° and 116.72°, respectively).26

Figure 1. Experimental (a) and theoretical (b) structure of (Z)-3-N-(ethyl)-2-N-((3-methoxyphenyl)imino)thiazolidine-4-one.

The bond angles centered on C1 are all between 109° and 129°. The C1 atom is of $\rm sp^2$ hybridization type because the total adds up to 360° at B3LYP/6-311G(d,p) level. The corresponding theoretical values of this angle is 64° (C7–C6–N2–C1). The C8–O2–C12 angle is 116.98°, and the C2–N1–C4–O1 fragment is approximately planar (Table 4).

Generally, the observed difference between experimental and calculated geometrical parameters does not seem very large.

Table 2. Experimental and optimized bond lengths (Å).

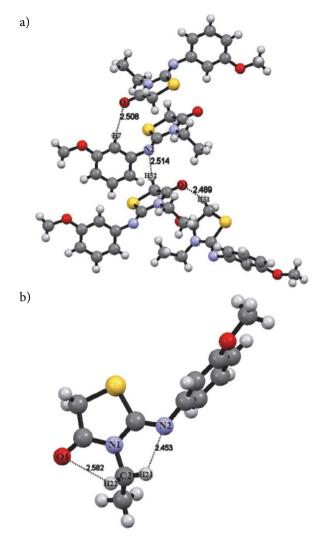

Bond lengths	X-ray	B3LYP/6-311G(d,p)	
S1-C5	1.811(1)	1.887	
S1-C1	1.767(1)	1.893	
O1-C4	1.216(1)	1.233	
N1-C2	1.469(1)	1.485	
N1-C1	1.399(1)	1.392	
N1-C4	1.371(1)	1.388	
N2-C6	1.425(1)	1.407	
N2-C1	1.263(1)	1.264	
O2-C8	1.367(1)	1.386	
O2-C12	1.431(1)	1.459	
C6-C7	1.389(1)	1.398	
C6-C11	1.402(1)	1.408	
C7-C8	1.398(1)	1.401	
C5-C4	1.509(1)	1.527	
C2-C3	1.518(1)	1.537	
C10-C9	1.393(1)	1.399	
C10-C11	1.386(1)	1.387	
C8-C9	1.395(1)	1.397	

Table 3. Experimental and optimized bond angles (°).

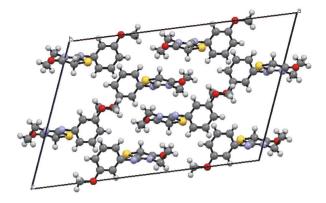
Bond angles	X-ray	B3LYP/6-311G(d,p)
C5-S1-C1	92.24	90.13
C2-N1-C1	122.15	120.13
C2-N1-C4	121.08	119.58
C1-N1-C4	116.72	29.83
C6-N2-C1	119.56	129.18
C8-O2-C12	116.98	117.97
N2-C6-C7	119.43	124.07
N2-C6-C11	119.94	116.82
C7-C6-C11	120.34	119.08
C6-C7-C8	119.87	120.72
S1-C5-C4	107.51	108.27
N1-C2-C3	112.36	111.42
S1-C1-N1	110.92	109.07
S1-C1-N2	127.32	129.12
N1-C1-N2	121.76	121.81
O1-C4-N1	123.71	123.73
O1-C4-C5	123.91	124.08
N1-C4-C5	112.37	112.18
C9-C10-C11	121.52	120.98
O2-C8-C7	115.23	115.22
O2-C8-C9	124.48	124.87
C7-C8-C9	120.27	119.91
C10-C9-C8	119.01	119.34
C6-C11-C10	118.98	119.96

Table 4. Experimental and optimized torsion angles (°).

-	•	0 1
Torsion angles	X-ray	B3LYP/6-311G(d,p)
C1-S1-C5-C4	3.6	2.4
C5-S1-C1-N1	-4.7	-2.4
C5-S1-C1-N2	174.5	176.7
C1-N1-C2-C3	-99.6	-86.2
C4-N1-C2-C3	77.9	92.2
C2-N1-C1-S1	-177.7	-179.7
C2-N1-C1-N2	3.1	1.1
C4-N1-C1-S1	4.7	1.8
C4-N1-C1-N2	-174.6	-177.3
C2-N1-C4-O1	-0.2	1.7
C2-N1-C4-C5	-179.5	-178.4
C1-N1-C4-O1	177.4	-179.9
C1-N1-C4-C5	-1.9	0.1
C1-N2-C6-C7	86.0	64.5
C1-N2-C6-C11	-100.2	-119.3
C6-N2-C1-S1	1.6	4.4
C6-N2-C1-N1	-179.2	-176.7
C12-O2-C8-C7	-170.8	179.8
C12-O2-C8-C9	10.9	-0.1
N2-C6-C7-C8	172.3	178.5
C11-C6-C7-C8	-1.5	0.6
N2-C6-C11-C10	-173.1	-179.4
C7-C6-C11-C10	0.6	-1.3
C6-C7-C8-O2	-177.2	-179.5
C6-C7-C8-C9	1.3	0.4
S1-C5-C4-O1	178.9	178.06
S1-C5-C4-N1	-1.8	-1.9
C11-C10-C9-C8	-0.8	-0.1
C9-C10-C11-C6	0.5	1.1
O2-C8-C9-C10	178.2	179.2
C7-C8-C9-C10	-0.1	-0.7

Figure 2. Hydrogen bonding view in the crystal showing: (A) intermolecular interactions, (B) C2–H21···N2 and C2–H22···O1 intramolecular interactions.

4. 2. Hydrogen Bonding


Hydrogen bonds join chains of molecules to stabilize the crystal structure of the title compound. Along the *b* axis in the unit cell, the translation of equivalent molecules allows the linking of the almost linear hydrogen bonding. C–H···O and C–H···N intra- and intermolecular interactions are present in the crystal structure. The molecular conformation is in part influenced by the formation of two weak intramolecular C2–H22···O1 and C2–H21···N1 hydrogen bonds that enclose S(5) rings (Figure 2 and Table 5).

These interactions are responsible for the stability of the molecular packing, as the C2, C3, C5, C12 and C7 carbon atoms act as donor groups and both oxygen and nitrogen atoms play the acceptor role. Hydrogen bond interactions are presented in Table 5. Figure 2 shows all interaction types in the crystal. The molecular stacking that has been provided by the different existing hydrogen bonds in the

Table 5. Geometry of the C–H···O and C–H···N hydrogen bonds in (*Z*)-3-*N*-(ethyl)-2-*N*'-((3-methoxyphenyl)imino)thiazolidine-4-one crystal by X-ray diffraction.

D-H···A	D-H (Å)	D-A (Å)	HA (Å)	D-HA (°)	Bond type
C2-H21···N2	0.981	2.852	2.453	103.88	Intramolecular
C2-H22···O1	0.962	2.817	2.582	93.97	Intramolecular
C5-H51···O1 ⁽ⁱ⁾	0.987	3.380	2.489	149.92	Intermolecular
C7-H7···O1 ⁽ⁱⁱ⁾	0.947	3.432	2.508	164.98	Intermolecular
C5-H52···N2 ⁽ⁱⁱⁱ⁾	0.955	3.370	2.514	149.26	Intermolecular

Symmetry codes: (i) -x, y, -z + 1/2; (ii) -x, -y, -z; (iii) x, -y, z + 1/2

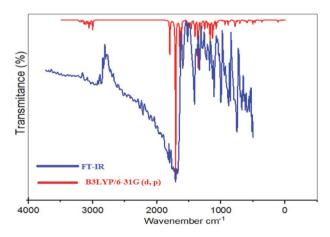
Figure 3. View of the crystal packing along the b axis of (Z)-3-N-(ethyl)-2-N-((3-methoxyphenyl)imino)thiazolidine-4-one molecule.

crystal is shown in Figure 3. This figure shows the existence of eight molecules in the unit cell which is in good agreement with the multiplicity of the space group C2/c.

4. 3. Vibrational Frequencies Assignments

Using analytic second derivatives to validate the convergence to minima on the potential energy surface the fundamental frequencies of the studied molecule have been calculated to understand the nature of these modes of vibration IR absorption spectroscopy based on DFT calculation. A theoretical analysis has been realized using B3LY-P/6-311G(d,p) level of theory in gas phase. The probable assignments were performed by means of VEDA 4 program.²³ The vibrational frequencies obtained from B3LYP functional calculations have been scaled by a factor of 0.967.²⁷ Table 6 shows the calculated (unscaled and scaled) and experimental frequencies of the title compound. Simulated and experimental IR spectra of (Z)-3-N-(ethyl)-2-N'-((3-methoxyphenyl)imino)thiazolidine-4-one are shown in Figure 4. As can be seen in Figure 4, the experimental fundamentals are in better agreement with the scaled fundamentals.

4. 3. 1. Carbon-Hydrogen Vibrations


In the aromatic compounds, multiple weak bands are exhibited in the region of 3100–3000 cm⁻¹.²⁸ They appear in this range of like multiple weak bands due to the stretching vibrations of C–H.²⁹ In the present work, the carbon–hydrogen of aromatic ring (C–H) stretching (vCH modes) were found in a range of 3000 and 3100 cm⁻¹ using the B3LYP/6-311G(d,p) calculations. These modes involve exact contribution of >91% suggesting that they are pure stretching modes. The C–H stretching of aromatic ring showed symmetric modes at 3001, 3070 and 3080 cm⁻¹ while asymmetric stretching mode was observed at 2989 cm⁻¹.

4. 3. 2. C=O and C=N Vibrations

Usually, the C=O stretching vibration mode can be easily observed as a strong band in the region 1850-1550 cm⁻¹.³⁰ The π - π bonding between carbon and oxygen is responsible for forming a double bond between the carbon and oxygen atoms. The electronic distribution in this link is not equal because these atoms have different electronegativities. The lone pair of electrons on oxygen is responsible for the polar nature of the carbonyl group. In the present study, the single C=O stretching vibration mode was observed as a high-intense peak in FT-IR at 1716 cm⁻¹ while the calculated value shows at 1726 cm⁻¹ with a PED (potential energy distribution) of 79%. The stretching frequency of the double bond C=N is perfectly observed at the high absorption 1640 cm⁻¹. DFT/B3LYP functional with 6-311G(d,p) basis set gives exactly the same value of 1640 cm⁻¹ for the C=N vibration.

4. 3. 3. Thiazolidine Ring Vibrations

The C–S stretching vibration presents average bands in the region 1020-1010 cm⁻¹.31 In this paper C-S vibrations were observed at 704, 647 and 526 cm⁻¹. The examination of the theoretical results gives us the following values with their PED contribution: 720 (21%), 642 (10%), 522 (12%) and 482 (23%) respectively, which shows a good agreement between theoretical and experimental ones as shown in the Table 6. C-N vibration is a difficult task to identify since the appearance of several bands is possible in the region, Gunasekaran et al.32 have observed C-N stretching band at 1312 cm⁻¹, 33 and C-N assigned stretching vibration in the region 1350-1000 cm⁻¹ for amines. In thiazolidine, C-N stretching band is found to be present at 1382 and 1307 cm⁻¹. The C-N stretching vibrations are expected to occur in the region 1200-1130 cm⁻¹.34 In our present work of the title molecule FTIR bands were observed at 896 cm⁻¹ and 1234 cm⁻¹, the theoretically calculated bands at 940, 1405, 1357, 1301, 1257, 1131 are shifted

Figure 4. Comparison of FT-IR and calculated IR Spectra for (Z)-3-N-(ethyl)-2-N-((3-methoxyphenyl)imino)thiazolidine-4-one.

 $\textbf{Table 6.} \ \ Comparison \ of the calculated harmonic frequencies using \ B3LYP \ method \ 6-311G(d,p) \ basis set and experimental (FT-IR) \ wavenumbers \ (cm^{-1}) \ for \ (Z)-3-N-(ethyl)-2-N'-((3-methoxyphenyl)imino)thiazolidine-4-one.$

Experi-		LYP/6-311G((\mathbf{u},\mathbf{p})	Assignments with PED>10%
mental	Unscale		I _{IR}	
	3209	3080.64	8.75	ν CH (91%) Ar ring
	3198	3070.08	0.77	ν CH (92%) Ar ring
	3127	3001.92	9.61	ν CH (100%) Ar ring
	3139	3013.44	9.25	$v \text{ CH } (79\%) + v_{as} \text{ CH } (11\%)$
	3127	3001.92	0.33	ν CH (100%)
2971	3114	2989.44	13.61	v _{as} CH (92%)
	3001	2880.96	61.94	ν CH (92%)
1716	1798	1726.08	182.70	ν C=O (79%)
1640	1709	1640.64	943.72	ν N=C (73%)
	1640	1574.4	329.64	ν CC _{asy} (63%) Ar ring + δ HCC (14%) Ar ring
		1552.32		ν CC (51%) _{asy} Ar ring+ δ HCC (11%) Ar ring+ δ CCC (12%) Ar ring
1482	1518	1457.28	72.82	δ HCC _{asy} (44%) Ar ring+ δ CCC (19%) Ar ring
	1508	1447.68	33.99	δ HCH (67%)+
	1506	1445.76	3.59	δ HCH(71%)+ τ HCCN _{asy} (22%) Th ring
	1498	1438.08	8.56	δ HCH(71%)+ τ HCCN _{asy} (24%) Th ring
	1492	1432.32	7.71	δ HCH _{asy} (69%)+ τ HCOC _{asy} (24%) Ar ring
	1482	1422.72	0.82	δ HCH(48%)
	1465	1406.4	40.95	ν CC _{asy} (31%) Ar ring+ δ HCC (31%) Ar ring+ δ HCC _{asy} (16%)
	1462	1403.52	8.14	δ HCH (88%)
1391	1420	1363.2	18.06	δ HCC (13%)+ δ HCH (15%)+ τ HCNC (46%) Th ring
	1405	1348.8	110.90	ν NC(13%) Th ring+ δ HCC (10%)+ δ HCH (39%)+ τ HCNC _{asy} (10%)
				Th ring
	1401	1344.96	12.94	δ HCC (56%)+ δ HCH (14%)
	1357	1302.72	247.21	ν NC(46%) Th ring
1284	1350	1296	24.41	ν CC _{asy} (59%) Ar ring+ δ HCC (23%)
	1312	1259.52	111.70	ν CO _{asy} (79%) Ar ring+ δ HCC (37%) Ar ring
1234	1301	1248.96	13.79	v CC (10%) Ar ring+ v NC _{th} (12%) Ar ring+ δ HCC (11%) Ar ring+ δ
				HCH _{asy} (14%)
	1257	1206.72	43.11	ν NC _{asy} (16%)+ Th ring + ν CO(13%) Ar ring+ τ HCCN (12%) Th ring _{asy}
	1253	1202.88	25.58	τHCSC _{asy} (84%) Th ring
	1212	1163.52	40.44	δ HCH _{asy} (15%)+ τ HCOC(44%) Ar ring
1148	1194	1146.24	22.35	ν CC (10%) Ar ring+ δ HCC (38%) Ar ring+ τHCOC _{asy} (14%) Ar ring
	1172	1125.12	45.03	δ HCH(21%)+ τHCOC(35%) Ar ring
	1171	1124.16	101.55	δ HCC _{asy} (13%) Ar ring+ τ HCOC _{asy} (17%) Ar ring
	1148	1102.08	3.08	δ HCS _{asy} (52%) Th ring+ τ HCSC(28%) Th ring
	1131	1085.76	146.72	$v NC_{asy}$ (15%) Th ring+ $v CC$ (11%) Th ring
	1111	1066.56	17.22	δ HCH _{asy} (12%)+ δ CCN _{asy} (13%) Th ring+ τ HCCN (36%) Th ring _{asy}
	1109	1064.64	12.00	v CC(14%) Ar ring+ δ HCC(33%) ar ring+
1046	1075	1032	63.45	v OC(55%) Ar ring+ δ HCC(17%) Ar ring
	1007	966.72	0.82	v CC _{asy} (52%) Ar ring+ δ CCC _{asy} (39%) Ar ring
	973	934.08	4.63	v CC _{asy} (33%) Th ring
927	968	929.28	0.03	τHCCC (77%) Ar ring
896	940	902.4	27.82	$v NC(10\%)$ Ar ring+ $v OC_{asv}(10\%)$ Ar ring+ $v CC_{asv}(27\%)$ Th ring
	922	885.12	7.21	δ HCS(45%) Th ring+ τHCSC (21%) Th ring+ τCCNC _{asy} (19%) Th ring+ γ OCNC _{asy} (15%)
	891	855.36	29.40	ν CC _{asy} (12%) Th ring+ δ NCN _{asy} (10%)+ τ HCCC (12%) Ar ring
	872	837.12	7.58	τHCCC (68%) Ar ring
	863	828.48	5.52	τHCCC (68%) Ar ring
775	791	759.36		δ NCN _{asy} (32%) Th ring+ τ HCNC (33%) Th ring
	782	750.72	30.71	τHCCC (17%) Ar ring+ τHCCC _{asy} (17%) Ar ring+τCCCC _{asy} (29%) Ar ring
740	779	747.84	20.41	δ CNC (27%) Th ring
704				ν CC _{asy} (10%) Ar ring+ ν CC(10%) Th ring+ ν SC(21%) Th ring
-				τ HCCC _{asy} (56%) Ar ring+ τ CCCC _{asy} (10%) Ar ring
647	669	642.24	0.28	v SC(10%) Th ring+ τ HCCC _{asy} (12%) Ar ring+ τ CCCC(43%) ar ring
		617.28	4.95	ν CC(28%) Th ring+ δ CCC _{asy} (11%) Ar ring
	1716 1640 1482 1391 1284 1234 1148 1046 927 896	3198 3127 3139 3127 2971 3114 3001 1716 1798 1640 1709 1640 1617 1482 1518 1508 1506 1498 1492 1482 1465 1462 1391 1420 1405 1401 1357 1284 1350 1312 1234 1301 1257 1253 1212 1148 1194 1172 1171 1148 1131 1111 1109 1046 1075 1007 973 927 968 896 940 922 891 872 863 775 791 782	3198 3070.08 3127 3001.92 3139 3013.44 3127 3001.92 2971 3114 2989.44 3001 2880.96 1716 1798 1726.08 1640 1709 1640.64 1640 1574.4 1617 1552.32 1482 1518 1457.28 1508 1447.68 1506 1445.76 1498 1438.08 1492 1432.32 1482 1422.72 1465 1406.4 1462 1403.52 1363.2 1465 1406.4 1462 1403.52 1391 1420 1363.2 1405 1348.8 1401 1344.96 1357 1302.72 1284 1350 1296 1312 1259.52 1234 1301 1248.96 1257 1206.72 1253 1202.88 1212 1163.52 1148 1194 1146.24 1172 1125.12 1171 1124.16 1148	3198 3070.08 0.77 3127 3001.92 9.61 3139 3013.44 9.25 3127 3001.92 0.33 2971 3114 2989.44 13.61 3001 2880.96 61.94 1716 1798 1726.08 182.70 1640 1574.4 329.64 1640 1574.4 329.64 1617 1552.32 93.33 1482 1447.68 33.99 1506 1445.76 3.59 1498 1438.08 8.56 1492 1432.32 7.71 1482 1422.72 0.82 1465 1406.4 40.95 1462 1403.52 8.14 1391 1420 1363.2 18.06 1405 1348.8 110.90 1401 1344.96 12.94 1357 1302.72 247.21 1284 1350 1296 24.41

