Synthesis, characterization of novel five-membered heterocycles and their anti-candidal activity

2

Rasim Farraj Muslim^{1,*}, Hiba Maher Tawfeeq², Obaid Hasan Abid³ and Mustafa Nadhim Owaid⁴

- 5 Department of Ecology, College of Applied Sciences, University Of Anbar, Anbar 31007, Iraq
- 6 ²Department of Chemistry, College of Education for Pure Sciences, University Of Anbar, Anbar 31001, Iraq
- 7 ³Department of Scientific Affairs and Graduate Studies, University of Fallujah, Anbar, Iraq
- 8 ⁴Department of Heet Education, General Directorate of Education in Anbar, Ministry of Education, Anbar 31007, Iraq
- 9 (*Corresponding author's e-mail: dr.rasim92hmts@gmail.com)

10

11

ABSTRACT

- 12 This research includes synthesis of new heterocyclic containing disubstituted tetrazol derivatives.
- 13 Imine compounds were synthesized by reaction of aromatic aldehydes with primary aromatic amines,
- which reacted with various substituted benzaldehydes in the presence of a glacial acetic acid as
- catalyst in absolute ethanol to obtain new imine compounds O_1 - O_5 . The new tetrazol derivatives O_6 -
- O_{10} were obtained from treatment of each new imine compounds with sodium azide compound. Newly
- synthesized compounds were identified via spectral methods (FT-IR, ¹H-NMR and ¹³C-NMR) and
- some physical properties. O_6 is the best derivative that has significantly (p < 0.01) recorded a stronger
- influence to inhibit the growth of *Candida guilliermondii* at an average of the zone of inhibition 14.0
- 20 mm. While, O₉ derivative recorded the lowest zone of inhibition 7.3 mm toward the same clinical
- 21 fungal pathogen. The present work may be helpful in designing more potential antibacterial and
- antifungal agents for therapeutic use in the future.
 - **Keywords**: tetrazol, *Candida* sp., anti-Candidal, imine compounds, pharmaceutical, sodium azide.

24 1

23

1. Introduction

- Imine compounds are class of the compounds which contain the group (-HC=N-) (**Scheme 1**),
- 4 They are usually synthesizing by the condensation of a primary aromatic amino group with an
- 5 active carbonyl aromatic aldehyde, they are versatile precursors in the synthesis of organic, bio-
- 6 organic, organometallic and industrial compounds via ring closure, cycloaddition and
- 7 replacement reactions. 1-4 Imine compounds were discovered by a German chemist, Nobel prize

- 8 winner, Hugo Schiff in 1864.⁵ Imine compounds produced from the reaction between ketone or
- 9 aldehyde compounds with amine compounds.⁶

$$R'$$
 $R = H$
 R' and $R'' = Phenyl or Aryl group$

Scheme 1. Structure of imine compounds

In the presence of perchloric acid (**Scheme 2**) the reaction of 4-fluorobenzaldehyde with 1-benzylpiperidin-4-amine gave the next product.⁷

Scheme 2. The effect of perchloric acid on imine compound formation

The reaction of pyridine-2-amine with 4-(dimethyl amino) benzaldehyde (**Scheme 3**) produces the imine compound.⁸

Scheme 3. Using glacial acetic acid to prepare the imine compound

One of the most important chemical compounds is sodium azide, which has been used in many fields including its effect on germination. Due to its great importance, it was used in the preparation of compounds called tetrazoles. Tetrazoles are a class of synthetic organic heterocyclic compounds consist of five-member ring of four nitrogen atoms and one carbon atom (Scheme 4). 10

Scheme 4. Structure of tetrazol ring

Synthesis of tetrazol derivatives is an important task in modern medicinal chemistry.¹¹ Tetrazoles are class of heterocycles that have received attention due to their wide range of applications.¹² Pharmacologically, because of the effect of gram-negative or positive bacteria on the health of human. Then they must synthesize some products which have anti-activity against bacteria.^{13,14} Tetrazole contains compounds reported to possess diverse chemotherapeutic

activities as antibacterial,¹⁵ and antifungal.¹⁶ Example of one of tetrazol derivatives is the product from the reaction between imine compound (N,N'-([1,1'-biphenyl]-4,4'- diyl) bis (1- (pyridine - 4 - yl) methanimine)) and sodium azide (Scheme 5).¹⁷

Scheme 5. Synthesized of 2,5-dihydro-1*H*-tetrazol derivative

Tetrazol derivatives of type of 5-phenyl-1H-tetrazol-1-yl) thiazetidine dioxide prepared from the next reaction (Scheme 6), ¹⁸ below:

$$\begin{array}{c} O = \\ O = \\$$

Scheme 6. Potassium carbonate in tetrazol derivatives synthesis

2. Experimental

2. 1. General procedure for the synthesis of imine compounds O_1 - O_5

Equimolar mixtures 0.02 mol, of aldehydes and aromatic amines and trace of glacial acetic acid dissolved in 25 ml absolute ethanol was placed in a 100-ml round-bottom flask equipped with condenser and stirrer bar. The mixture was allowed to react at reflux temperature for 4hr, then allowed to cool down to the room temperature, whereby a crystalline solid was separated out. The solid product was recrystallized twice from ethanol. The structural formulae, names, melting points, colors, and percentage of yields for the synthesized imine compounds are recorded in table 1.

Table 1. Structural formula, nomenclature, melting points, percentages of yield and colors of imine compounds O_1 - O_5

Comp. Structural formula	Nomenclature	Yield	m.p.	Color
--------------------------	--------------	-------	------	-------

Code			%	°C	
	OCH ₃	(E)-5-((4,6-dimethyl			
O_1	H ₃ C OH	pyrimidin-2-ylimino)methyl)-	68%	78-80	Tan
	CH_3	2-methoxyphenol			
	O_2N NO_2 NO_2	(E)-1-(2,4-dinitrophenyl)-2-			
O_2	N N	(4-nitrobenzylidene)	81%	291-293	Orange
	Н Н	hydrazine			C
	CI	(E)-4-(4-ethoxybenzylidene			
O_3	N C H	amino)-1,5-dimethyl-2-ph	90%	212-214	Bright
	enyl-1H-pyraz	enyl-1H-pyrazol-3(2H)-one			yellow
	о он	4-(5-chloro-2-hydroxy benzyl			Bright
O_4	N = C	ideneamino)-1,5-dimethyl -2-	89%	138-140	pale
	H ₃ C CH ₃	phenyl-1H-pyrazol-3(2H)-one			•
	он				yellow
O_5	CH CH	(E)-2-((p-tolylimino) methyl)	87%	94-96	Bright
	N-CH ₃	phenol			yellow

2. 2. General procedure for the synthesis of tetrazol derivatives O_6 - O_{10}

Equimolar mixtures 0.01 mol, of imine compounds and sodium azide dissolved in 20 ml of tetrahydrofuran and 2 ml of distilled water and refluxed the mixture for 4hr and left to stand for 24hr. The solid product was precipitated, filtered off and recrystallized from ethanol. The structural formulae, names, melting points, colors, and percentage yields for the synthesized tetrazol derivatives are presented in table 2. Melting points were recorded on electrothermal melting point apparatus (uncorrected). FT-IR spectra were recorded at the room temperature from (4000-400) cm⁻¹ with KBr disc by infrared spectrophotometer model tensor 27 Bruker Co., Germany. The ¹H-NMR and ¹³C-NMR spectra were recorded by Bruker Ac-300MHz spectrometer, see table 2.

Table 2. Structural formula, nomenclature, melting points, percentages of yield and colors of tetrazol derivatives O_6 - O_{10}

Comp.	Standtonal formula	Nomonoloturo	Yield	m.p.	Color
code	Structural formula	Nomenclature	%	°C	Color

O_6	H_3C N	5-(1-(4,6-dimethylpyrimi din- 2-yl)-4,5-dihydro-1H-tetrazol -5-yl)-2-methoxy phenol	81%	107-109	Bright Pale yellow
O_7	O_2N N N N N N N N N N	N-(2,4-dinitrophenyl)-5-(4- nitrophenyl)-4,5-di hydro- 1H-tetrazol-1-amine	89%	> 300	Pale Orange
O_8	H ₃ C N N N Na ⁺	5-(4-chlorophenyl)-4-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-4,5-dihydrotetrazol-1-ide	93%	242-244	Pale yellow
О9	H ₃ C CH ₃ N NH OH OCI	4-(5-(5-chloro-2-hydroxy phe nyl)-4,5-dihydro-1H-tetrazol- 1-yl)-1,5-dimethyl -2-phenyl- 1H-pyrazol-3(2H)-one	85%	169-171	Pale yellow
O_{10}	H ₃ C N NH NH	R)-2-(1-p-tolyl-4,5-di hydro- 1H-tetrazol-5-yl)phenol	84%	119-120	Bright Golden

