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Abstract
The present work has focused on the application of the inverse-QSAR/QSPR problem for generating new structures of 
pesticides; this is in view of its extremely important and widespread use in several areas, particularly the agricultural field. 
For this reason, we implemented a methodology containing nine detailed successive steps that include a quantitative 
structure–activity/property relationship (QSAR/QSPR) study performed to develop a model that relates the structures of 
190 pesticides compounds to their n-octanol–water partition coefficients (logkow). We used the unique atomic signatures 
which represent the structures and acts as independent variables while the property (logkow) as the dependent variable. 
The model was constructed using 130 molecules as training set, and predictive ability tested using 60 compounds. Mode-
ling of logkow of these compounds as a function of the signatures descriptors was established by multiple linear regression 
(MLR) using (LOO) cross-validation. As a result, a QSAR/QSPR equation with 14 atomic signatures was hereby obtained 
with a R2 = 0.659273, Q2 = 0.65617 and RMSEtraining= 0.930192, s = 1.37297 for the training set and in leave-one-out 
(LOO) cross-validation experiment set value, q2 = 0.605676, RMSELOO = 1.0936 respectively. In addition to all of the 
above, new structures have been generated for a range of pesticides that can be included as future search topics.

Keywords: Atomic Signatures; I-QSPR algorithm; multiple linear regression (MLR); n-Octanol–water partition coeffi-
cients; pesticides.

1. Introduction
Pesticides are a large group of substances used to kill 

insects. These substances are mainly used to control pests 
that infest cultivated plants and crops or to eliminate dis-
ease-carrying insects in specific areas.1 The definition of 
pesticides according to Food Agriculture Organization of 
the United Nations (FAO 1989), a pesticide is any sub-
stance or mixture of substances intended for preventing, 
destroying, or controlling any pest including vectors of hu-
man or animal diseases, unwanted species of plants or an-
imals causing harm during, or otherwise interfering with, 
the production, processing, storage, or marketing of food, 

agricultural commodities, wood and wood products, or 
animal feedstuffs, or which may be administered to ani-
mals for the control of insects, arachnids or other pests in 
or on their bodies.2 

Pesticides and agrochemicals, in general, became an 
important component of worldwide agriculture systems 
during the last century, allowing for a noticeable increase 
in crop yields and food production.3

Poisoning from pesticides is a global public health 
problem and accounts for nearly 300,000 deaths world-
wide every year.4 

Pesticides have numerous beneficial effects. These in-
clude the protection of crop, preservation of food and ma-
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terials and prevention of vector-borne diseases. For exam-
ple pesticides may be used in the prevention of malaria, 
which kills up to 1 million children per year,5 and for pre-
venting other vector-borne diseases such as dengue, leish-
maniosis and Japanese encephalitis. Sorption, volatiliza-
tion, solubility in water, hydrolysis or oxidation, photo 
degradation and biodegradation are some of the important 
factors dealing with the fate of OPPs in the environment.6 
Pesticides vary by source, structure and usage, for example, 
we find Botanical Ps and Neonicotinoid pesticides. Botan-
ical Ps are naturally occurring chemical compounds ex-
tracted or derived from plants to manage field and storage 
crop pests.7 The BPs can easily degrade in the environment, 
and they are easily available, less toxic to human and 
non-targeted organisms and are compatible with different 
human cultures.8,9 Studies have shown that, plants are very 
good source of crop protectants against pests.10,11

Neonicotinoid pesticides were first introduced in the 
mid-1990s and since then their use has grown rapidly so that 
they have become the most widely used class of insecticides 
in the world, with the majority being used as seed coatings.12 
As for the distribution of pesticides, it is concluded that lipo-
philicity is the chief determinant of pesticide distribution in 
sediment/water systems.13 Accordingly lipophilicity kow 
(n-octanol–water partition coefficients) is a physico-chemi-
cal property that characterizes the ability of a chemical com-
pound to dissolve in fats (lipids) and non-polar solvents.13 
Lipophilicity plays an important role in the development of 
drugs and pesticides, since this parameter affects the phar-
macokinetic and pharmacodynamic behavior of a biologi-
cally active substance.15,16 According to IUPAC, lipophilicity 

reflects the affinity of a molecule or a fragment thereof with 
a lipophilic medium.17

Due to the importance of lipophilicity parameter kow 
in the distribution of these compounds (pesticides) between 
the water and organic phases in the organism, numerous 
studies report kow values for ionisable compounds.18–20

However, most of them determined a single kow value, 
reflecting the lipophilicity of the neutral species only. Lipo-
philicity is expressed by the octanol–water partition coeffi-
cient (kow), estimates the solubility in both aqueous and or-
ganic phases.21 The values of kow generated using these 
various methods may vary by several orders of magnitude 
hence kow is usually expressed in the logarithmic form (log-
kow).22 Given all the above mentioned importance of the 
logkow, it is necessary to study the shape and characteristics 
of the relationship between this important property of (log-
kow) and the molecular structure of these compounds.

The aim of this work is the application of the In-
verse-quantitative structure-property relationship (I-QSPR) 
study. This method is based on a nine-step methodology. The 
first is a selection of database compound. The second is the 
generation of the 2D structures, while the third step is the 
QSPR analysis after translation of the database compounds 
into unique atomic signatures. In the fourth one, we con-
struct constraint equations, specifically the graphicality and 
consistency equations, which facilitate the reconstruction of 
the solution compounds directly from the signatures. Fifth, 
we solve constraint equations while the sixth step is the data-
base solutions checking. The seventh, eighth and ninth steps 
are respectively, keeping solutions with desired range, new 
structures generating, and finally, the database focused.

Figure 1. Outline of the I-QSPR Algorithm.24
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As for important uses of the QSPR analysis step is to 
develop a QSPR model that relates the structures of 190 
pesticides compounds to their n-octanol–water partition 
coefficients using multiple linear regression technique and 
to generate new pesticides structures with novel physi-
co-chemical and QSAR properties.

2. Methodology
Inverse-QSAR/QSPR is known as the technical uses 

values for the independent variables of a particular com-
pound in the QSAR /QSPR to solve for the activity /prop-
erty of that compound (the dependent variable). In con-
trast, the goal of the inverse-QSAR/QSPR problem is to 
determine values for the independent variables given a 
desired activity /property.23 

An inverse-QSPR(I-QSPR) problem is a signa-
ture-based CAMD (Computer Aided Molecular Design ) 
algorithm that identifies compounds possessing a certain 
performance (or property) of interest predicted using a de-
veloped QSPR model.24 The I-QSPR technique is inter-
changeable with the molecular signature descriptor 
CAMD algorithm. 

To achieve the I- QSPR algorithm in our study, we pro-
vided the steps detailed in Figure 1 below, which explains 
how this algorithm is performed in nine fundamental stages: 

(1) The selection of database compounds ; (2) Gen-
eration of the 2D structures; (3) Translation of the data-
base compounds into signatures in addition to QSPR anal-
ysis; (4) Generation of constraint equations ; (5) Constraint 
equations solving then inverse solutions obtaining;(6) 
Check solutions for database; (7)Store solutions within de-
sired range ; (8) New structure generation;(9) Focused da-
tabase. 

2. 1. Step 1: Selection of Database Compounds 
In this work the database contains 190 compounds 

(Pesticides) of different classes, which have an important 
role in human life. The corresponding experimental data 
(n-octanol/water partition coefficients logkow) are ob-
tained from the literature (www.chemspider.com chemical 
structures and www.pubchem.com). 

2. 2. Step 2 : Generation of the 2D Structures
We have developed a code that allows us to calculate 

the atomic signatures of molecules after generating 2D 
structures. 

2. 3. �Step 3 : Translation of the Database 
Compounds into Signatures in Addition 
to QSPR Analysis
The structural representation of the studied com-

pounds is of great importance for describing, circulating 

and explaining the significant structural information de-
pending on their characteristics. Based on this representa-
tion, the extent to which this structure is related to the ac-
tivity /physochemical properties of the studied molecule. 
The structural information of a molecule is evaluated by 
entities called molecular descriptors. The descriptor which 
is distinctive and in accordance with the applicable condi-
tions to this technique (I-QSPR) is called signature.25,26

a) Signature
The signature is a fragment based descriptor that en-

codes the local topology of an atom in a molecule.27 De-
generacy, when using signature, is controlled by the height 
of the signature, which represents the level of branching in 
a structure. Signature at height-1 or height-2 has lower de-
generacy than height-0, and shows high correlation ability 
for atomic signatures of a molecule to its corresponding 
property of interest.28

b) Definition of the Atomic Signature
Signature, which has its origins in structural elucida-

tion studies of Faulon, 29 is based on the molecular graph 
of a molecule, G = (VG, EG), where the elements in VG de-
note the atoms in the molecule, and the edges of EG corre-
spond to the bonds between those atoms. We define an 
atomic signature, hσG(x), as the canonical sub-graph of G 
consisting of all atoms a distance h from the root x.29 

Once a signature height is specified, the molecular 
signature of each of the N compounds identified in step 1 
is calculated using an in-house translator program.