26		617	592.32	4.44	γSNNC _{asv} (54%) Ar ring
25	584	610	585.6	5.88	$\delta \text{ CNC}_{\text{asy}}$ (11%) Th ring
24		593	569.28	17.41	δ CCC _{asy} (14%) Ar ring+ γOCNC(19%) Th ring
23		581	557.76	1.53	τ HCSC _{asy} (16%) Th ring+ γ OCNC _{asy} (30%) Th ring
22	526	544	522.24	3.20	ν SC(12%) Th ring+ δ CCC (25%) Ar ring+ τ CCCC (12%) Ar ring
21		503	482.88	23.21	ν SC _{asy} (23%) Th ring+ δ CCN _{asy} (14%) Ar ring
20		484	464.64	0.63	δ CNC _{asy} (10%) Ar ring+ δ CCO _{asy} (32%) Ar ring
19		471	452.16	16.37	δ CNC _{asy} (19%) Th ring+ δ CCN _{asy} (16%) Th ring+ δ CCO _{asy} (12%) Th ring
18		454	435.84	1.08	δ CCO _{asy} (11%) Ar ring+ τ CCCC _{asy} (36%) Ar ring
17		403	386.88	2.62	δ CCC(12%) Ar ring+ δ COC _{asy} (21%) Ar ring

v: stretching(elongation); sy: symmetric; asy: asymmetric; β : in plane bending; γ : out-of-plane bending, ω : wagging; τ : twisting; δ : bending; ρ : rocking; vibrational modes are based on potential energy distribution (PED) and only contributions over 10% are given; scaled frequencies are in unit of cm⁻¹; I_{IR} infrared intensities are in unit of km mol⁻¹.

down by scaling the previous values to 902 (10%), 1348 (13%), 1302 (46%), 1248 (12%), 1206 (16%), 1085 (15%), respectively with the percentage of the PED contribution indicated between brackets.

4. 4. ¹H and ¹³C NMR Calculations

To calculate isotropic chemical shifts (δ) with respect to tetramethylsilane (TMS): $\delta_{iso}^{x} = \sigma_{iso}^{TMS} - \sigma_{iso}^{x}$ isotropic shielding values 184.2796 and 32.2899 ppm of $\sigma^{\text{TMS}}_{\text{iso}}$ were used for C and H NMR spectra, respectively. It is known that the range of ¹³C NMR chemical shifts for analogous organic molecules usually are >100 ppm.35,36 Methanol solvent has been used for chemical shift measurements. The atoms were labeled according to the numbering presented in Figure 1 (B). Calculated and experimental values for ¹H and ¹³C NMR are collected in Table 7. In this research, aromatic carbons give signals in overlapped areas of the spectrum with chemical shift values from 106 to 170 ppm while experimental chemical shift values of aromatic carbon atoms are in the range 107 to 160 ppm as they would be expected (Table 7). Carbon atoms (C1, C4 and C6) attached to the N atom have larger chemical shifts due to the more electronegative property of the N atom which polarizes the electron distribution in its binding to the atom adjacent carbon and reduces the value of the chemical shifts. Usually, the chemical shifts obtained and calculated for the ¹H atoms of the methyl groups are quite weak. The maximum chemical shift value for all the hydrogen atoms is 7.24 ppm.

4. 5. Frontier Molecular Orbitals (FMOs)

The highest occupied molecular orbitals (HOMO) and the lowest unoccupied molecular orbitals (LUMO) are named as frontier molecular orbitals (FMO). The HOMO represents the ability to donate an electron, whereas LUMO as an electron acceptor represents the ability to obtain an electron.³⁷ The calculation of these parameters is very important because it allowed us to verify a lot of properties, such as the kinetic stability and chem-

Table 7. Experimental and calculated ¹H and ¹³C NMR data for (*Z*)-3-*N*-(ethyl)-2-*N*'-((3-methoxyphenyl)imino)thiazolidine-4-one.

Chemical shifts				
¹H	Experimental	B3LYP/6-311G(d)		
H_{51}	3.78	4.03		
H_{52}	3.78	3.94		
H_{21}	3.90	4.49		
H_{22}	3.90	4.25		
H_{31}	1.29	1.02		
H_{32}	1.29	1.92		
H_{33}	1.29	1.19		
H_9	6.52	6.26		
H_7	6.67	6.71		
H_{11}	6.56	6.64		
H_{10}	7.24	7.42		
H_{121}	3.79	4.32		
H_{122}	3.79	3.74		
H_{123}	3.79	3.73		
¹³ C				
C1	154.23	158.27		
C2	32.76	37.78		
C3	12.52	15.06		
C4	171.55	176.61		
C5	38.26	37.57		
C6	149.32	158.15		
C7	110.39	113.89		
C8	160.37	170.89		
C9	107.22	106.29		
C10	129.99	136.22		
C11	113.20	120.10		
C12	55.25	58.70		

ical reactivity. Figure 5 shows the atomic orbital HOMO–LUMO plot of the frontier molecular orbitals computed at B3LYP/6-311G(d,p) level for the title compound. As shown in Figure 5, in HOMO density, electrons are mainly located on the methoxyphenyl group. However, when an electron transition occurs, the electron enters into the LUMO, and then the electron will mainly be localized on thiazole ring and carboxylic group. The positive phase is red and the negative one is green coloured. The HOMO–

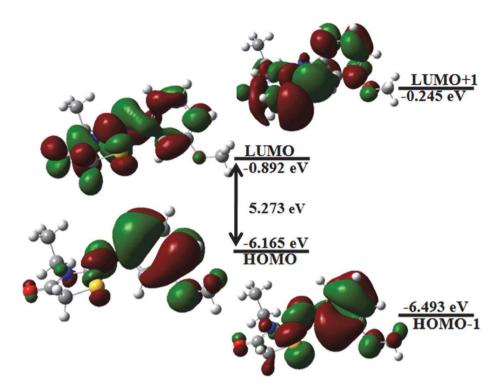


Figure 5. Electron distribution of the HOMO-1, HOMO, LUMO and LUMO+1 energy levels for the title molecule.

LUMO energy gap of our molecule was calculated at the B3LYP/6-311G (d,p) level with HOMO energy -6.165 eV, LUMO energy -0.892 eV and HOMO-LUMO energy gap 5.273 eV. The second highest occupied MO (HOMO-1) and the second lowest unoccupied MO (LUMO+1) were calculated using the same level of theory. 3D plots of the HOMO-1, HOMO, LUMO and LUMO+1 orbitals of the studied molecule are drawn in Figure 4.

4. 6. Chemical Reactivity

Global chemical reactivity descriptors (GCRD) parameters are a good indication to highlight the relationship between chemical reactivity and strength of structure. As are mentioned in literature, GCRD parameters can be obtained by using the following equations: $\eta = \frac{1}{2}(E_{LUMO} - E_{HOMO})$;

$$\mu=-\left(\frac{I+A}{2}\right);~S=\frac{1}{2\eta};~\chi=\left(\frac{I+A}{2}\right);~\omega=\frac{\mu^2}{2\eta}.~A=-E_{LUMO}~~{\rm and}~~$$

 $I = -E_{HOMO}$. The electron affinity (A) and ionization potential (I) can be evaluated as and . The calculated values of GCRD parameters for the title molecule are summarized in Table 8.