2. 3. Anti-Candidal activity

This test was archived *in vitro* to investigate inhibitory effects of the synthesized tetrazol derivatives using well diffusion method on Muller-Hinton agar. This experiment was done as mentioned by Owaid et al.²⁴ Four milligrams of the synthesized tetrazol derivatives were applied separately in 6 mm-well. After 18 hr of incubation at 37 °C, the zone of inhibition was taken using the ruler in millimeters.

2. 4. Statistical Analysis

The data (triplicates) were analyzed by one-way analysis of variance using ANOVA table by SAS program for Windows, version 9.0, SAS Institute Inc., USA. The significance of differences was calculated using Duncan's Multiple Range Test (DMRT). Probability value least than 1% was considered to be statistically significant.

3. Results and discussion

3. 1. Imine compounds

Imine compounds (Scheme 7) were synthesized from commercially available aromatic aldehydes and primary amines and identified by their melting points, and FT-IR. The FT-IR

spectra showed the appearance of the stretching absorption bands of azomethine (C=N) at 1591-1669 cm⁻¹,^{25,26} beside the characteristic bands of the residual groups in the structure table 3. See Figs. 1 and 2.

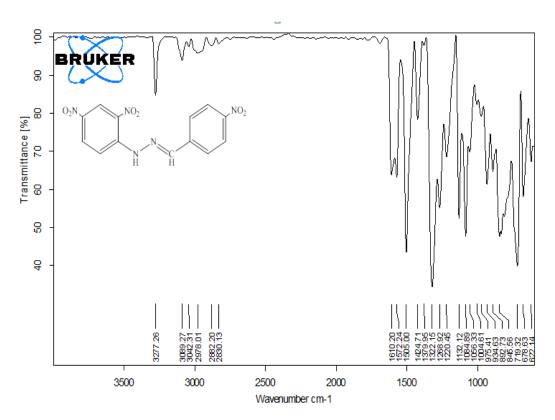
 $R = \begin{array}{c} O \\ R - C - R' + R'' NH_2 \end{array} \xrightarrow{Abs.EtOH} RR'C = NR''$ R' = H $R = \begin{array}{c} O \\ H', Refl. 4hr. \end{array}$ $R' = \begin{array}{c} OH \\ OCH_3 \\ NO_2 \end{array} \xrightarrow{NO_2} \begin{array}{c} OH \\ NO_2 \\ NO_2 \end{array} \xrightarrow{NO_2} \begin{array}{c} OH \\ NO_2 \\ NO_3 \end{array}$

Scheme 7. Structure of the synthesized imine compounds

Table 3. FT-IR spectra of imine compounds O₁-O₅

				FT-IR	$\lambda, \nu(\text{cm}^{-1})$		
Comp.	C N	C=C	C-1	С-Н С-Н		Ali.	O.I
Code	C=N	Aromatic	Aromatic	Alkene	Asymmetric	symmetric	Others
O_1	1669	1510	3000	3045	2974	2941	O-H b3309,
O_1	1009	1310	3000	3043	2914	2341	C=N yrimidine1547
0	1610	1.570	20.42	2000			NO ₂ 1505, 1322
$\mathbf{O_2}$	1610	1572	3042	3089			N-H 3277
O_3	1591	1569	3044	3067	2983	2875	C=O 1645, C-Cl 829
0	1504	1550	2014	2077	2002	2074	C=O 1634, C-Cl 815
O_4	1594	1559	3044	3075	2983	2874	O-H b3450
O_5	1614	1566	3046	3079	2980	2867	О-Н b3375

101


102103

104

108

Fig. 1. FT-IR spectra of O₁

110

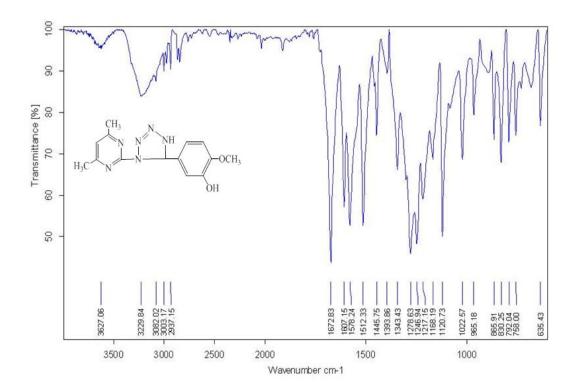
111

112

113

Fig. 2. FT-IR spectra of O₂

Mechanism of imine compounds formation represented in the following reaction. ^{27,28} See scheme 8.