c) Definition of the Molecular Signature Descriptors
Descriptors encoding significant structural informa-

tion are used to present the physicochemical characteris-
tics of compounds to build the relationship between struc-
ture and property in this study. The molecular descriptor 
used in this project was the molecular descriptor called 
signature because of its success to address the I-QSAR 
problem. The success of signature is threefold, First, signa-
ture performs the QSAR analysis as well as conventional 
molecular descriptors.30,31 Second, signature has a lower 
degeneracy than other molecular descriptors and can be 
controlled by the user by a variable termed height. The 
molecular signature for a compound is the sum of each 
atomic signature multiplied by the occurrence vector of 
that atomic signature in the given compound and it can be 
calculated using the following equation.32

						       (1)

Where the elements of VG (matrix of the vertices) are 
the atoms (X), ∑h  i is the basis set of all atomic signatures 
of height h and hαG is the vector of occurrence number of 
atomic h-signatures of the graph G. Example of molecular 
signatures for Ethephon is given in Figure2.

https://www.google.com/search?q=www.pubchem.com&spell=1&sa=X&ved=0ahUKEwiB1_j75tPcAhUKJhoKHSeDB3YQBQgjKAA
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d) QSAR/QSPR analysis:
The QSPR analysis was performed according to the 

organizational chart below:
Quantitative structure-activity / property relation-

ship (QSAR/QSPR) as an important area of chemometrics 
has been the subject of a series of investigations.32,33 The 
main aim of (QSAR/QSPR) studies is to establish an em-
pirical rule or function relating the structural descriptors 
of compounds under investigation to properties. This rule 
or function is then utilized to predict the same properties 
of the compounds not involved in the training set from 
their structural descriptors.

tion.34 Constraint Equations are generated from the atom-
ic signature database. Graphicality Equation is developed 
from the height 0 atomic signatures, and is a necessary 
condition for a connected graph.35

2. 5. Step 5: Solve Constraint Equations
Since the space of solutions is infinite we limit the 

range that these solutions (independent variables) can 
take, based on their range in the original training set, min-
imum and maximum value (per atomic signatures) pro-
vides the additional constraints necessary to solve the sys-
tem. Due to the large number of equations, we have used 
the min/max values in the Particle Swarm Optimization 
algorithm called PSO. This algorithm seems to satisfy the 
constraint equations in a step-wise manner such that the 
iterations involving those variables which occur in the 
equations go from least to most iterations.

2. 6. Step 6: Check Solutions for Database
Since the constraint equations are derived from the 

number of used compounds, this number should repre-
sent solutions to the constraint equations, these are evalu-
ated according to the bonding of the atoms within the 
molecule.

2. 7. �Step 7 : Keep Solutions With Desired 
Range
In this step the solutions must be scored for fitness 

relative to a desired property value. The solutions which 
have the desired fitness are kept, while the unsuitable 
atomic signature must be removed from the solution. It is 
at this stage where various heuristics can be applied to fo-
cus the solution space based on expert knowledge or other 
means.26

2. 8. Step 8: Generate New Structures
The molecular Signatures (solutions) which emerge 

from Step 7 are the molecular signatures from which 
structure generation will occur. Structure generation is 
performed using an algorithm developed by Faulon and 
Coworkers,36 which is based on an earlier isomer enumer-
ation algorithm developed by Faulon (Appendix 1 in sup-
plementary files). In this step we have selected suitable 
structures after various filters to remove those undesirable 
candidate structures.

2. 9. Step 9: Focused Database
The structures which have survived until this point 

become part of the focused database. These are the 
high-quality structures which are worthy of further inves-
tigation. It is here where experiments run on a select num-

Figure 2. Illustration of the atomic and molecular signatures of 
Ethephon (C2H6ClO3P)

Figure 3: The Steps of QSPR proposed methodology

2. 4. �Step 4: Generation of Constraint 
Equations
In this step, we constructed the constraint equations, 

which serve in the construction of new compounds by re-
connecting atomic signatures into molecular signatures 
with desired properties determined by the QSPR equa-



319Acta Chim. Slov. 2019, 66, 315–325

Souyei et al.:   Application of Inverse QSAR/QSPR Analysis   ...

ber of compounds to verify the predictions of the algo-
rithm would be employed. Often, the results of the 
experimentation can be used to refine the QSPRs and the 
focused database itself.26

3. Results and Discussion 
3. 1. Atomic Signatures Calculation

As the first step in our I-QSPR analysis, is the trans-
lation of the 2D molecular structures into atomic signa-
tures illustrated in Table 1 bellow.

occurrence numbers greater than or equal to 3 in order to 
perform the LOOCV analysis. The most significant atomic 
signatures were then added one at a time, on the basis of 
the R2 and Q2 values were calculated for each step result-
ing in Figure 4, which depicts the R2 and Q2 values as 
function of the number of independent variables, i.e. 
atomic signatures. 