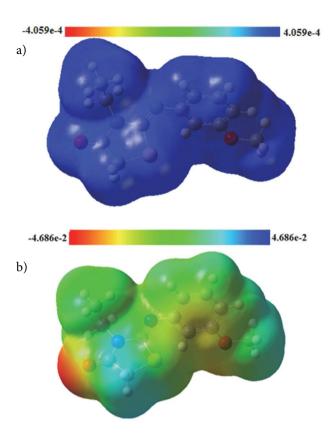
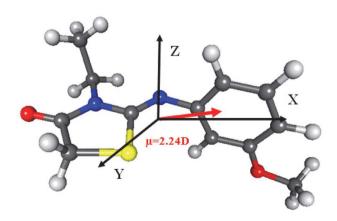

The chemical hardness (η) value is 2.636 eV indicating that the charge transfer occurs within the molecule. From Table 8, the electrophilic behaviour of the molecule is confirmed by the global electrophilicity index (ω) which has a greater value of 2.361 eV. On the other hand, the chemical stability of the title molecule is explained by the chemical potential (μ) value which is -3.528 eV.

Table 8. Calculated energy values of the title compound by B3LY-P/6-311G(d,p) method.

Parameters	Calculated energies		
E_{HOMO}	-6.165		
E_{LUMO}	-0.892		
Energy gap (ΔE)	5.273		
Ionization potential (I)	6.165		
Electron affinity (A)	0.892		
Electronegativity (χ)	3.528		
Chemical potential (µ)	-3.528		
Chemical hardness (ŋ)	2.636		
Chemical softness (s)	0.189		
Electrophilicity index (ω)	2.361		


4. 7. Electrostatic Potential

In a crystal, the location of positive and negative charges allowed us to define very interesting physical properties such as the molecular electrostatic potential (MEP).³⁸ Nowadays, theoretical and experimental MEP surfaces are determined using quantum chemistry and X-ray diffraction.^{39–42} The MEP around the title molecule was calculated from the total density (TD) for the title compound, the two maps (TD and MEP) are represented in the Figure 6. From the figure it can be seen that the negative MEP is related to the electronegativity and partial charges of oxygen atoms O1 and O2. The blue color in Figure 6B gives the maximum positive region as the preferred

Figure 6. MEP plots for (Z)-3-N-(ethyl)-2-N-((3-methoxyphenyl) imino)thiazolidine-4-one: (a) total electron density, (b) MEP surface.

site for nucleophilic attack. In terms of color, the MEP plot lies in the fact that it simultaneously displays molecular size, shape as well as positive, negative and neutral electrostatic potential regions (Figure 6). The MEP indicate well the relationship between the molecular structure and these physico-chemical properties. ^{43–47} Among them, the molecular dipole moment can be calculated. The orientation of the molecular dipole moment for the title compound is represented in Figure 7. This orientation confirms the elec-

Figure 7. Orientation of the molecular dipole moment from DFT calculation.

trostatic distribution previously defined. The calculated dipole moment value is 2.24 D.

5. Conclusion

In this study, (Z)-3-N-(ethyl)-2-N'-((3-methoxyphenyl)imino)thiazolidine-4-one was synthesized and characterized by IR, ¹H and ¹³C NMR and X-ray single-crystal diffraction techniques. The crystal structure determination shows that the title compound crystallizes in monoclinic system with space group C2/c. Theoretical calculations of the molecular structures, wavenumbers and NMR spectra of the title compound have been carried out using DFT-B3LYP/6-311G(d,p). As result, the experimental and the optimized crystal structures of the title compound were slightly different. Most of the experimental bond lengths and bond angles are slightly larger than the optimized values. These differences are due to that the theoretical calculations are performed for isolated molecule in gaseous phase and the experimental results are for a molecule in the crystalline environment. The geometry of the solid-state structure is subject to intermolecular forces, such as Van der Waals interactions and crystal packing contacts. Comparison between the chemical shifts and the experimental data shows a very good agreement for both ¹H and ¹³C NMR shift values. The HOMO-LUMO gap and chemical reactivity descriptors indicate that the compound is more stable. The general conclusion from the estimation of the dipolar moment (2.24 D) and the electrostatic potential of ((Z)-3-N-(ethyl)-2-N'-((3-methoxyphenyl)imino)thiazolidine-4-one molecule is that the region of the thiazolidinone group is electronegative and the methyl and hydrogen atoms connected to the benzene ring are electropositive.

6. Supplementary Material

Crystallographic data for the structure reported in this article have been deposited with Cambridge Crystallographic Data Center, CCDC 1871013. Copies of this information may be obtained free of charge from the Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK. Facsimile (44) 01223 336 033, E-mail: deposit@ccdc.cam. ac.uk or http://www.ccdc.com.ac.uk/deposit.

7. References

- 1. J. Quiroga, P. Hernandez, B. Insuasty, R. Abonia, J. Cobo, A. Sanchez, M. Nogueras, *J. Chem. Soc. Perkin Trans.* 1 **2002**, 4, 555–559. **DOI**:10.1039/b109676a
- I. Hutchinson, S. A. Jennings, B. R. Vishnuvajjala, A. D. Westwell, M. F. G. Stevens, *J. Med. Chem.* 2002, 45, 744–747.
 DOI:10.1021/jm011025r

- R. I. Bahoussi, A. Djafri, A. Chouaih, A. Djafri, F. Hamzaoui, *Acta Cryst.* 2017, E73, 173–176.
 DOI:10.1107/S205698901700041X
- A. Srinivas, M. Sunitha, P. Karthik, K. V. Reddy, *Acta Chim. Slov.* 2017, 64, 1030–1041. DOI:10.17344/acsi.2017.3805
- K. D. Hargrave, F. K. Hess, J. T. Oliver, J. Med. Chem. 1983, 26, 1158–1163. DOI:10.1021/jm00362a014
- W. C. Patt, H. W. Hamilton, M. D. Taylor, M. J. Ryan, J. R. Taylor, C. J. C. Connolly, *J. Med. Chem.* 1992, 35, 2562–2572.
 DOI:10.1021/jm00092a006
- R. N. Sharma, F. P. Xavier, K. K. Vasu, S. C. Chaturvedi, S. S. Pancholi, *J. Enz. Inhib. Med. Chem.* 2009, 24, 890–897.
 DOI:10.1080/14756360802519558
- J. C. Jaen, L. D. Wise, B. W. Caprathe, H. Tecle, S. Bergmeier,
 C. C. Humblet, T. G. Heffner, J. Med. Chem. 1990, 33, 311–317. DOI:10.1021/jm00163a051
- K. Tsuji, H. Ishikawa, J. Med. Chem. Lett. 1994, 4, 1601–1606.
 DOI:10.1016/S0960-894X(01)80574-6
- F. W. Bell, A. S. Cantrell, M. Hogberg, S. R. Jaskunas, N. G. Johansson, C. L. Jordon, *J. Med. Chem.* 1995, 38, 4929–4936.
 DOI:10.1021/jm00025a010
- N. Ergenc, G. Capan, N. S. Gunay, S. Ozkirimli, M. Gungor, S. Ozbey, E. Kendi, *Arch. Pharm.* 1999, *332*, 343–347.
 DOI:10.1002/ (SICI)1521-4184(199910)332:10<343::AID -ARDP343>3.0.CO;2-0
- J. S. Carter, S. Kramer, J. J. Talley, T. Penning, P. Collins, M. J. Graneto, K. Eibert, *Bioorg. Med. Chem. Lett.* **1999**, 9, 1171–1174. **DOI:**10.1007/s00706-010-0392-3
- A. Badorc, M. F. Bordes, P. De Cointet, P. Savi, A. Bernat, A. Lale, M. Petitou, *J. Med. Chem.* 1997, 40, 3393–3401.
 DOI:10.1021/jm970240y
- G. Aridoss, S. Amirthaganesan, M. S. Kim, J. T. Kim, Y. T. Jeong, *Eur. J. Med. Chem.* **2009**, 44, 4199–4210.
 DOI:10.1016/j.ejmech.2009.05.015
- 15. Bruker Analytical X-ray Systems, Inc, Apex2, Version 2 User Manual, M86–E01078, **2006**, 6, Madison, WI.
- 16. Siemens Industrial Automation, Inc. SADABS: Area-Detector Absorption Correction, **1996**, Madison, WI.
- P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout, D. J. Watkin, *J. Appl. Crystallogr.* **2003**, *36*,1487.
 DOI:10.1107/S0021889803021800
- L. Palatinus, G. Chapuis, J. Appl. Crystallogr. 2007, 40, 782–785. DOI:10.1107/S002188980702420X
- C. Jelsch, B. Guillot, A. Lagoutte, C. Lecomte, *J. Appl. Crystallogr.* 2005, 38, 38–54.
 - DOI:10.1107/S0021889804025518
- A. D. Becke, J. Chem. Phys. 1997, 107, 8554–8560.
 DOI:10.1063/1.475007
- P. C. R. Kumar, V. Ravindrachary, K. Janardhana, B. Poojary, J. Cryst. Growth 2012, 354, 182–187.
 DOI:10.1016/j.jcrysgro.2012.06.006
- 22. A. Frish, A. B. Nielsen, A. J. Holder, Gaussview Users Manual, Gaussian Inc, Pittsburg, **2000**.
- M. H. Jamróz, J. C. Z. Dobrowolski, J. Mol. Struct. 2001, 565, 475–480. DOI:10.1016/S0022-2860(00)00908-X
- 24. L. J. Farrugia, "ORTEP-3 for windows-a version of ORTEPI-

- II with a graphical user interface (GUI), *J. Appl. Crystallogr.* **1997**, *30*, 565–568. **DOI:**10.1107/S0021889897003117
- S. Yahiaoui, A. Moliterni, N. Corriero, C. Cuocci, K. Toubal,
 A. Chouaih, A. Djafri, F. Hamzaoui, *J. Mol. Struct.* 2019, 1177,
 186–192. DOI:10.1016/j.molstruc.2018.09.052
- N. Khelloul, K. Toubal, N. Benhalima, R. Rahmani, A. Chouaih, A. Djafri, F. Hamzaoui, *Acta. Chim. Slov.* 2016, 63, 619–626. DOI:10.17344/acsi.2016.2362
- S. P. V. Chamundeeswari, E. R. J. J. Samuel, N. Sundaraganesan, *Eur. J. Chem.* 2011, 2, 136–145.
 DOI:10.5155/eurjchem.2.2.136-145.169
- A. Eşme, S. Güneşdoğdu Sağdınç, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 188, 443–455.
 DOI:10.1016/j.saa.2017.07.034
- 29. G. Muhammad, A. Muhammad, A. M. Khalid, *J. Mol. Struct.* **2018**, *1160*, 129–141.

DOI:10.1016/j.molstruc.2018.01.100

- P. K. Murthy, G. Krishnaswamy, S. Armaković, S. J. Armaković, P. A.Suchetan, N. R. Desai, V. Suneetha, R. Sreenivasa Rao, G. Bhargavi, D. B. Arunakumar, J. Mol. Struct. 2018, 1162, 81–95. DOI:10.1016/j.molstruc.2018.02.081
- A. Teimouri, A. N. Chermahini, M. D. Emami, *Arkivoc* 2008, 8, 172–187.
- 32. H. Dammak, A. Yangui, S. Triki, Y. A. H. Feki, *J. Lumin.* **2015**, *161*, 214–220. **DOI**:10.1016/j.jlumin.2015.01.010
- 33. M. Silverstein, G. C. Basseleer, C. Moril, Spectrometric Identification of Organic Compounds, Wiley, New York, 1981.
- S. Muthu, J. U. Maheswari, T. Sundius, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 108, 307–318.
 DOI:10.1016/j.saa.2013.02.022
- G. Socrates, Infrared Characteristic Group Frequencies, Wiley Inter Science Publication, 1980.
- G. Varsanyi, Vibrational Spectra of Benzene Derivates, Academic Press, New York, 1969.
- K. Toubal, N. Boukabcha, Ö. Tamer, N. Benhalima, S. Altürk,
 D. Avcı, A. Chouaih, Y. Atalay, A. Djafri, F. Hamzaoui, *J. Mol. Struct.* 2017, *1147*, 569–581.
 DOI:10.1016/j.molstruc.2017.06.102
- 38. R. Rahmani, N. Boukabcha, A. Chouaih, F. Hamzaoui, S. Goumri, *J. Mol. Struct.* **2018**,*1155*, 484–495. **DOI:**10.1016/j.molstruc.2017.11.033
- 39. H. Benaissi, M. Drissi, S. Yahiaoui, Y. Megrouss, A. Chouaih, F. Hamzaoui, *J. Optoelectron. Biomed. M.* **2018**, *10*, 73–82
- 40. N. Boukabcha, A. Feddag, R. Rahmani, A. Chouaih, F. Hamzaoui, J. Optoelectron. Adv. M. 2018, 20, 140–148
- 41. N. Boubegra, Y. Megrouss, N. Boukabcha, A. Chouaih, F. Hamzaoui, *Rasayan. J. Chem.* **2016**, *9*, 751–761.
- 42. M. Drissi, N. Benhalima, Y. Megrouss, R. Rahmani, A. Chouaih, F. Hamzaoui, *Molecules* **2015**, *20*, 4042–4045. **DOI:**10.3390/molecules
- 43. J. S. Murray, K. Sen, Molecular Electrostatic Potentials, Concepts and 399 Applications, Elsevier, Amsterdam, 1996.
- 44. E. Scrocco, J. Tomasi, in: P. Lowdin (Ed) Advances in Quantum Chemistry, Academic Press, New York. 1978. 402.
- 45. F. J. Luque, M. Orozco, P. K. Bhadane, S. R. Gadre, J. Phys.

Chem. **1993**, *97*, 9380–9384. **DOI**:10.1021/j100139a021 46. J. Sponer, P. Hobza, *Int. J. Quant. Chem.* **1996**, *57*, 959–970. **DOI**:10.1002/(SICI)1097-461X(1996)57:5<959::AID-QUA16>3.0.CO;2-S M. Govindarajan, M. Karabacak, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012, 96, 421–435.
 DOI:10.1016/j.saa.2012.05.067

Povzetek

V prispevku poročamo o sintezi in karakterizaciji (Z)-3-N-(etil)-2-N'-((3-metoksifenil)imino)tiazolidin-4-ona z FT-IR, 1 H in 13 C NMR ter z rentgensko difrakcijo monokristala. Eksperimentalna potrditev kristalne strukture temelji na pridobljenih rentgenskih difrakcijskih podatkih. Pomembna značilnost strukture je obstoj dihedralnega kota, ki ga tvorita ravnini benzenskega in tiazolidinonskega obroča, v vrednosti 86.0°, kar kaže na odsotnost π - π interakcij, hkrati pa nakazuje na neplanarno strukturo. V kristalu so molekule povezane s C-H···O in C-H···N vodikovimi vezmi, ki so odgovorne za trodimenzionalno molekulsko pakiranje v strukturi. Da bi lahko eksperimentalne rezultate primerjali s teoretično izračunanimi, smo izvedli kvantno kemijske DFT izračune s pomočjo B3LYP/6-311G(d,p) baznega seta. Ob tem smo izračunali še elektrostatski potencial okoli molekule ter HOMO in LUMO energijske nivoje. Ugotovili smo orientacije dipolnih momentov in s tem razkrili naravno inter- in intramolekularnih prenosov naboja. Nazadnje smo s pomočjo izračuna deskriptorjev kemijske reaktivnosti potrdili še stabilnost opisane spojine.