Scheme 8. Mechanism of imine compounds formation

3. 2. Tetrazol derivatives

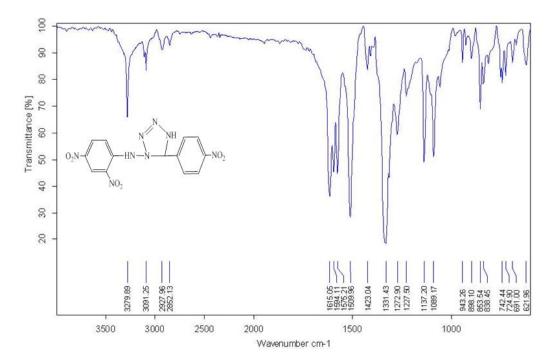
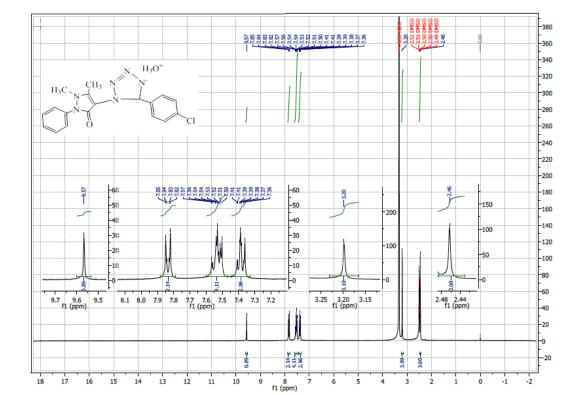

The synthesis of tetrazol derivatives was achieved by the reaction of imine and sodium azide. Their melting points identified the resulted products. FT-IR spectra of the products (table 4) showed characteristic absorption band at 1272-1301, 1022-1089 and 1484-1509 cm⁻¹ as an indicative of C-N, N-N and N=N bonds of tetrazol rings formation beside the characteristic bands of the residual groups in the structure as presented in Figs. 3 and 4.²⁶

Table 4. FT-IR spectra of tetrazol derivatives O₆-O₁₀

					FT-	IR ν(cm ⁻¹)			
Comp.	N-H	-H N-N N=N (C-N	C=C	С-Н	С-Н	Ali.	Others
code	14-11	14-14	14-14	C-11	Aromatic	Aromatic	Asymmetric	Symmetric	Others
O_6	3229	1022	1512	1278	1578	3082	2937	2875	O-H b 3627
O_7	3279	1089	1509	1272	1594	3091	2968	2877	NO ₂ 1575,1331
0		1006	1 40 4	1201	1594	3060	2941	2865	C=O 1650
O_8		1086	1484	1301	1394	3000	2941	2803	C-Cl 768
									O-H b 3491
O_9	3280	1087	1484	1273	1564	3055	2954	2874	C=O1638
									C-Cl 772
O_{10}	3320	1033	1499	1283	1598	3053	2920	2855	O-H b 3446

Fig. 3. FT-IR spectra of O_6


Fig. 4. FT-IR spectra of O_7

The ¹H-NMR spectrum of compound O_8 in DMSO solvent (Fig. 5) showed chemical shifts, $\delta(ppm)$, singlet in 2.46 (3H, N-<u>CH</u>₃), singlet in 3.20 (3H, =C-<u>CH</u>₃), singlet in 9.57 (1H, N-<u>CH</u>), multiplet and doublet of doublet in 7.85-7.36 (9H, aromatic protons). Spectrum of compound O_9 (Fig. 6) showed chemical shifts, $\delta(ppm)$ at: singlet in 2.42 (3H, N-<u>CH</u>₃), singlet in 3.23 (3H, =C-<u>CH</u>₃), singlet in 6.78 (1H, -<u>NH</u>), singlet in 9.67 (1H, N-<u>CH</u>), singlet in 12.73 (1H, -<u>OH</u>),

multiplet in 7.64-6.93 (8H, aromatic protons). Other chemical shifts of O_6 , O_7 and O_{10} , $\delta(ppm)$ are presented in table 5.

Table 5. The ${}^{1}\text{H-NMR}$ Spectra of tetrazol derivatives $O_{6}\text{-}O_{10}$ in DMSO

Comp.	Chemical Shift δ ppm
	Singlet in 2.40 (6H, 2 <u>CH₃</u>), singlet in 3.34 (3H, O- <u>CH₃</u>), singlet in 7.11 (1H, - <u>NH</u>),
O_6	singlet in 9.58 (1H, N-CH), singlet in 9.77 (1H, -OH), multiplet and singlet in 7.42-
	7.11 (4H, aromatic protons)
0	Singlet in 3.57 (1H, NH out), singlet in 8.89 (1H, NH in), singlet in 11.86 (1H, N-CH)
O_7	and multiplet and doublet of doublet in 8.82-8.05 (7H,aromatic protons)
0	Singlet in 2.46 (3H, N- $\underline{CH_3}$), singlet in 3.20 (3H, =C- $\underline{CH_3}$), singlet in 9.57 (1H, N- \underline{CH}),
O_8	multiplet and doublet of doublet in 7.85-7.36 (9H, aromatic protons)
	Singlet in 2.42 (3H, N- $\underline{\text{CH}}_3$), singlet in 3.23 (3H, =C- $\underline{\text{CH}}_3$), singlet in 6.78 (1H, - $\underline{\text{NH}}$),
O_9	singlet in 9.67 (1H, N-CH), singlet in 12.73 (1H, -OH), multiplet in 7.64-6.93 (8H,
	aromatic protons)
	Singlet in 2.34 (3H, <u>CH</u> ₃), singlet in 6.80 (1H, - <u>NH</u>), singlet in 8.67 (H, N- <u>CH</u>), singlet
O_{10}	in 13.25 (1H, -OH), multiplet and doublet of doublet in 7.66-6.95 (8H, aromatic
	protons)

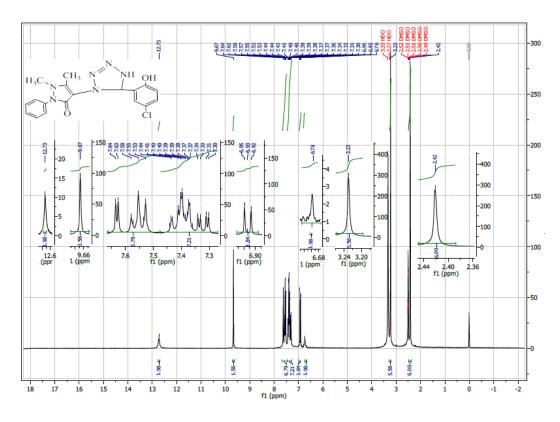


Fig. 6. ¹H-NMR Spectra of O₉

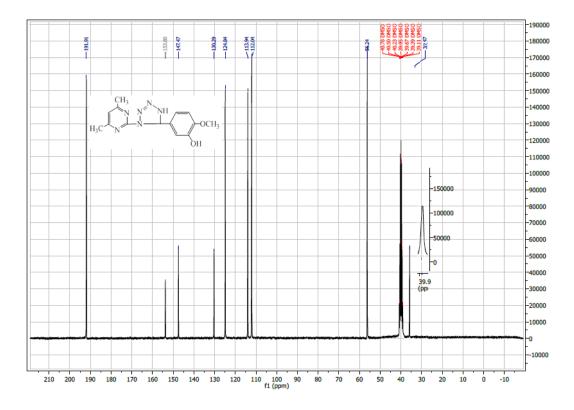
145

151

152

143

144


The 13 C-NMR spectrum of compound O_6 in DMSO solvent (Fig. 7) showed chemical shifts, $\delta(ppm)$, 37.47 (2 CH₃), 56.27 (O-CH₃), 191.91 (N-CH), 112.04-124.94 (Aromatic Carbons), 130.29-153.80 (Pyrimidine Carbons). While the spectrum of compound O_9 (Fig. 8) exhibited chemical shifts, $\delta(ppm)$, 9.79 (N-CH₃), 35.01 (=C-CH₃), 150.46 (CH₃-C=), 154.78 (CO-C=),

150 157.80 (N-<u>C</u>H), 158.59 (N-<u>C</u>O), 113.96-134.10 (Aromatic Carbons). Other chemical Shifts of

 O_7 , O_8 , O_{10} , $\delta(ppm)$ are displayed in table 6.

Table 6. The $^{13}\text{C-NMR}$ spectra of tetrazol derivatives $O_6\text{-}O_{10}$ in DMSO

Comp.	Chemical Shift δ ppm
code	
O_6	37.47 (2 <u>C</u> H ₃), 56.27 (O- <u>C</u> H ₃), 191.91 (N- <u>C</u> H), 112.04-124.94 (Aromatic Carbons), 130.29-
	153.80 (Pyrimidine Carbons)
O_7	182.49 (N- <u>C</u> H), 118.96-125.56 (Aromatic Carbons)
O_8	$10.33 \text{ (N-$\underline{\underline{C}}$H}_3$), 35.83 \text{ (=C-$\underline{\underline{C}}$H}_3$), 144.11 \text{ (CH}_3-$\underline{\underline{C}}$=), 152.34 \text{ (CO-$\underline{\underline{C}}$=)}, 159.99 \text{ (N-$\underline{\underline{C}}$H)}, 162.47$
	(N- <u>C</u> O), 115.08-128.22 (Aromatic Carbons)
O_9	9.79 (N- $\underline{C}H_{\underline{3}}$), 35.01 (=C- $\underline{C}H_3$), 150.46 (CH ₃ - \underline{C} =), 154.78 (CO- \underline{C} =), 157.80 (N- $\underline{C}H$), 158.59
	(N- <u>C</u> O), 113.96-134.10 (Aromatic Carbons)

Fig. 7. 13 C-NMR Spectra of O_6

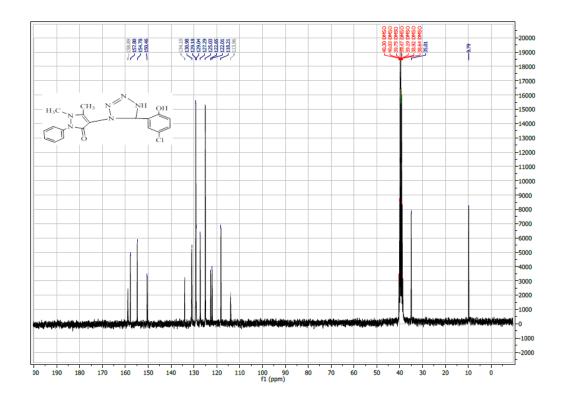


Fig. 8. ¹³C-NMR Spectra of O₉

Products of the reaction of the synthesized imine compounds with sodium azide are given in the following equation (**Scheme 9**):

$$NaN_{3} + R' = H$$

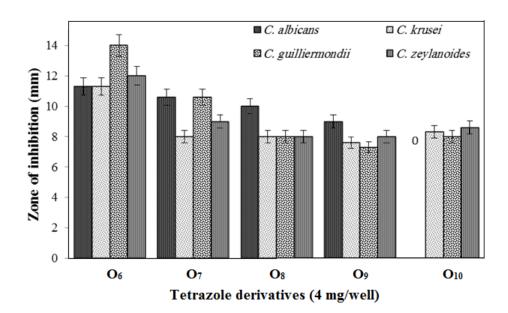
$$R' = H$$

$$R'' = H$$

$$R' = H$$

$$R'' =$$

Scheme 9. Structure of the synthesized tetrazol derivatives


It may be concluded that the reaction takes place via the concerted mechanism of the Huisgen 1,3-dipolar cycloaddition mechanism as represented in the following reaction.³¹ See **scheme 10**.

Scheme 10. Mechanism of tetrazol derivatives formation

The results of FT-IR ¹³C-NMR and ¹H-NMR showed that the five-ringed compounds were the least obstructed in all preparation processes. Because of the complete clarity in infrared beams and clear signals separated from each another by the resonance spectrum nuclear magnetic of hydrogen and carbon, this is the basis of organic preparation processes.

3. 3. Anti-Candidal activity

Zone of inhibition of some human pathogenic fungi was done well-diffusion method to test the potential of the tetrazol derivatives O₆-O₁₀ as shown in Figs. 8 and 9. O₆ is the best derivative that has significantly (*p*<0.01) recorded a stronger influence to inhibit the growth of *Candida guilliermondii* at an average of the zone of inhibition 14.0 mm. While, O₉ derivative recorded the lowest zone of inhibition 7.3 mm toward the same clinical fungal pathogen. From another hand, O₆ showed zone of inhibition 12.0 mm against *Candida zeylanoides*. Furthermore, O₆ derivative recorded zone of inhibition 11.3 mm against *Candida krusei* and *Candida abicans*. O₁₀ did not inhibit the growth of *Candida albicans* as shown in Fig. 9. The resistance mechanisms depend on which specific pathways are inhibited by the drugs and the alternative ways available for those pathways that the organisms can modify to get a way around to survive.³² Also, the synthesis heterocyclic compounds is useful against various pathogens such asviruses.^{33,34} Many new metal complexes and new 1,3-oxazepine derivatives had good antibacterial activity.^{35,36} Tetrazol derivatives are important to synthesize inflammatory agents.³⁷

Fig. 8. Zone of inhibition of *Candida* sp. using the synthesized tetrazole derivatives O_6 - O_{10}

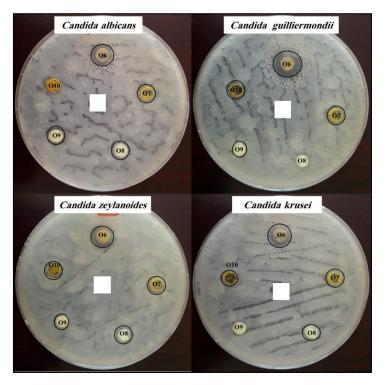


Fig. 9. Anti-Candidal activity of the synthesized tetrazole derivatives O_6 - O_{10}

4. Conclusion

Preparing derivatives of tetrazol was possible. The results of FT-IR, ¹³C-NMR and ¹H-NMR showed that the five-ringed compounds were the least obstructed in all preparation processes. Because of the complete clarity in infrared beams and clear signals separated from each another by the resonance spectrum nuclear magnetic of hydrogen and carbon, this is the basis of organic preparation processes. O₆ is the best derivative that has significantly (*p*<0.01) recorded a stronger influence to inhibit the growth of *Candida guilliermondii* at an average of the zone of inhibition 14.0 mm. While, O₉ derivative recorded the lowest zone of inhibition 7.3 mm toward the same clinical fungal pathogen. The present work may be helpful in designing more potential antibacterial and antifungal agents for therapeutic use in the future.

5. Acknowledgment

Special thanks to Anbar University's President Professor Dr. Khalid Battal Najim for his continuous support to publishing the research in certified international journals. Also, grateful is for Dr. Abdullah Hussein Kshash, Department of Chemistry, College of Education for Pure Sciences, University Of Anbar for helping to measurement the FT-IR spectra.

6. REFERENCES

- 1. A. Adabiardakani. M. Hakimi, H. Kargar, WA P journal. **2012**, 2, 472–476.
- 215 2. K. Brodowska, E. Chruścińska, *CHEMIK*. **2014**, *68*, 129–134.
- 3. W. Qin, S. Long, M. Panunzio, S. Biondi, *Molecules*. **2013**, *18*, 12264–12289.
- 4. O. Abid. R. Muslim, K. Mohammed, *J. Uni. Al-Anbar Pure Sci.* **2016**, *10*, 8–18.
- 218 5. M. Ashraf, K. Mahmood, A. Wajid, *IPCBEE*. **2011**, *10*, 1-7.
- 6. Z. Hussain, Z. Fadhil, H. Adil, M. Khalaf, B. Abdullah, E. Yousif, *RJPBCS*. **2016**, *7*, 1500–1510.
- 7. P. Mayavel, K. Thirumurthy, S. Dineshkumar, G. Thirunarayanan, *Umcschem. lxix* **2014**, 159–179.
- 8. N. Al-Jamali, M. Jameel, A. Al-Haidari, *Innovare Journal of Science*. **2013**, *1*, 13–15.
- 9. M. Dahot, E. Rind and M. Rafiq, *Pak. J. Biotechnol.* **2011**, 8, 67–72.
- 223 10. J. Mohammed, *DRJI*. **2016**, *3*, 12796–12804.
- 11. D. Varadarasi, S. Suban, V. Ramasamy, K. Kubendirran J. Raguraman, S. Nalilu, H. Pati,
- 225 *Organic Communications.* **2010**, *3*, 45–56.
- 12. K. Babu, V. Prabhakar, L. Ravindranath, N. Kishore, J. Latha, Res. J. Chem. Environ. Sci. 2016,
- *4*, 51–63.
- 228 13. Z. Al-Hakak, Pak. J. Biotechnol. 2017, 14, 417–422.
- 229 14. N. Sial, S. Abro, J. Shah, M. Memon, *Pak. J. Biotechnol.* **2016**, *1*, 67–71.
- 230 15. W. El-Sayed, R. Abdel Megeid, H. Abbas, Arch. Pharm. Res., 2011, 34, 1085–1096.
- 231 16. M. Malik and S. Al-Thabaiti, *Int. J. Mol. Sci.* **2012**, *13*, 10880–10898.
- 232 17. R. Al-Juburi, *Journal of Al-Nahrain University*. **2012**, *15*, 60–67.
- 18. P. Babu, L. Ravindranath, D. Rajesh, B. Saritha, World Journal of Pharmacy and Pharmaceutical
- 234 *Sciences.* **2016**, *5*, 929–940.
- 235 19. O. Abid, H. Tawfeeq, R. Muslim, *Acta Pharm. Sci.* **2017**, *55*, 43–55. **DOI**: 10.23893/1307-
- 236 2080.APS.05525
- 20. M. Murhekar and R. Khadsan, *J. Chem. Pharm. Res.* **2011**, *3*, 846–849.
- 238 21. H. Sabah, *Der Pharma Chemica*. **2014**, *6*, 38–41.
- 239 22. B. Srinivas, B. Prasanna, M. Ravinder, Der Pharma Chemica. 2016, 8, 84–93.
- 240 23. P. Ravula, H. Vamaraju, M. Paturi, N. Chandra, S. Kolli, *EXCLI Journal.* **2016**, *15*, 187–202.
- 24. M. Owaid, J. Raman, H. Lakshmanan, S. Al-Saeedi, V. Sabaratnam, I. Al-Assaffii, Mater. Lett.
- **2015**, *153*, 186–190. **DOI**: 10.1016/j.matlet.2015.04.023
- 25. R. Muslim, H. Tawfeeq, M.N. Owaid, O. Abid, Acta Pharmaceutica Sciencia 2018, 56, 39–57. DOI:
- 244 10.1248/bpb.b15-00698
- 26. R. Silverstein, F. Webster, D. Kiemle, Spectrometric identification of organic compounds, 7th
- edition, John Wiley and sons, Inc., **2005**, 72–126.

- 27. J. Simek, Organic Chemistry, 8th edition, Pearson education, Inc., 2013, 412–414.
- 28. O. Abid, R. Muslim, K. Mohammed, J. Uni. Anbar Pure Sci. 2016, 10, 1–9.
- 29. R. Silverstein, F. Webster, D. Kiemle, Spectrometric identification of organic compounds, 7th
- 250 edition, John Wiley and sons, Inc., **2005**, 127–202.
- 30. B. Mistry, A Handbook of spectroscopic Data chemistry, edition 2009, Oxford book company
- Jaipor India, Mehra Offset Printers, Delhi, 2009, 99–127.
- 253 31. R. Das, N. Majumdar, A. Lahiri, *IJRPC*. **2014**, *4*, 467–472.
- 254 32. F. Tenover, Am. J. Med. 2006, 119, 3–10.
- 33. M. F. El Shehry, J. Balzarini, C. Meier, *Synthesis*. **2009**, *5*, 841–847. **DOI**:10.1055/s-0028-
- 256 1083369
- 34. M. F. El Shehry, E. M. El Telbani, M. I. Hegab, *Acta Chim. Slov.* **2018**, *65*, 401–406. **DOI**:
- 258 10.17344/acsi.2017.4144
- 35. R. Ahmed, I. Majeed, A. Ahmed, E. Yousif., M. Al-Jeboori, *Chem Xpress.* **2016**, *9*(1), 61-68.
- 36. I. Jassim, I. Majeed, G. Al-Somaidaie, Tikrit Journal of pharmaceutical Sciences. 2009, 5(2),
- 261 147-155.
- 37. M. F. El Shehry, A. A. Abu-Hashem, E. M. El-Telbani. European Journal of Medicinal
- 263 *Chemistry* **2010**, *45*(*5*), 1906-1911.