Table 1. The unique height-1 atomic signatures used in the QSPR 
analysis.

Variable	 Height-1Atomic	 Occurrence
	 Signature	 [Min, max]

X2	 [H]( [N])	 [0,5]
X5	  [O](=[C])	 [0,3]
X6	 [C]([C] [H] [H] H])	 [0,5]
X8	 [S]([P] [C])	 [0,3]
X9	 [O]([P][C])	 [0,4]
X11	 [C] ([O] [H] [H ] [H])	 [0, 4]
X12	 [H] ([C])	 [0,29]
X14	 p[C] ([N] p[C] p[C])	 [0,4]
X18	 p[C] ( p[C] p[C] [C])	 [0,5]
X19	 [Cl] ([C])	 [0,4]
X20	 p[C] ( p[C] p[C] [H])	 [0,10]
X21	 [H](p[C])	 [0,11]
X23	 pC( p[N] p[N] [N])	 [0,3]
X24	 p[N] ( p[C] p[C])	 [0,3]
X33	 [O] ( p[C] [C])	 [0,3]
X35	  [O] (=[S])	 [0,4]
X37	 C( N] H] H] H])	 [0,4]
X39	 [N] ([C] [C] [C])	 [0,3]
X43	 [C](p[C][H][H][H])	 [0,4]
X44	 [pN] ( pC] pN])	 [0,4]
X49	 [C]([C] H] [H]S])	 [0,3]
X52	 p[C](p[C]p[C]Cl])	 [0,5]
X53	 [Cl](p[C])	 [0,5]
X57	 p[C]([pC] p[C][O])	 [0,3]
X64	 [C]([O][C][H][H])	 [0,4]
X74	 [C]([C][C][H][H])	 [0,7]
X75	 [F] ([C])	 [0,6]
X89	 [H] ([O])	 [0,3]
X104	 [H](=[C])	 [0,3]

The QSPR analysis was calculated on the basis of a 
descriptor matrix. The descriptor matrix for the height -1 
atomic signature contained 190 rows and 253 columns, 
one column for the logkow and 252 columns for the unique 
atomic signatures. The QSPR equation, however, was only 
calculated on the basis of 29 atomic signatures, hereby re-
moving 223 atomic signatures, in order to perform the 
LOOCV.37 For performing the forward stepping MLR 223 
unique atomic signatures removed and we leaved 29 with 

Figure 4. Impact of pesticides height-1 atomic Signatures on the 
QSPR statistics, which is plotted as function of the number of inde-
pendent variables

QSPR statistics consists in analyzing the improve-
ment of the correlation with the increase of the number of 
variables of the model. The representation of the values of 
R² and Q2 as a function of the number of descriptors 
(Fig.4) brings out an asymptotic behavior, the model is 
considered optimal when the improvement of the correla-
tion becomes maximal, that is to say representing the bet-
ter compromise between correlation and parameteriza-
tion. 

The calculations were terminated at 14 atomic signa-
tures, thus the 15th atomic signature was insignificant. Sta-
tistically QSPR model using MLR was obtained, the QSPR 
equation was chosen on the basis of the best predicting 
model, i.e. highest Q2 value. A QSPR equation with 14 
atomic signatures was hereby obtained with a R2 = 
0.659273, Q2 =0.65617 and RMSEtraining = 0.930192, s = 
1.37297 for the training set, and in leave-one-out (LOO) 
cross-validation experiment set value, q2 = 0.605676, RM-
SELOO = 1.0936 respectively. Where R2 represents the de-
termination coefficient, Q2: square validation coefficient, s: 
standard deviation, RMSE: the root square error.

3. 2. The model Equation
The model equation can be written as fellow:
logkow = - 0.167497 + 0.444669 * X52 + 0.417366 * X6 

+ 0.785521 * X20 + 0.461849 * X75 + 0.0716288 * X12 - 
0.419674 * X5 - 0.409265 * X21 + 0.528737 * X19 - 0.220096 
* X44 + 0.251859 * X74 + 0.365269 * X9 + 0.226272 * X14 + 
0.445708 * X53 + 0.0357723 * X24 
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The 14 atomic signatures included in the QSPR 
equation are marked with bold in Table 1. Statistical re-
sults and significance of this final model, illustrate that the 
positive high value coefficient is for atomic signature X20. 
It was also suggested from this model that the atomic sig-
nature X24 was necessary contributor to logkow, the atomic 
signature X5 was assigned as an effective variable on log-
kow, but with a negative coefficient. Using the QSPR equa-
tion to predict the logkow of the pesticides in the same 
training set and plotting these values against the experi-
mental data, resulted in Figure 5.

The plot shows the predicted logkow values based on 
the model equation which is  validated to be statistically 
significant by the leave-one-out cross-validation versus ex-

perimental ones. Obviously, the predicted logkow values 
are in a good agreement with experimental ones. The 
14-parameters of model provide a high statistical quality: 
R2 = 0,66 and Q2 = 0.65 , and this shows that the condition 
of predictability according to the consideration of R. 
Veerasamy,37 and A. Golbraikh,38 is satisfied.

3. 3. The Constraint Equations
The following constraint equations are written in the 

order of the smallest parameters number to the greatest, 
thus in the order they were solved: (i) Consistency equa-
tions which ensure the alignment of atoms in the con-
struction of molecular signatures. (ii) Graphicality equa-
tion which represents the valence of each atom. To solve 
these equations, a method developed by Weis and Visco.28 
was adopted, and because of the wide database and the 
large number of constraint equations, we have used a pro-
gram based on PSO algorithm.

3. 4. �Generating of new Pesticides  
Structures
Base on the inverse solutions obtained from solving 

the system of constraint equations, new structures can be 
constructed from molecular signatures. It is worth men-
tioning that for the same molecular signature there are 
multiple structures.

Solving the constraint equations (Table 2) a total 
number of 5500 solutions (new molecular signatures) 
which will be a new structures. Since it would be difficult 
to examine over 5500 structures, the newly generated 
structures were refined according to the different chemical 

Figure 5: The experimental- versus predicted values for the QSPR 
equation based on the logkow with 29 height-1 atomic Signatures 
(logKow(Pred)=0.909412+0.704451.logKow(exp))

Table 2. Constraint equations

N°	 Constraint equation 

Eq.1	 Mod(+X217,2) = 0
Eq.2	 Mod(+X242,2) = 0
Eq.3	 +X44+X169 = 2
Eq.4	 -X45+X48 = 0
Eq.5	 -X91+X92 = 0
Eq.6	 -2X136+X137 = 0
Eq.7	 -X138+X139 = 0
Eq.8	 -X144+X145 = 0
Eq.9	 -X191+X193 = 0
Eq.10	 Mod(+X213+X215,2) = 0
Eq.11	 -X243+X244 = 0
Eq.12	 -X41+X42-X63 = 0
Eq.13	 -X70+X72-X185 = 0
Eq.14	 -X70+X73-X185 = 0
Eq.15	 -X93+X95+X159 = 0
Eq.16	 -X113+X114-X208 = 0
Eq.17	 -X173+2X174-X175 = 0
Eq.18	 -X206+X207+X209 = 0
Eq.19	 -X52+X53-X119-X187 = 0
Eq.20	 -X88+X89-X153-X195 = 0
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N°	 Constraint equation 

Eq.21	 -X149+X150+X226+X250 = 0
Eq.22	 -X168+X169-X186-X246 = 0
Eq.23	 -X121+2X122-X123-X234-X235 = 0
Eq.24	 -X151+X152+X170-X176-X252 = 0
Eq.25	 -X1+X3+X160-X172+X188-X205 = 0
Eq.26	 -X20+X21-X47-X58-X123-X175 = 0
Eq.27	 -X50+X51-X116-X144-X170-X188 = 0
Eq.28	 -X62+X63+X198-X199-X212-X247 = 0
Eq.29	 -X101+X104-X150-2X155-X165-X226 = 0
Eq.30	 -3X71+X75-X133-3X167-2X219-X220-2X239 = 0
Eq.31	 -X109+X112-X142-X207-X215-X250+X251 = 0
Eq.32	 -X3+X7-X59-X96-X134-X152-X160-X232 = 0
Eq.33	 -X17+X19-2X80-3X103-X115-3X117-2X133-X245 = 0
Eq.34	 -X32+X33-X57+2X85+X93+X118-X124+X195 = 0
Eq.35	 -X3+X8-X50-X59-2X96+X146-X170-3X232+X241 = 0
Eq.36	 -X27+X28-X67+X120+X146-X218+X230+2X236+2X240 = 0
Eq.37	 Mod(+X60+X62+X140+X141+X184+X185+X201+X202+X238,2)= 0
Eq.38	 -2X34+X35-2X38-2X95-2X120-2X159-2X223-X224-2X230-2X240-2X241 = 0
Eq.39	 -X4+X5-X30-X56-X61-X65-X66-X82-X163-X171-X177-X222 = 0
Eq. 40	 -X31+2X34-2X36+X38-X83-X84+X95+X99+2X107+X120-2X132-X221 =0
Eq.41	 -X1+X2-X25-X31-2X46-X69-X79-X83-X162-X184-2X202-2X205-2X221-X238 =0
Eq.42	 -X13+X14+X23-X25-X46+X55-X70-X76-X77-X83-X132-X140-2X162+X234-X238 = 0
Eq.43	 -X3+X9-2X50-2X59-X96-3X116+X118-3X134-2X144-2X152+X153-2X160-X170-2X188+2X231+X251 = 0
Eq.44	 -2X23+2X24-2X27-X32+X44+2X45-2X47-X55-X58-X94-X119-2X124-2X125-2X126+X169-2X187-X218-X234-X235 = 0
Eq.45	 -X40+X41-X105+X149-X177+2X178-X181-X182-X183-X192+X193-X196-X197+X198-X210-X216+X217-X228-2X248-X249 = 0
Eq.46	� -X76-X77+3X78-X79-X141+X142+X150+X165-2X166-X180+X194-X199+2X200-X201+X207-X208+X209-X211-X212-2X214+X215+X250 

= 0
Eq.47	� +2X14+2X18+2X20+X32+2X42+2X52+X55+2X57+X58+2X67+3X86+2X91+X94+X119+X121+X123+X126+2X138+2X145+X173+X-

175+X218 = 2
Eq.48	� -X18+X22+X43+X61+X71+X81+X82+2X87-X94-X121-X125+X127+2X130+X131+X147+X148+X157+3X161+X164-X173+X-

179+X197-X235= 0
Eq.49	� -X8+X10-X28-X38+X49+X54+X66+X81+X97-X99+X103+X108-2X111+X133+2X156-X159+X179+X182+X196-X206+X210-2X223-2X224-

X230+X237-X241-X242+X243= 0
Eq.50	� -X100+2X101-X102-X108+2X109-X110-X135+X136+X142-X143-X154+X155-X164+X165-X181-X189+2X190-X192+2X194+X200-

2X204+X209+X213-X222-X225+X226-X227-X228-2X229-X245 = 0
Eq. 51	� -X9+X11+X15-2X16-X33+X56+X64+X65+2X68+X82+X87-X88+X90+X106-X112 X114+X115+X135+X147+X148+2X158+X161+X-

167+X189-X191+X196+X219+X220+X228+X246+X252 = 0
Eq.52	� -X1+X4-2X13+X15-X25+X26+X29+2X30-X31-X36+X37-3X39+X40+X54+X56-2X60+X61+X66-2X69-X76-X79-2X84+2X105-2X113+X-

127+X129-X140-X166+X171-2X172+X176+X177-2X180-X184+X189-X201+2X203+X210-X211-X212+X222+X225+2X227+X233+X243-
2X247+X249 = 0

Eq.53	� -3X6-3X10-3X11+X12-2X15-2X17-2X22-2X26-X29-3X37-X40-3X43-2X49-2X54-2X64-2X74-X80-2X81-X90-X97-X98-X100-2X102-
3X110-X115-2X127-X130-X131-X135-X148-2X151-2X156-X158-2X168-X171-2X176-X179-X181-2X183-X186-2X203-X204-X220-X225-X239-
X246-2X249-X252 = 0

Eq.54	� +X4+X6+X17+X22+X26+2X29+X49+X64+X65+2X68+2X74+X80+X87+2X90+2X97+3X98+X100+X102+3X106+X108+X115+X-
117+4X128+2X129+X130+2X131+3X143+2X147+X148+X151+2X154+3X157+X158+2X163+X164+X168+X179+X182+X183+2X186+X-
192+X197+2X216+X219+X220+X229+3X233+3X237+X239+X245+X246+X248+X252 = 2

Eq.55	� Mod( X1-X2+2X3+X4-X5+2X6-X7+X8+X9+2X10+2X11-X12+X13+X14+2X15+X16+2X17+X18-X19+X20-X21+2X22+X23+X-
24+X25+2X26+X27+X28+2X29+X30+X31+X32+X33+2X34-X35+X36+2X37+2X38+X39+X40+X41+X42+2X43+X44+X45+X-
46+X47-X48+2X49+2X50-X51+X52 X53+2X54+X55+X56+X57+X58+2X59+X60+X61+X62+X63+2X64+X65+X66+X67+2X68+X69+X-
70+2X71-X72-X73+2X74-X75+X76+X77+X78+X79+2X80+2X81+X82+X83+X84+X85+X86+2X87+X88-1X89+2X90+X91-X92+X-
93+X94+2X95+2X96+2X97+2X98+X99+X100+X101+2X102+2X103-X104+X105+2X106+X107+X108+X109+2X110+X111+X112+X-
113+X114+2X115+2X116+2X117+X118+X119+2X120+X121+X122+X123+X124+X125+X126+2X127+2X128+X129+2X130+2X131+X-
132+2X133+2X134+X135+X136-X137+X138-X139+X140+X141+X142+2X143+2X144+X145+X146+2X147+2X148+X149+X150+2X-
151+2X152+X153+X154+X155+2X156+2X157+2X158+2X159+2X160+2X161+X162+X163+X164+X165+X166+2X167+2X168+X169+2X-
170+X171+X172+X173+X174+X175+2X176+X177+X178+2X179+X180+X181+X182+2X183+X184+X185+2X186+X187+2X188+X189+X-
190+X191+X192+X193+X194+X195+X196+X197+X198+X199+X200+X201+X202+2X203+X204+X205+X206+X207+X208+X209+X210+X-
211+X212+X213+X214+X215+X216+X217+X218+2X219+2X220+X221+X222+2X223+X224+X225+X226+X227+X228+X229+2X230+X-
231+2X232+2X233+X234+X235+X236+2X237+X238+2X239+2X240+2X241+X242+X243-X244+X245+2X246+X247+X248+2X249+X-
250+X251+2X252 ,2) = 0
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Table 3. Example of a solved molecular Signature, note that only atomic Signatures with occurrence numbers 
greater than 0 are depicted.

Molecular Signature	 X6	 X8	 X9	 X10	 X11	 X12	 X49	 X50	 X51	 X64  
no. 1	  1	 1	 2	 1	 1	 15	 1	 1	 1	 1

Table 4. Values of logkow of the 20 new structures calculated by I-QSPR theory and those predicted by Hyperchem software with other QSAR prop-
erties simulated by molecular mechanic MM+ and semi-empirical PM3 calculations.

Formula	 3D Structure (a)	 logkow
(b)	 logkow

(c)	 Surface area	 Volume	 Refractivity	 Mass	 MM+	 PM3
								        (KJ/mol)	 (KJ/mol)

C7H17O2PS4		  2.93	 2.62	 536.71	 760.29	 76.60	 292.42	 22.67	 –2641.14

C6H15O2PS3	 	 2.17	 2.61	 531.90	 730.74	 64.50	 246.34	 24.518	 –2302.97

C7H15 N2O4PS3	 	 6.05	 2.19	 580.95	 882.26	 77.57	 318.36	 146.488	 –2905.23

C8H17N2O4PS3	 	 6.74	 2.20	 577.82	 882.76	 81.80	 332.39	 131.31	 –3174.98

C9H17Cl2N2O3PS2		  6.30	 2.19	 564.48	 874.47	 77.39	 353.22	 26.47	 –2922.12

C7H18NO2PS2		  1.87	 1.36	 573.67	 483.36	 65.30	 243.32	 54.01	 –2703.03

C5H12NO5PS		  2.65	 2.61	 451.91	 657.32	 52.07	 229.19	 21.28	 –2288.44

C7H16NO4PS		  4.56	 2.20	 510.26	 729.30	 59.29	 241.24	 19.674	 –2737

C6H14OS2		  1.46	 1.88	 410.80	 566.15	 47.31	 166.30	 -0.46	 –1997.52

C9H19N2O4PS4		  6.00	 2.20	 651.1	 992.59	 95.46	 378.47	 32.8	 –3488

C13H23N4O5PS2		  3.34	 2.61	 600.25	 1074.63	 106.29	 366.51	 44.67	 –4527.12

C6H16NO2PS2		  1.55	 2.61	 606.55	 978.56	 81.77	 347.45	 31.30	 3549.116

C9H22N3O3PS3		  5.02	 2.62	 651.7	 982.59	 95.42	 346.48	 32.8	 –3458

C6H14NO3PS4	 	 4.71	 2.19	 499.29	 791.32	 73.09	 307.40	 14.102	 2539.87
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structures of all existing pesticides. All newly generated 
structures were passed through the ChemSpider, PUB 
Chem and LookChem (structure search) which are reli-
able database to identify commercially available com-
pounds. After all these steps, a set of 20 samples was select-
ed (Appendix 2 in supplementary files) according to their 
logkow, which is close to the average value of the database 
of the 190 pesticides studied (logkow = 2.94). 

The 20 identified compounds became part of the fo-
cused database. In order to assess the diversity level among 
the newly generated structures, they were compared to the 
training set structures.In addition to the work done, we 
compared the values of the logkow predicted by our model 
to those calculated by Hyperchem software (ver. 8), it was 
concluded that the values for the two results (Table 4) are 
close in most cases.

4. Conclusion
The high interest in pesticides and their uses in di-

verse fields, especially in agriculture, requires us to study 
these pesticides extensively and in depth . This is done by 
identification and focus on the characteristics including 
the physico-chemical properties, then the attempt to es-
tablish new chemical structures.

The identification of new pesticides with desired 
properties was done by developing an inverse-quantitative 

structure-property relationship on the basis of octanol-wa-
ter partition coefficient (logkow).

We processed a database of 190 pesticide com-
pounds, after developing molecular signatures calculated 
from atomic signatures. And in order to perform LOOCV. 
Only 29 atomic signatures from out of 252 are used as in-
dependent variables and logkow as a dependent variable in 
the QSPR realization, then the resolution of the constraint 
equations to the number of 55 by a computation code de-
veloped for this purpose, based on the successful PSO 
method to find 5500 solutions which represent new struc-
tures.

Based on the goal of the inverse-QSPR method was 
to predict, if any, novel compounds structures possessing a 
logkow values are close to those in the training set. There 
were 20 new compounds classified as pesticides.

We have presented and studied these new structures 
that do not yet exist in the databases of chemical com-
pounds based on our search of reliable databases for this 
purpose.

This work indicates that the inverse-QSPR method 
can be used as a reliable approach to generate new com-
pound structures, since, on the one hand, the coefficient 
of determination R2 of the model is greater than 60%, 
and on the other hand, the predicted results are close to 
the values calculated by other software such as Hyprchem. 
This research is envisaged to serve as a base for further 
studies.

Formula	 3D Structure (a)	 logkow
(b)	 logkow

(c)	 Surface area	 Volume	 Refractivity	 Mass	 MM+	 PM3
								        (KJ/mol)	 (KJ/mol)

C10H15N2O4PS2	 	 5.2	 2.20	 488.23	 853.74	 76.81	 322.33	 27.922	 –3329.07

C6H16NO5PS2	 	 4.27	 2.61	 493.77	 731.	 63.56	 277.23	 49.9	 –2743.26

C16H26N3O7PS3		  8.66	 1.47	 693	 1249	 115.85	 499.5	 46.36	 –5356.36

C8H18N3O2PS3	 	 2.59	 2.61	 506.16	 858.53	 74.30	 315.40	 43.37	 –3075.79

C8H20NO3PS2	 	 1.51	 1.46	 543.54	 803.91	 70.45	 273.35	 26.001	 –3074.00

C5H15N2O4PS		  5 .52	 2 .20	 492.04	 72.69	 57.54	 242.23	 40.15	 –26.21
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Povzetek
Predstavljena raziskava preučuje uporabo inverznega-QSAR/QSPR pristopa za generiranje novih struktur pesticidov, kar 
je izredno pomembno v luči njihove široke uporabe, še posebej na področju kmetijstva. S tem namenom smo uporabili 
metodologijo devetih zaporednih korakov, ki vključujejo kvantitativno študijo relacije med strukturo in aktivnostjo/
lastnostmi (QSAR/QSPR) s ciljem razviti model, ki povezuje strukturo 190 pesticidov z njihovim porazdelitvenim koe-
ficientov za sistem n-oktanol-voda (logkow). Uporabili smo enolične atomske deskriptorje, ki predstavljajo strukture in 
nastopajo kot neodvisne spremenljivke, medtem kot je vrednost logkow odvisna spremenljivka. Model smo razvili na 
učenju z nizom 130 molekul, njegovo sposobnost napovedovanja pa smo preverili na ostalih 60 komponentah. Modeli-
ranje logkow vrednosti teh komponent kot funkcije deskriptorjev smo izvedli z večkratno linearno regresijo (MLR) z up-
orabo pristopa izpusti-enega (LOO) navzkrižne validacije. Rezultat je QSAR/QSPR enačba s 14 atomskimi deskriptorji z 
R2 = 0.659273, Q2 = 0.65617 in RMSEtraining = 0.930192, s = 1.37297 za niz na katerem smo model učili ter q2 = 0.605676, 
RMSELOO = 1.0936 s pristopom izpusti-enega (LOO) navzkrižne validacije na testiranem nizu. Generirali smo tudi nove 
strukture pesticidov, ki bi bili lahko vključeni v nadaljnje študije. 
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