

Scientific paper

A Dansyl-Rhodamine Based Fluorescent Probe for Detection of Hg²⁺ and Cu²⁺

Shizhuang Yuan,¹ Wei Su¹ and Enju Wang^{1,*}

¹ Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China

* Corresponding author: E-mail: enjuwang@163.com

Received: 13-04-2017

Abstract

A novel fluorescent probe based on dansyl-appended rhodamine B was developed. The probe can selectively recognize and sense Hg^{2+} and Cu^{2+} from other common metal ions by showing unique fluorescence and absorption characteristics. In MeCN/HEPES buffer solution, the probe gives a ratiometric fluorescent response to Hg^{2+} , which was ascribed to the fluorescence resonance energy transfer from dansyl moiety to the ring-opened rhodamine B moiety, while the presence of Cu^{2+} causes fluorescence quenching. Beside the fluorescence change, the presence of Cu^{2+} and Hg^{2+} can induce intensive absorption at about 555 nm, which resulted in a color change from colorless to pink.

Keywords: Rhodamine; Fluorescent probe; Copper ion; Mercury ion

1. Introduction

Copper and mercury are among the most ubiquitous of toxic heavy and transition metals in our environment due to their widespread use in industrial production and daily life. Copper overload is linked to brain damage and oxidative stress although it is an essential trace element. Additionally, copper is highly toxic to aquatic organisms and ecosystems. Mercury is a highly toxic element. All humans are exposed to some level of mercury because it diffuses globally through atmospheric circulation. In freshwater and marine food webs, the bioaccumulation of mercury is so efficient that the mercury levels in top predators, for example shark, may be thousands of times higher than in the surrounding water.² Therefore, the development of fluorometric or colorimetric probes for the fast and convenient detection of Cu2+ and Hg2+ in organisms and environment has attracted considerable attention.³⁻¹¹ In recent years, considerable efforts have been made to take advantage of rhodamine dyes in constructing fluorometric probes for metal ions, 12-16 and a number of excellent fluorescent probes for Cu²⁺ or Hg²⁺ have been reported. 17-18 However, the probes that can sense two or more mental ions separately were rarely reported. 19-21

In the present work, a novel fluorescent probe (**RD**) based on dansyl-appended rhodamine B was designed and

synthesized for detection of Hg²⁺ and Cu²⁺ (Scheme 1). In MeCN/HEPES buffer solution, it can give a ratiometric fluorescent response to Hg²⁺ and a fluorescent quenching response to Cu²⁺. Meanwhile, the probe can give colorimetric responses to Cu²⁺ and Hg²⁺.

2. Experimental

2. 1. Reagents and Apparatus

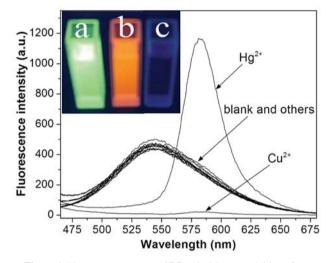
All chemicals were purchased from commercial suppliers and used as received without further purification. Rhodamine B derivative (compound 1 in Scheme 1) were prepared according to the published procedure. Analytical grade acetonitrile and deionised water were used in all spectral measurements. The samples of metal ions were prepared by dissolving the corresponding metal nitrates in water except the sample of Hg²⁺, which was obtained by dissolving mercuric sulfate in dilute nitric acid (0.1 mol/L).

¹H and ¹³C NMR spectra were recorded on a Bruker-400 spectrometer. ESI-MS spectra were performed on a Bruker Esquire HCT mass spectrometer. Fluorescence spectra were taken on a Hitachi F-7000 fluorescence spectrometer. UV-vis absorption spectra were measured on a TU-1901 spectrophotometer. The pH values were determinated on a PHS-3C digital pH meter.

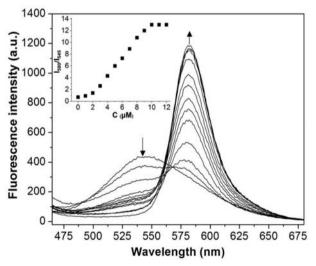
2. 2. Synthesis of the Probe RD

Under -25 °C, rhodamine B derivative 1 (0.69 g, 1.2 mmol), dansyl chloride (0.35 g, 1.3 mmol) and triethylamine (0.2 ml, 1.4 mmol) were combined in dichloromethane (20 mL) and then stirred for 6 h. After the solvent was evaporated under reduced pressure, the crude product was purified by column chromatography (petroleum ether/ethyl acetate, 1:1, v:v) to give **RD** as a red solid (0.59 g, 61%). ¹H NMR (400 MHz, CDCl₂) δ (ppm): 11.00 (s, 1H), 9.10 (s, 1H), 8.57 (d, 1H, J = 8.0 Hz), 8.39(d, 1H, J = 8.0 Hz), 8.04 (t, 1H, J = 7.2 Hz), 7.94 (d, 1H, J)= 7.2 Hz), 7.64 (t, 1H, J = 8.0 Hz), 7.52 (m, 2H), 7.41 (t, 1H, J = 8.0 Hz), 7.23 (d, 1H, J = 8.0 Hz), 7.15 (d, 1H, J =7.2 Hz), 6.92 (d, 1H, J = 8.0 Hz). 6.42 (m, 5H), 6.36 (s, 1H), 6.23 (d, 2H, J = 8.0 Hz), 3.31 (q, 8H, J = 6.8 Hz), 2.90 (s, 6H), 1.14 (t, 12H, J = 6.8 Hz). ¹³C NMR (100 MHz, CDCl₂) δ (ppm): 164.2, 159.6, 153.5, 151.9, 151.4, 151.3, 150.6, 149.1, 133.6, 132.1, 132.0, 131.2, 131.0, 129.95, 129.86, 129.8, 129.0, 128.6, 128.0, 124.2, 123.3, 123.0, 119.4, 117.7, 115.7, 112.8, 110.6, 108.1, 105.2, 97.9, 66.5, 45.4, 44.3, 12.6. ESI-MS m/z: 810.4 [M+H]⁺; calcd for C₄₇H₄₈N₅O₆S, 810.3 (Fig.S1-3).

Scheme 1. Synthesis of RD


3. Results and Discussion

3. 1. Fluorescence Responses to Hg^{2+} and Cu^{2+}


The fluorescence changes of **RD** were investigated in MeCN/H₂O solution (9/1, 10 mM HEPES buffer, pH 7.2) upon addition of a wide range of metal ions including Na⁺, K⁺, Ca²⁺, Mg²⁺, Al³⁺, Mn²⁺, Co²⁺, Ni²⁺, Cu²⁺, Cr³⁺, Ag⁺, Pb²⁺, Zn²⁺, Cd²⁺, Hg²⁺, Fe²⁺, and Fe³⁺. As shown in Fig. 1, **RD** alone displayed the emission of the dansyl moiety around 545 nm when excited at 370 nm. Upon addition of Hg²⁺, the emission at 545 nm decreased, and in the meantime the fluorescence of the rhodamine moiety near 580 nm was observed. Besides Hg²⁺, the presence of

Cu²⁺ has a great impact on the **RD** fluorescence, which was quenched by the addition of Cu²⁺. The fluorescence changes were visible to the naked eye: the addition of Hg²⁺ causes a fluorescence color change from green to orange, while the addition of Cu²⁺ leads to fluorescence disappearance (Fig. 1 inset). Except Hg²⁺ and Cu²⁺, no tested metal ions show any significant effect on the fluorescence spectrum of **RD**.

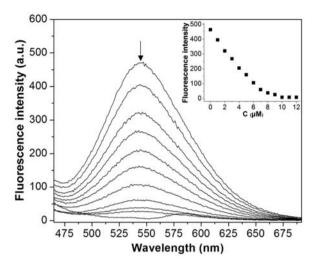

The fluorescence titrations of **RD** with Hg²⁺ and Cu²⁺ were carried out by the addition of increasing amount of Hg²⁺ or Cu²⁺, respectively, to **RD** solution. As shown in Fig. 2, upon gradual addition of Hg²⁺ the significant fluorescence enhancement at 580 nm, and mean-

Figure 1. Fluorescence spectra of **RD** (10 μ M) upon addition of various cations (10 μ M) in MeCN-H₂O solution (9/1, 10 mM HEPES buffer, pH 7.2) when excited at 370 nm. Inset: the fluorescence photographs of **RD** in the absence (a) and presence of Hg²⁺ (b) and Cu²⁺ (c) in dark-box ultraviolet analyzer when excited at 365 nm.

Figure 2. Fluorescence titration spectra of **RD** (10 μ M) with Hg²⁺ (0–12 μ M). Inset: the fluorescent intensity ratio (I_{580}/I_{545}) as a function of Hg²⁺ concentration.

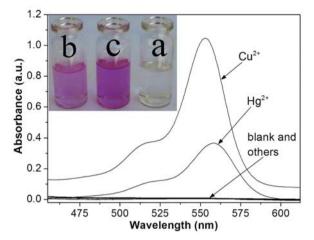
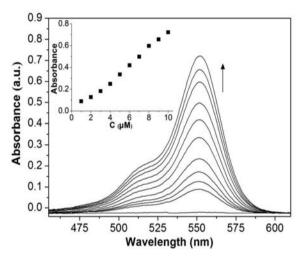


Figure 3. Fluorescence titration spectra of **RD** (10 μ M) with Cu²⁺ (0–12 μ M). Inset: the fluorescent intensity at 545 nm as a function of Cu²⁺ concentration.


while, the gradual fluorescence disappearance at 540 nm were observed, which should be ascribed to the fluorescence resonance energy transfer (FRET) from dansyl moiety to the ring-opened rhodamine moiety. Therefore, **RD** as a ratiometric fluorescent probe for Hg²⁺ was established. Fig. 3 shows the gradual fluorescence quenching along with the increase of Cu^{2+} concentration. Consequently, **RD** can serve only as a fluorescence-quenching probe for Cu^{2+} . The detection limits of **RD** for Hg²⁺ and Cu^{2+} were calculated to be 2.22×10^{-8} mol/L and 4.35×10^{-8} mol/L, respectively, with the equation DL = 3 δ /S (δ : the standard deviation of the blank solution; S: the slope of the calibration plot, Fig. S4–5).

3. 2. Colorimetric Signaling of Hg²⁺ and Cu²⁺

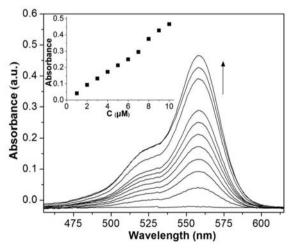

RD alone shows no absorption in the visible light region, so it is colorless. Upon addition of Cu²⁺ and Hg²⁺ separately, strong absorption appeared at 552 nm and 558 nm, respectively, along with a color change from colorless to pink. Obviously, the addition of Cu²⁺ induced a stronger absorption and thicker pink color than that of Hg²⁺. Excluding Cu²⁺ or Hg²⁺, all the other metal ions have no effect on the UV/vis spectrum of RD (Fig. 4). UV/vis absorption titration with Cu2+ and Hg2+ were recorded respectively in Fig. 5 and 6. The absorbance of RD was found to increase gradually with the increasing concentration of metal ions. In addition, a linear relationship between the absorbance and metal ions concentration was observed (Fig. 5 and 6, inset). This implies the possibility of quantitative determination of Cu²⁺/Hg²⁺ by spectrophotometry. The colorimetric detection limits of **RD** for Hg²⁺ and Cu^{2+} were calculated to be 4.17×10^{-7} mol/L and 1.36 \times 10⁻⁷ mol/L, respectively, with the equation DL = 3 δ /S (δ : the standard deviation of the blank solution; S: the slope of the calibration plot Fig. S6–7).

Figure 4. UV-vis spectra of **RD** (10 μ M) upon addition of various cations (10 μ M) in MeCN-H₂O buffer solution. Inset: Colors of **RD** solution before (a) and after the addition of Hg²⁺(b) or Cu²⁺(c) under natural light.

Figure 5. UV-vis spectra of **RD** (10 μ M) in the presence of different concentrations of Cu^{2+} (0–10 μ M) in MeCN-H₂O buffer solution. Inset: absorbance as a function of Cu^{2+} concentration.

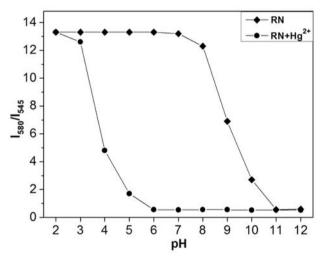


Figure 6. UV-vis spectra of **RD** (10 μ M) in the presence of different concentrations of Hg²⁺ (0–10 μ M) in MeCN-H₂O buffer solution. Inset: absorbance as a function of Hg²⁺ concentration.

3. 3. Effect of pH and Selectivities for Hg²⁺ and Cu²⁺

It is well known that the spiroring-opening of rhodamines can be induced by H⁺ besides metal ions, so it is necessary to investigate the pH effect on the fluorescence change of **RD**. The fluorescence intensity ratios (I₅₈₀/I₅₄₅) of **RD** in the absence and presence of Hg²⁺ at different pH values were shown in Fig.7. When pH>6.0, the fluorescence of **RD** without any interference was observed. When Hg²⁺ was added, the fluorescence intensity ratios were maintained at maximum value under pH<8.0. When pH>8.0, the ratiometric fluorescent responses rapidly disappeared. Therefore, the probe can be used in the pH range from 6.0 to 8.0. The pH value of 7.2 was chosen for all the spectral measurements in this work.

For evaluating the effects of common metal ions on the selectivity of **RD** for Hg²⁺/Cu²⁺, competition experi-

Figure 7. pH-dependent fluorescence intensity ratios of probe **RD** (10 μ M) in the absence and presence of Hg²⁺ (10 μ M).

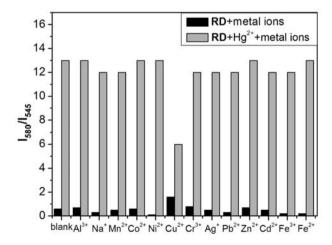
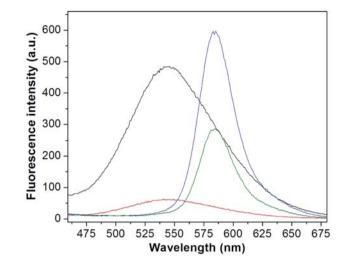



Figure 8. Selective responses of RD (10 μ M) to 10 μ M Hg²⁺ in the presence of 10 μ M various other ions.

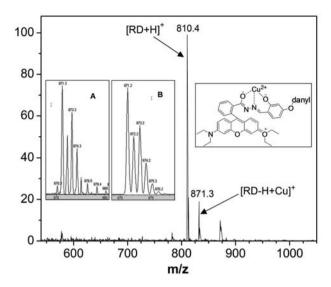


Figure 9. Fluorescence spectra of 10 μ M **RD** (black) upon successive addition of 8 μ M Cu²⁺ (red), 8 μ M Hg²⁺ (blue) and then 8 μ M Cu²⁺ (green).

ments were carried out by measuring the fluorescence spectra of **RD** in the presence of testing ions and various interfering metal ions. As can be seen from Fig. 8, the highly selective response of **RD** to Hg²⁺ was observed in the presence of various interfering metal ions except Cu²⁺ which can partially quench the Hg²⁺-induced fluorescence. The interactive effect between Hg²⁺ and Cu²⁺ was examined by measuring fluorescence of **RD** upon successive addition of Cu²⁺, Hg²⁺ and then Cu²⁺. As shown in Fig. 9, the presence of Cu²⁺ induces a fluorescence quenching at 545 nm. The subsequent addition of Hg²⁺ causes a new fluorescence enhancement at 580 nm, which decreases following the addition of Cu²⁺.

3. 4. Binding Mode and Signaling Mechanism

As is well known, the rhodamine-based probes give turn-on fluorescence responses to specific metal ions by way of coordination between them and the subsequent spirolactam ring-opening. To determine the stoichiometry between Hg²⁺/Cu²⁺ and **RD**, Job's plots were employed by using the absorbance as functions of molar fraction of Hg²⁺/Cu²⁺. For both metal ions, the maximum absorbance appeared when molar fractions are 0.5, indicating 1:1 stoichiometry for **RD-**Hg²⁺ and **RD-**Cu²⁺ complexes (Fig. S8). The binding mode of **RD-**Cu²⁺ complex was further illuminated by ESI-MS testing of RD in the presence of 1.2 equiv of $Cu(NO_3)_2$. As seen in Fig. 10, a peak with m/z871.3 was observed, which was assigned to [RD-H+Cu]⁺ (calcd. 871.2). The observed and calculated isotopic patterns agree well with each other (Fig. 10, inset). The presence of [RD-H+Cu]+ suggests the deprotonation of the phenolic hydroxyl upon the coordination of RD with Cu²⁺. Based on above discussion, the coordination structure of RD-Cu²⁺ complex was proposed as shown in Fig. 10 inset. It is regrettable that the peak corresponding to

Figure 10. ESI-MS spectrum of **RD** in the presence of Cu(NO₃)₂. Inset: observed (A) and calculated (B) isotopic patterns for [**RD**-H+Cu]⁺, and the proposed coordination pattern of **RD**-Cu2+ complex.

RD-Hg²⁺ complex was not observed, but it can be infered that Hg²⁺ should coordinate with **RD** just like Cu^{2+} . The Cu^{2+} -induced fluorescence quenching should be ascribed to the fact that paramagnetic Cu^{2+} is the most notorious fluorescence quencher. ^{27–30}

4. Conclusion

In summary, a new probe based on dansyl-appended rhodamine B, which is capable of detecting Cu²⁺ and Hg²⁺, has been developed. Free **RD** emits green fluorescence. The presence of Cu2+ can cause the green fluorescence quenching. Upon addition of Hg²⁺, an orange fluorescence enhancement and meanwhile the disappearance of the green emission were observed, which was ascribed to the fluorescence resonance energy transfer from dansyl moiety to the ring-opened rhodamine B moiety. Additionally, the probe can give colorimetric responses to Cu²⁺ and Hg²⁺ by producing intense absorptions at 552 nm and 558 nm, respectively, which resulted in a color change from colorless to pink. Other common metal ions including heavy and transition metal ions have no effect on the fluorometric and colorimetric responses to Hg²⁺ and Cu2+.

5. Acknowledgements

This work is supported by the Natural Science Foundation of Hainan Province (No. 20162028), the National Natural Science Foundation of China (21162010) and Program for Innovative Research Team in University (IRT-16R19)

6. References

- H. Tapiero, D. M. Townsend and K. D. Tew, *Biomed. Pharmacother.*, 2003, 57, 386–398.
 doi:10.1016/S0753-3322(03)00012-X
- 2. P. M. Bolger and B. A. Schwetz, *N. Engl. J. Med.*, **2002**, *347*, 1735–1736. doi:10.1056/NEJMp020139
- 3. X. Chen, J. Wang, J. Cui, Z. Xu and X. Peng, *Tetrahedron*, 2001, 67, 4869–4873.
 - http://dx.doi.org/10.1016/j.tet.2011.05.001
- C. X. Yin, L. J. Qu and F. J. Huo, *Chin. Chem. Lett.*, **2014**, 25, 1230–1234. http://dx.doi.org/10.1016/j.cclet.2014.06.017
- X. B. Li, Z. G. Niu, L. L. Chang, M. X. Chen and E. J. Wang, *Chin. Chem. Lett.*, 2014, 25, 80–82. http://dx.doi.org/10.1016/j.cclet.2013.08.002
- J. Huang, X. Ma, B. Liu, L. Cai, Q. Li, Y. Zhang, K. Jiang and S. Yin, *J. Lumin.*, 2013, 141, 130–136. http://dx.doi.org/10.1016/j.jlumin.2013.03.038
- T. He, C. Lin, Z. Gu, L. Xu, A. Yang, Y. Liu, H. Fang, H. Qiu,
 J. Zhang and S. Yin, Spectrochim. Acta A, 2016, 167, 66–71. https://doi.org/10.1016/j.saa.2016.05.032
- X. He, J. Zhang, X. Liu, L. Dong, D. Li, H. Qiu and S. Yin, Sensor. Actuat. B-Chem., 2014, 192, 29–35. https://doi.org/10.1016/j.snb.2013.10.093
- S. Yin, V. Leen, S. Van Snick, N. Boens and W. Dehaen, Chem. Commun. 2010, 46, 6329–6331.
 Doi:10.1039/C0CC01772H
- J. Chen, W. Shu and E. Wang, Chem. Res. Chinese Universities, 2016, 32(5), 742–745.
 doi:10.1007/s40242-016-6001-1
- C. Wang, D. Zhang, X. Huang, P. Ding, Z. Wang, Y. Zhao and Y. Ye, Sensor. Actuat. B-Chem., 2014, 198, 33–40. http://dx.doi.org/10.1016/j.snb.2014.03.032
- 12. X. Chen, T. Pradhan, F. Wang, J. S. Kim and J. Yoon, *Chem. Rev.*, **2012**, *112*, 1910–1956. doi:10.1021/cr200201z
- H. N. Kim, M. H. Lee, H. J. Kim, J. S. Kim and J. Yoon, *Chem. Soc. Rev.*, 2008, 37, 1465–1472. doi:10.1039/B802497A
- S. Ji, X. Meng, W. Ye, Y. Feng, H. Sheng, Y. Cai, J. Liu, X. Zhu and Q. Guo, *Dalton Trans.*, 2014, 43, 1583–1588.
 doi:10.1039/C3DT52422A
- J. Piao, J. Lv, X. Zhou, T. Zhao and X. Wu, Spectrochim. Acta A, 2014, 128, 475–480. http://dx.doi.org/10.1016/j.saa.2014.03.002
- S. Ma, Z. Yang, M. She, W. Sun, B. Yin, P. Liu, S. Zhang and J. Li, *Dyes Pigments*, **2015**, *115*, 120–126. http://dx.doi.org/10.1016/j.dyepig.2014.12.014
- Z. Yang, M. She, J. Zhang, X. Chen, Y. Huang, H. Zhu, P. Liu, J. Li and Z. Shi, *Sensor. Actuat. B-Chem.*, 2013, 176, 482–487. http://dx.doi.org/10.1016/j.snb.2012.07.035
- 18. X. Chen, X. Meng, S. Wang, Y. Cai, Y. Wu, Y. Feng, M. Zhu and Q. Guo, *Dalton Trans.*, **2013**, *42*, 14819–14825. doi: 10.1039/C3DT51279G
- L. Xu, Y. Xu, W. Zhu, X. Sun, Z. Xu and X. Qian, RSC Adv., 2012, 2, 6323–6328.

- doi: 10.1039/C2RA20840G
- M. Wang, F. Yan, Y. Zou, L. Chen, N. Yang and X. Zhou, Sensor. Actuat. B-Chem., 2014, 192, 512–521. http://dx.doi.org/10.1016/j.snb.2013.11.031
- Y. Hu, Q. Li, H. Li, Q. Guo, Y. Lu and Z. Li, *Dalton Trans.*,
 2010, 39, 11344–11352. doi:10.1039/C0DT00737D
- 22. Y. Xiang, A. Tong, P. Jin and Y. Ju. *Org. Lett.*, **2006**, *8*, 2863–2866. doi: 10.1021/ol0610340
- Z. Hu, J. Hu, Y. Cui, G. Wang, X. Zhang, K. Uvdal and H. W. Gao, *J. Mater. Chem. B*, **2014**, 2, 4467–4472.
 doi: 10.1039/C4TB00441H
- 24. H. J. Kim, S Yoon, N. Park, J. S. Kim and M. H. Lee, *Org. Lett.*, **2008**, *10*, 213–216. doi: 10.1021/ol702558p
- P. Xie, F. Guo, R. Xia, Y. Wang, D. Yao, G. Yang and L. Xie, *J. Lumin.*, 2014, 145, 849–854. http://dx.doi.org/10.1016/j.jlumin.2013.09.003

- P. Xie, F. Guo, L. Wang, S. Yang, D. Yao and G. Yang, *J. Fluoresc.*, 2015, 25, 319–325.
 doi:10.1007/s10895-015-1511-7
- J. H. Ding, L. D. Yuan, L. Gao and J. W. Chen, *J. Lumin.*,
 2012, 132, 1987–1993.
 http://dx.doi.org/10.1016/j.jlumin.2012.03.039
- 28. S. He, Q. Liu, Y. Li, F. Wei, S. Ci, Y. Lu and X. Zeng, *Chem. Res. Chinese. Universities*, **2014**, *30*, 32–36. doi:10.1007/s40242-014-3364-z
- A. Sikdar, W. Roy, K. Haldar, S. Sarkar and S. S. Panja, *J. Fluoresc.*, 2013, 23, 495–501.
 doi:10.1007/s10895-013-1169-y
- