© creative commons

Scientific paper

Optical Response of Two Azo Ligands Containing Salicyaldimine-based Ligand as Side Chains Towards Some Divalent Metal Ions and Their Antioxidant Behavior

Zohreh Shaghaghi^{1,*} and Gholamreza Dehghan²

¹ Department of Chemistry, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran

² Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran

* Corresponding author: E-mail: shaghaghi@azaruniv.ac.ir Phone: +98 4131452092; Fax: +984134327541

Received: 18-03-2018

Abstract

According to applicability of azo-azomethine compounds in chemical sensors and biological activities, two receptors: 1,2-[1-(3-imino-4-hydroxophenylazobenzene)]-4-nitrobenzene (1) and 1,2-[1-(3-imino-4-hydroxophenylazo-4-nitrobenzene)]-4-nitrobenzene)]-4-nitrobenzene (2) are investigated for detection of nickel, cobalt, copper, lead, mercury, zinc and cadmi-um divalent metal ions by UV-vis spectroscopy. With the addition of all metal ions to the DMSO solution of ligands, the peaks at 558 and 549 nm increase in intensity with hypsochromic or bathochromic shifts except Zn^{2+} ions and 2, while the peaks at 388 and 391 nm dramatically decrease in intensity. In both cases, the largest shift is observed after addition of copper ions. In solution, both receptors produce a cation blue shift from 558 and 549 nm to 503 and 497 nm with the sensible color change of solutions from purple-red to orange. Therefore, both compounds can highly recognize copper ions in DMSO solution. In the next step, Benesi-Hildebrand plot and Job's method are used for determination of binding constant (K_a) and stoichiometry of formed complexes, respectively. Also, the investigation of solvent effect in the UV-vis spectra of ligands shows that the generation of hydrazine and enaminone tautomers increases in highly polar solvents such as DMF and DMSO. Finally, the antioxidant activity of ligands is studied by DPPH method. The results show that NO₂ withdrawing groups in 1,2-[1-(3-imino-4-hydroxophenylazo-4-nitrobenzene)]-4-nitrobenzene probably affect keto-enol equilibrium. As a result, this ligand reduces free radicals to non-reactive species by donating hydrogen.

Keywords: Azo-Azomethine ligands; UV-vis spectroscopy; Optical response; DPPH method; Molecular receptors

1. Introduction

Schiff bases are common organic compounds which can be easily synthesized. Among Schiff base derivatives, azo dyes are very important. Azo-azomethine compounds contain both azo and imine units. These compounds are produced by condensation of an azo dye containing aldehyde groups with primary amines. Schiff bases and azo dyes have found applications in several fields such as medicinal, pharmaceutical and coordination chemistry. Some biological activities such as antifungal, antibacterial, antitumor, pesiticidal, antiviral and anti-inflammatory has been known for Schiff-bases²⁻⁷ and azo compounds. Because of the excellent donor properties of azo groups they are extensively used in coordination chemistry. Additionally, azomethine compounds can be used as chemosensors for metal ions and anions. They bind as ligands

to cations or interact with anions and therefore change color of the solution or maxima of absorbance band. ^{15–18}

Copper ions are important in metabolic processes, but in excess they can cause the imbalance of homeostasis leading to severe diseases such as Alzheimer's, Parkinson's, Mekne's, and Wilson's diseases. ^{19,20} Also copper ions are one of the materials that pollute environment and produce some problems in industry. Cobalt ions are dangerous pollutants. Cobalt can irritate respiratory system and cause lung diseases. ²¹ Therefore, the development of simple and selective chemosensors for copper and cobalt ions is necessary. ^{22,23} Previously, we reported easy methods for designing low cost sensors based on azo- azomethine ligands for recognition of copper and cobalt ions. ^{24,25} In progress, here we report synthesis, characterization and optical response of one new azo-salicyaldimine based ligand 1 (1,2-[1-(3-imino-4-hydroxophenylazobenzene)]-4-ni-

trobenzene) for detection of copper, lead, mercury, cobalt, nickel, cadmium and zinc divalent metal ions by spectrophotometry technique. Then, the response of azo-azomethine groups of compound 1 is compared with compound 2 (1,2-[1-(3-imino-4-hydroxophenylazo-4-nitrobenzene)] -4-nitrobenzene). Moreover, the antioxidant activity of both ligands is investigated against DPPH method.

2. Experimental

2. 1. General

1-(3-formyl-4-hydroxophenylazo)-4-nitrobenzene) and 1-(3-formyl-4- hydroxophenylazobenzene) were prepared according to previous methods. 1,26 Elemental analyses were performed on Elementar Vario ELIII. IR spectra were recorded on a FT-IR Spectrometer Bruker Tensor 27 in the region 4000–400 cm⁻¹ using KBr pellets. Electronic absorption spectra in the UV-vis region were obtained with T 60 UV/vis Spectrometer PG Instruments Ltd. NMR spectra were obtained on Bruker Avance 400 in DMSO with SiMe₄ as internal standard at room temperature.

2. 2. Synthesis of Ligands

2. 2. 1. 1, 2-[1-(3-imino-4-hydroxophenylazobenze ne)]-4-nitrobenzene (1)

1-(3-formyl-4-hydroxophenylazobenzene) (1.84)mmol, 0.416 g) in ethanol (30 mL) was added drop wise over one hour to an ethanol solution (15 mL) of 4-nitro-1,2-diaminobenzene (0.920 mmol, 0.141 g), the color of solution changed quickly and brown precipitation appeared. After refluxing for 4h, the mixture was filtrated. The residue solid was washed with ethanol, recrystallized in CH₂Cl₂/C₂H₅OH and dried (red-brown powder). Yield (0.314 g, 60%). IR (KBr, cm⁻¹) 3363 (OH group), 1617 (-C=N- imine), 1519 and 1489 (-N=N- cis and trans), 1343 and 1313 (NO₂ group), 1273 (CO phenolic), 1150, 1106, 858, 747, 688, 643. ¹H NMR (400 MHz, DMSO-*d*₆): 12.60 (s, 2H, OH), 9.09 (s, 1H, ArH), 8.56 (s, 2H, -HC=N-), 8.41 (d, 4H, J = 8.69 Hz, ArH), 8.01-8.05 (m, 6H, ArH),7.96 (d, 4H, J = 9.01 Hz, ArH), 7.20 (d, 1H, J = 8.90 Hz, ArH), 6.82 (d, 1H, J = 8.90 Hz, ArH), 6.76 (s, 2H, ArH),

Elem. Anal. Calcd for $C_{32}H_{23}O_4N_7$: C, 67.48; H, 4.04; N, 17.22. Found: C, 67.27; H, 3.91; N, 17.40.

2. 2. 2. 1,2-[1-(3-imino-4-hydroxophenylazo-4-nitrobenzene)]-4-nitrobenzene (2)

This ligand was prepared from condensation reaction between 1-(3-formyl-4-hydroxophenylazo-4-nitrobenzene) and 4-nitro-1,2-diaminobenzene in ethanol according to literature. Yield (0.394 g, 65%). IR (KBr, cm⁻¹) 3364 (OH group), 1609 (-C=N-imine), 1520 and 1489 (-N=N-cis and trans), 1342 (NO_2 group), 1286 (CO phenolic), 1147, 1105, 1102, 857, 747, 688. H NMR (400 MHz, DMSO- d_6): 12.60 (s, 2H, OH), 9.09 (s, 1H, ArH), 8.54 (s, 2H, -HC=N-), 8.41 (d, 4H, J=8.05 Hz, ArH), 8.03 (d, 6H, J=8.06 Hz, ArH), 7.95 (d, 2H, J=9.1 Hz, ArH), 7.21 (d, 1H, J=9.2 Hz, ArH), 6.81 (d, 1H, J=9.2 Hz, ArH), 6.76 (s, 2H, ArH), Elem. Anal. Calcd for $C_{32}H_{21}O_8N_9$: C, 58.27; H, 3.19; N, 19.12. Found: C, 58.82; H, 2.91; N, 19.32.

2. 3. Measurement of Radical Scavenging Activity

The ability of compounds 1 and 2 was investigated for removing free radicals by DPPH (1,1-diphenyl-2-pic-rylhydrazyl) using the method of litrature. The solutions of 1 or 2 in DMSO with concentrations of 10 to $60\mu g/mL$ were added to a methanol solution of DPPH (0.1 mM). The mixtures were shaken seriously. Then the absorption of solutions was measured at $\lambda = 517$ nm after 10 minutes. Finally, the percentage of radical scavenging was determined by the following equation: (A_C is the absorbance of free DPPH and A_S is the absorbance of DPPH after reaction with 1 or 2.)

$$RSA\% = 100 (A_C - A_S)/A_C$$
 (1)

3. Results and Discussion

3. 1. Synthesis and Characterization

Receptors **1** and **2** were synthesized from the condensation reaction of 1-(3-formyl-4-hydroxophenylazobenzene) or 1-(3-formyl-4-hydroxophenylazo-4-ni-

Scheme 1: Structures of azo-azomethine receptors

trobenzene) with 1,2-diamino-4-nitrobenzen benzene in ethanol and characterized by standard methods.

3. 1. 1. FT-IR and ¹H NMR Spectra

In the IR spectra of ligands, imine stretching vibration appears at 1617 cm⁻¹ for **1** and 1609 cm⁻¹ for **2**. The NO₂ symmetric and asymmetric stretching vibrations occur as sharp and strong bands at 1313 cm⁻¹ and 1343 cm⁻¹. Moreover, the vibrations of (-N=N-) groups as *cis* and *trans* forms are present at 1519 cm⁻¹ and 1489 cm⁻¹ respectively.

The structure of **1** and **2** are fully characterized by ¹H NMR spectroscopy. The formation of imine group is established by the appearance of the signal at 8.56 ppm in **1** and 8.54 ppm in **2**, depending on the substituent attached to the imine nitrogen atom. The OH proton signals appear as one singlet at 12.64 in **1** and 12.61 ppm in **2**. The aromatic proton signals appear in the range of 6.76–9.09 ppm (Scheme 1 and Table 1).

Table 1: ¹HNMR chemical shifts of ligands 1 and 2

An antioxidant acts via two mechanisms: one of them depends on the benzyl hydrogen atom and other follows the route of keto-enol form.²⁹ As shown in Fig. 1, compound 2 reveals high antioxidant activity against DPPH method (78% for 60 μg/mL), while compound 1 display low activity (less than 13% for 20 µg/mL). It seems that the possible mechanism for both compounds is the keto-enol route (Scheme 3). Several factors such as structure, temperature and solvent can affect the keto-enol equilibrium. The structure factors involve steric bulk, conjugation, electron-withdrawing/ donating groups and resonance.30 The structure of both compounds is similar (the only difference between two structures is the existence of NO₂ groups at the para position of azo units in 2) (Scheme 1). These NO₂ withdrawing groups in compound 2 probably affect keto-enol equilibrium. As a result, ligand 2 reduces free radicals to non-reactive species by donating hydrogen.

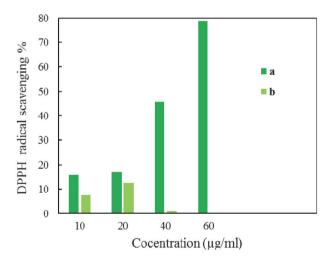
Chemical shi TMS (ppm)	ifts, δ Assignments ^a	J (Hz)	Chemical shifts, δ TMS (ppm)	Assignments ^a	J (Hz)
	Compound 1			Compound 2	
12.64	[s, 2H] (9, 15)		12.61	[s, 2H] (9, 15)	
9.10	[s, 1H] (13)		9.09	[s, 1H] (13)	
8.56	[s, 2H] (10, 14)		8.54	[s, 2H] (10, 14)	
8.42	[d, 4H] (3, 4, 21, 22)	8.69	8.41	[d, 4H] (3, 4, 21, 22)	8.05
8.01-8.05	[m, 6H] (2, 5, 7, 17, 20, 23)		8.03	[d, 6H] (2, 5, 7, 17, 20,23)	8.06
7.96	[d, 4H] (1, 8, 16, 19)	9.01	7.95	[d, 2H] (8, 16)	9.01
7.20	[d, 1H] (12)	8.90	7.21	[d, 1H] (12)	9.20
6.82	[d, 1H] (11)	8.90	6.81	[d, 1H] (11)	9.20
6.76	[s, 2H] (6, 18)		6.76	[s, 2H] (6,18)	

3. 2. Antioxidant Activity

The antioxidant activity of compounds 1 and 2 is investigated by DPPH radical scavenging method. In this method, radical DPPH reduces to its non-radical form in the presence of hydrogen-donating material that named antioxidant (Scheme 2).

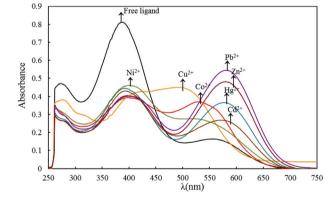
3. 3. UV-vis Spectroscopy Experiments

3. 3. 1. UV-vis Spectra of Ligands


Figs. 2 and 3 show the UV-vis spectra of receptors 1 and 2 in DMSO solution. Both compounds show one strong absorption band at $\lambda = 278$ nm corresponding to

$$O_2N$$
 O_2N
 O_2N

Scheme 2: DPPH radical and its stable form (DPPH= 1,1-diphenyl-2-picrylhydrazyl)


$$O_2N$$
 O_2N
 O_2N

 $\textbf{Scheme 3.} \ Suggested \ mechanism for 1,2-[1-(3-imino-4-hydroxophenylazo-4-nitrobenzene)] - 4-nitrobenzene \ as \ antioxidant \ mechanism for 1,2-[1-(3-imino-4-hydroxophenylazo-4-nitrobenzene)] - 4-nitrobenzene \ as \ antioxidant \ mechanism for 1,2-[1-(3-imino-4-hydroxophenylazo-4-nitrobenzene)] - 4-nitrobenzene \ as \ antioxidant \ mechanism for 1,2-[1-(3-imino-4-hydroxophenylazo-4-nitrobenzene)] - 4-nitrobenzene \ as \ antioxidant \ mechanism for 1,2-[1-(3-imino-4-hydroxophenylazo-4-nitrobenzene)] - 4-nitrobenzene \ as \ antioxidant \ mechanism for 1,2-[1-(3-imino-4-hydroxophenylazo-4-nitrobenzene)] - 4-nitrobenzene \ as \ antioxidant \ mechanism for 1,2-[1-(3-imino-4-hydroxophenylazo-4-nitrobenzene)] - 4-nitrobenzene \ as \ antioxidant \ mechanism for 1,2-[1-(3-imino-4-hydroxophenylazo-4-nitrobenzene)] - 4-nitrobenzene \ as \ antioxidant \ mechanism for 1,2-[1-(3-imino-4-hydroxophenylazo-4-nitrobenzene)] - 4-nitrobenzene \ mechanism for 1,2-[1-(3-imino-4-hydroxophenylazo-4-nitrobenzene] - 4-nitrobenzene \ me$

Fig. 1. Effects of 1,2-[1-(3-imino-4-hydroxophenylazo-4-nitrobenzene)]-4-nitrobenzene (**a**) and 1,2-[1-(3-imino-4-hydroxophenylazobenzene)]-4-nitrobenzene (**b**) against DPPH after 10 min

the $\pi \rightarrow \pi^*$ transition of aromatic rings, one broad absorption band at $\lambda = 388$ nm for 1 and 391 nm for 2 attributable to the $\pi \rightarrow \pi^*$ transition of azo groups and $\pi \rightarrow \pi^*$ or $n \rightarrow \pi^*$ transition of imine groups³¹ and the strong and broad absorption band at $\lambda = 558$ nm for 1 and 549 nm for 2 corresponding to the $n \rightarrow \pi^*$ transition of (-N=N) units.³²

Fig. 2. UV-vis spectra of ligand **1** (0.02 mM) before and after adding a 0.02 mM concentration of various metal acetates in a DMSO solution

The UV-vis absorption spectra of azo Schiff-base ligands 1 and 2 in CH_2Cl_2 , $CHCl_3$, CH_3OH and C_2H_5OH show main band at 364–382 nm which can be assigned to $\pi \rightarrow \pi^*$ transition of azo groups. However, in DMSO and DMF solution, the first band that located at 388-391 nm, similar to other solvents, is because of $\pi \rightarrow \pi^*$ transition of azo groups, while the second one which appeared at 549–558 nm can be assigned to an intramolecular charge transfer $n \rightarrow \pi^*$ transition of azo-aromatic chromophore (Fig. 4). 33,34 In general, the absorption bands of 1 and 2 at 364–

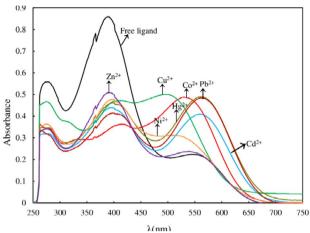
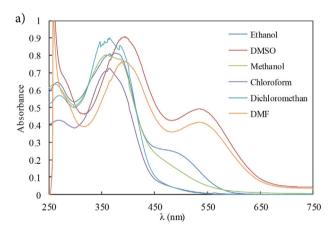



Fig. 3. UV–vis spectra of ligand 2 (0.01 mM) before and after adding a 0.01 mM concentration of various metal acetates in a DMSO solution

391 nm show bathochromic shift with polarity change of solvents.^{35,36} Also, the solvatochromism that exhibited by azo ligands may be to the effect of proton transfer or dipole moment changes in various solvents (in DMSO and DMF an additional absorption maximum is observed at 549–558 nm. This absorption is attributed to the existence of tautomeric form on highly polar solvents).^{37,38}

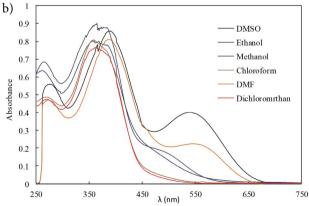


Fig. 4: UV-vis spectra of azo Schiff-bases 1 (a) and 2 (b) in various solvents $(\sim\!10^{-4}\,\mathrm{M})$

3. 3. 2. Cation Binding Studies

The optical response of $1 (2 \times 10^{-5} \text{ mol L}^{-1})$ for Cu^{2+} , Cd^{2+} , Co^{2+} , Zn^{2+} , Ni^{2+} , Pb^{2+} and Hg^{2+} as their acetate salts $(2 \times 10^{-5} \text{ mol L}^{-1})$ in DMSO is studied. As shown in Fig. 2, the broad bond at 558 nm rises in intensity after addition of Pb²⁺, Zn^{2+} , Hg^{2+} and Cd^{2+} ions to the DMSO solution of 1 with a bathochromic shift (+29 nm). The intensity of the band at 558 nm increases as fellow: Pb²⁺> Zn^{2+} > Hg^{2+} > Cd^{2+} . Upon the addition of Cu^{2+} and Co^{2+} ions to 1 the peak at 558 nm increases in intensity and shits to shorter wavelengths. The largest hypsochromic shift is seen after addition of copper ions (–55 nm) with the sensible color change of solution to orange. The peak at 388 nm shrinks in intensity with the addition of all studied cations. As shown in Fig. 2, no significant change is observed in the UV-vis spectrum of 1 after adding nickel ions.

The recognition ability of $\mathbf{2}$ (2 × 10⁻⁵ mol L⁻¹) for Cu²⁺, Cd²⁺, Co²⁺, Zn²⁺, Ni²⁺, Pb²⁺and Hg²⁺ as acetate salts (2 × 10⁻⁵ mol L⁻¹) in DMSO is shown in Fig. 3. Upon addition of Pb²⁺, Cd²⁺ and Hg²⁺ ions to $\mathbf{2}$, the peak at 549 nm increases in intensity with a bathochromic shift (almost +20 nm). Addition of Cu²⁺, Co²⁺and Ni²⁺ ions to the DMSO solution of $\mathbf{2}$ exhibits significant increase in peak intensity at 549 nm with a hypsochromic shift. Similarity to $\mathbf{1}$, the largest blue shift is obtained after addition of Cu²⁺ ions (–52 nm). As expected, addition of all metal ions to $\mathbf{2}$ shows decrease in peak intensity at 391 nm. It is notable that no significant change is observed in the UV-vis spectra of $\mathbf{2}$ after addition of Zn²⁺ ions.

In both cases, the changing in the UV-vis Spectra can be explained that: there is likely a fine balance between enol and keton forms of ligands in DMSO solution and the complexion of ligands with metal ions probably affect it. In additional, decreasing of $n\rightarrow\pi^*$ transition of imine groups in intensity shows nitrogen atoms of imine units coordinate to the metal ion center.^{39–41}

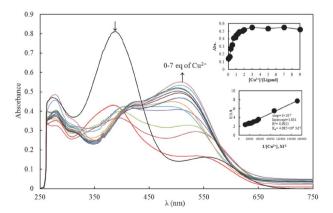


Fig. 5. Changes in the UV–vis spectra of 1 (0.020 mM) upon titration by $\text{Cu}(\text{CH}_3\text{COO})_2$ in a DMSO solution, where the concentration of $\text{Cu}(\text{CH}_3\text{COO})_2$ varies from 0.004–0.14 mM. Insets: above: Absorption at selected wavelength versus equivalents of cation added, down; Benesi–Hildebrand plot of the receptor with Cu^{2+} ion.

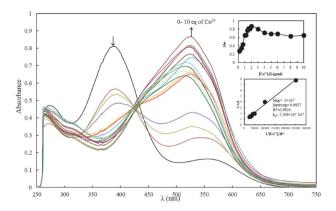
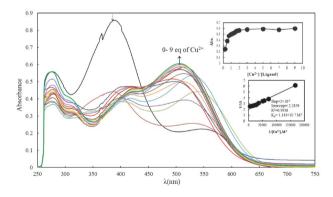



Fig. 6. Changes in the UV-vis spectra of 1 upon titration by $Co(CH_3COO)_2$ in a DMSO solution, where the concentration of $Co(CH_3COO)_2$ varies from 0.004–0.2 mM. Insets: above: Absorption at selected wavelength versus equivalents of cation added, down; Benesi–Hildebrand plot of the receptor with Co^{2+} ion.

2. 3. 3. Titrations with UV-vis Spectroscopy

Upon gradual addition of Cu²⁺ ions to DMSO solution of 1, the absorption at 558 nm gradually increases in intensity with hypsochromic shift to 503 nm and the peak at 388 nm strongly decreases in intensity (Fig. 5). Similarity to 1, with the progressive addition of Cu²⁺ ions to 2, the peak at 549 nm shifts to 497 nm and increases in intensity, while the peak at 391 nm dramatically decreases and finally disappears (Fig. 7). In both case, the color solution change from purple-red to orange after addition of copper ions.

Fig. 7. Changes in the UV–vis spectra of 2 (0.020 mM) upon titration by $\text{Cu}(\text{CH}_3\text{COO})_2$ in a DMSO solution, where the concentration of $\text{Cu}(\text{CH}_3\text{COO})_2$ varies from 0.004–0.18 mM. Insets: above: absorption at selected wavelength versus equivalents of cation added, down; Benesi–Hildebrand plot of the receptor with Cu^{2+} ion.

Upon successive addition of Co^{2+} to 1, a hypsochromic shift is observed from 558 to 525 nm. The peak at 525 nm rises with the gradual addition of cobalt ions to 1. The peak at 388 nm dramatically decreases in intensity and disappears after extra addition of Co^{2+} ions (Fig. 6). Finally, upon incremental addition of Co^{2+} to 2, $n\rightarrow\pi^*$ transition shifts from 549 nm to 537 nm. The peak at 537 nm gradu-

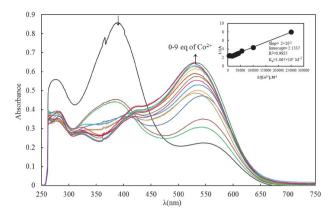


Fig. 8. Changes in the UV–vis spectra of 2 (0.020 mM) upon titration by $Co(CH_3COO)_2$ in a DMSO solution, where the concentration of $Co(CH_3COO)_2$ varies from 0.004–0.18 mM. Inset: Benesi–Hildebrand plot of the receptor with Co^{2+} ion.

ally increases in intensity while the peak at 391 nm decreases in intensity (Fig. 8).

The Job's plot results show a 1:1 binding stoichiometry for 1 and 2 with Cu²⁺. (the proposed structure of 1 and 2 with Cu²⁺ is shown in Scheme 4) while the 2:1 binding stoichiometry for 1 and 2 with Co²⁺ is determined by Job's plot experiments (Fig. 9).

In the next step, 1:1 association constants of 1 and 2 with Cu^{2+} are determined on the Benesi-Hildebrand plots⁴² at $\lambda = 503$ and 497 nm, respectively (Figs. 5 and 7). Correspondingly, assuming a 2:1 (1 or 2: cobalt ion) complex, the binding constants (K_a) are also calculated using the Benesi-Hildebrand method (Figs. 6 and 8). The resulting values are summarized in Tables 3 and 4. As shown, the ability of both receptors for recognition of Cu^{2+} metal ion is similar while the tendency of 1 for detection of Co^{2+} ion is higher than 2.

Table 2: UV-vis spectra data upon titration of compound ${\bf 1}$ with cations in DMSO

Ligand + cation	$\begin{array}{c} \text{Ligand,} \\ \lambda_{max} \\ (\text{nm}) \end{array}$	$\begin{array}{c} \text{Complex,} \\ \lambda_{max} \\ (nm) \end{array}$	$\begin{array}{c} \text{Hypsochromic} \\ \text{shift, } \Delta \lambda_{\text{max}} \\ \text{(nm)} \end{array}$	$K_{\mathbf{a}}$ (\mathbf{M}^{-1})
Ligand-Cu ²⁺		503	-55	4.085×10^{4}
Ligand-Co ²⁺	558	525	-33	2.309×10^4

Table 3: UV-vis spectra data upon titration of compound **2** with cations in DMSO

Ligand + cation	$\begin{array}{c} \text{Ligand,} \\ \lambda_{max} \\ (nm) \end{array}$	Complex, λ_{max} (nm)	Hypsochromic shift, $\Delta \lambda_{max}$ (nm)	K _a (M ⁻¹)
Ligand-Cu ²⁺ Ligand-Co ²⁺		497 537	-52 -12	$1.143 \times 10^5 \\ 1.067 \times 10^5$

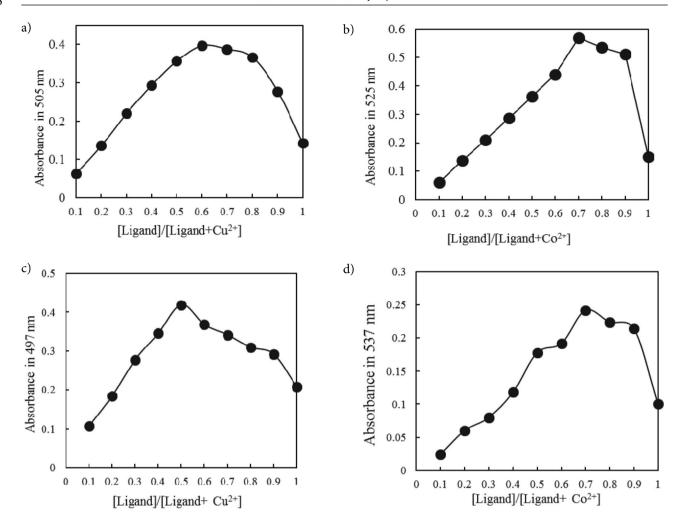
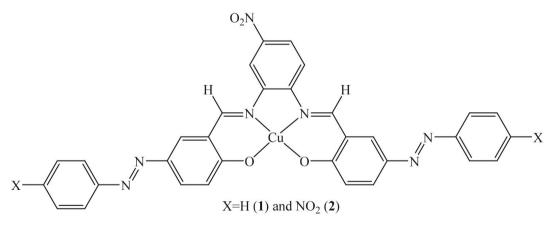



Fig. 9. Job plots for ligand 1 with Cu^{2+} (a) and Co^{2+} (b) and ligand 2 with Cu^{2+} (c) and Co^{2+} (d), where the absorptions are plotted against the mole fractions of ligands at an invariant total concentration of 2×10^{-5} M in DMSO.

Scheme 4. Suggested structure for ligands with Cu²⁺

4. Conclusion

At first new azo-azomethin derivative 1 was synthesized and characterized with some standard methods. Then the optical response of azo units of the synthesized compound was investigated for detection of some divalent met-

al ions by spectrophotometry technique. In the next step, the results of cation recognition by 1,2-[1-(3-imino-4-hydroxophenylazobenzene)]-4-nitrobenzene (1) was compared with 1,2-[1-(3-imino-4-hydroxophenylazo-4-nitrobenzene)]-4-nitrobenzene (2) (the only difference of

between two structures is the existence of nitro groups at the *para* positions of azo units in **2**). Study revealed the ability of both receptors for recognition of Cu²⁺ metal ion to be similar while the tendency of **1** for detection of Co²⁺ ion is higher than **2** (the binding constant of **1** with copper and cobalt ions is larger than **2**). Also, the investigation of solvent effect in the UV-vis spectra shows that the generation of hydrazine and enaminone tautomers increase in highly polar solvents such as DMF and DMSO. Moreover, the investigation of antioxidant activity of ligands with DPPH method indicates NO₂ withdrawing groups in compound **2** probably affect keto—enol equilibrium. As a result, ligand **2** strongly reduced free radicals to non-reactive species while compound **1** showed low activity.

5. Appendix

FT-IR and ¹H NMR spectra of compounds **1** and **2** are available in Appendix.

6. Acknowledgments

This work was supported by Azarbaijan Shahid Madani University (Project NO. 217/d/9401).

7. References

- H. Dincalp, F. Toker, I. Durucasu, N. Avcibasi, S. Icli, *Dyes Pig.* 2007, 75, 11–24. DOI:10.1016/j.dyepig.2006.05.015
- E. Gungor, S. Celen, D. Azaz, H. Kara, Spectrochim. Acta A.
 2012, 94, 216–221. DOI:10.1016/j.saa.2012.03.034
- S. A. Hudson, P. M. Maitlis, Chem. Rev. 1993, 93, 861–885.
 DOI:10.1021/cr00019a002
- 4. A. Halve, A Goyal, Orient. J. Chem. 2001, 12, 87-88.
- E. H. Saffa, D. M. Etaiw, E. A. Abd, H. A. E. Z. Eman, A. A. Elham, *Spectrochim. Acta A.* 2011, 79, 1331–1337.
 DOI:10.1016/j.saa.2011.04.064
- V. E. Kuzmin , V. P. Lozitsky, G. L. Kamalov, R. N. Lozitskaya,
 A. I. Zheltvay, A. S. Fedtchouk , D. N. Kryzhanovsky, *Acta Biochim. Pol.* 2000, 47, 867–875.
- G. Ceyhan, M. Kose, M. Tumer, I. Demirtas, A. S. Yağlioğlu, V. McKee, *J. Lumin.* 2013, 143, 623–634.
 DOI:10.1016/j.jlumin.2013.06.002
- M. Sarigul, P. Deveci, M. Kose, U. Arslan, T. H. Dagi, M. Kurtoglu, *J. Mol. Struct.* 2015, 1096, 64–73.
 DOI:10.1016/j.molstruc.2015.04.043
- D. Mahata, S. M. Mandal, R. Bharti, V. K. Gupta, M. Mandal, A. Nag, G. B. Nando, *Int. J. Biol. Macromol.* 2014, 69, 5–11. DOI:10.1016/j.ijbiomac.2014.05.017
- S. N. Pandeya, D. Sriram, G. Nath, E. DeClercq, Eur. J. Pharm.
 Sci. 1999, 9, 25–31. DOI:10.1016/S0928-0987(99)00038-X
- D. Das, N. Sahu, S. Mondal, S, Roy, P. Dutta, S. Gupta, T. K. Mondal, C. Sinha, *Polyhedron*, **2015**, *99*, 77–86.

- **DOI:**10.1016/j.poly.2015.06.027
- M. Sarigul, A. Sari, M. Kose, V. McKee, M. Elmastas, I. Demirtas, M. Kurtoglu, *Inorg. Chim. Acta.* 2016, 444, 166–175. DOI:10.1016/j.ica.2016.01.042
- C. Anitha, C. D. Sheela, P. Tharmaraj, S. Sumathi, Spectrochim. Acta A. 2012, 96, 493–500.
 DOI:10.1016/j.saa.2012.05.053
- M. Al-Noaimi, A. Hammoudeh, M. El-khateeb, F. F. Awwadi,
 D. Taher, A. Mansi, O. S. Abdel-Rahman, *Inorg. Chim. Acta.* 2017, 454, 222–228. DOI:10.1016/j.ica.2016.04.029
- V. Reena, S. Suganya, S. Velmathi, J. Fluor. Chem. 2013, 153, 89–95. DOI:10.1016/j.jfluchem.2013.05.010
- A. K. Mahapatra, S. K. Manna, P. Sahoo, *Talanta*, 2011, 85, 2673–2680. DOI:10.1016/j.talanta.2011.08.040
- M. Orojloo, S. Amani, *Talanta*, **2016**, *159*, 292–299.
 DOI:10.1016/j.talanta.2016.06.042
- N. Kaur, S. Kumar, *Tetrahedron*, 2011, 67, 9233–9264.
 DOI:10.1016/j.tet.2011.09.003
- E. L. Que, D. W. Domaille, C. Chang, J. Chem. Rev. 2008, 108, 1517–1549. DOI:10.1021/cr078203u
- D. Pramanik, C. Ghosh, S. G. Dey, J. Am. Chem. Soc. 2011, 133, 15545–15552. DOI:10.1021/ja204628b
- A. Shahat, M. Awual, M. Naushad, Chem. Eng. J. 2015, 271, 155–163. DOI:10.1016/j.cej.2015.02.097
- J. Cheng, L. Yang, X. Zeng, H. D. Zhao, D. Tian, Sens. Actuators B. 2016, 237, 495–500. DOI:10.1016/j.snb.2016.06.106
- G. Wang, H. Chen, Y. Chen, N. Fu, Sens. Actuators B. 2016, 233, 550–558. DOI:10.1016/j.snb.2016.04.119
- B. Shaabani, Z. Shaghaghi, A. A. Khandar, Spectrochim. Acta A. 2012, 98, 81–85. DOI:10.1016/j.saa.2012.07.097
- Z. Shaghaghi, Spectrochim. Acta A. 2014, 131, 67–71.
 DOI:10.1016/j.saa.2014.04.026
- 26. A. A. Khandar, Z. Rezvani, *Polyhedron* **1999**, *18*, 129–133. **DOI:**10.1016/S0277-5387(98)00275-7
- 27. K. Hamidian, M. Irandoust, E. Rafiee, M. Joshaghani, *Z. Naturforsch.* **2012**, *57b*, 159–164.
- 28. G. Dehghan, Z. Khoshkam, *Food Chem.* **2012**, *131*, 422–426. **DOI:**10.1016/j.foodchem.2011.08.074
- A. A. H. Kadhum, A. A. Al-Amiery, A. Y. Musa, A. B. Mohamad, *Int. J. Mol. Sci.* 2011, *12*, 5747–5761.
 DOI:10.3390/ijms12095747
- K. T. Smith, S. C. Young, G. W. DeBlasio, C. S. Hamann, J. Chem. Educ. 2016, 93, 790–794.
 - **DOI:**10.1021/acs.jchemed.5b00170
- 31. A. Arab Ahmadi, S. Amani, *Molecules*, **2012**, *17*, 6434–6448. **DOI**:10.3390/molecules17066434
- 32. H. Galen, G. Hennrich, J. D. Mendoza, P. Prados, *Eur. J. Org. Chem.* **2010**, 1249–1297. **DOI**:10.1002/ejoc.200901394
- 33. A. Kakanejadifard, F. Azarbani, A. Zabardasti, A. Rezayat, M. Ghasemian, S. Kakanejadifard, *Spectrochim. Acta A.* **2013**, *114*, 404–409. **DOI:**10.1016/j.saa.2013.05.027
- 34. M. Ghasemian, A. Kakanejadifard, F. Azarbani, A. Zabardasti, S. Kakanejadifard. *Spectrochim. Acta A.* **2014**, *124*, 153–158. **DOI:**10.1016/j.saa.2014.01.005
- 35. G. Kurtoglu, B. Avar, H. Zengin, M. Kose, K. Sayin, M. Kurtoglu, *J. Mol. Liquids* **2014**, *200*, 105–114.

- DOI:10.1016/j.molliq.2014.10.012
- M. Ghasemiana, A. Kakanejadifarda, F. Azarbani, A. Zabardasti, S. Shirali, Z. Saki, S. Kakanejadifard, Spectrochim. Acta A. 2015, 138, 643–647. DOI:10.1016/j.saa.2014.11.048
- 37. H. Khanmohammadi, M. Pass, K. Rezaeian, G. Talei, *J. Mol. Struct.* **2014**, *1072*, 232–237.
 - DOI:10.1016/j.molstruc.2014.05.014
- 38. H. Khanmohammadi, A. Abdollahi, *Dyes Pigm.* **2012**, *94*, 163–168. **DOI**:10.1016/j.dyepig.2011.12.013
- T. H. Kim, S. H. Kim, L. V. Tan, Y. G. Seo, S. Y. Park, H. Kim, J. S. Kim, *Talanta*, 2007, 71, 1294–1297.

- DOI:10.1016/j.talanta.2006.06.035
- Y. Dong, T. H. Kim, H. J. Kim, M. H. Lee, S. Y. Lee, R. K. Mahajan, H. Kim, J. S. Kim, *J. Electroanal. Chem.* 2009, 628, 119–124. DOI:10.1016/j.jelechem.2009.01.015
- T. H. Kim, S. H. Kim, L. Y. Tan, Y. Dong, H. Kim, J. S. Kim, *Talanta*, 2008, 74, 1654–1658.
 DOI:10.1016/j.talanta.2007.10.033
- 42. T. L. Kao, C. C. Wang, Y. T. Pan, Y. J. Shiao, J. Y. Yen, C. M. Shu, G. H. Lee, S. M. Peng, W. S. Chung, *J. Org. Chem.* **2005**, *70*, 2912–2920. **DOI:**10.1021/jo047880a

Povzetek

Glede na uporabo azo-azometinov v kemijskih senzorjih in zaradi njihove biološke aktivnosti smo raziskovali dva receptorja, 1,2-[1-(3-imino-4-hidroksofenilazobenzen)]-4-nitrobenzen (1) in 1,2-[1-(3-imino-4-hidroksofenilazo-4-nitrobenzen)]-4-nitrobenzen (2) za detekcijo nikljevih, kobaltovih, bakrovih, svinčevih, živosrebrovih, cinkovih in kadmijevih dvovalentnih ionov z UV-vis spektroskopijo. Z dodatkom kovinskih ionov v raztopino ligandov v DMSO se vrhovom pri 558 in 549 nm poveča intenziteta s hipokromnim ali batokromnim premikom, razen v primeru Zn^{2+} iona in 2, medtem ko se vrhovom pri 388 in 391 nm znatno zmanjša intenziteta. V obeh primerih se po dodatku bakrovih ionov pojavi največji premik. V raztopinah oba receptorja povzročita premik vrhov pri 558 in 549 nm na 503 in 497 nm z zaznavno barvno spremembo raztopin od vijolično-rdeče do oranžne barve. Obe spojini zelo dobro zaznavata bakrove ione v raztopini DMSO. V naslednjem koraku smo uporabili Benesi-Hildebrandove diagrame in Jobovo metodo za določanje konstant stabilnosti (K_a) in stehiometrije nastalih kompleksov. Proučevanje vpliva topil na UV-vis spektre ligandov kaže, da je pri polarnih topilih, kot sta DMF in DMSO, večji delež hidrazinskega in enaminonskega tautomera. Nadalje smo določili antioksidativno aktivnost ligandov z metodo DPPH. Rezultati kažejo, da NO_2 elektronakceptorske skupine na 1,2-[1-(3-imino-4-hidroksofenilazo-4-nitrobenzen)]-4-nitrobenzenu verjetno vplivajo na keto-enol ravnotežje. Rezultat tega je, da ligand pretvori proste radikale v nereaktivne zvrsti z doniranjem vodika.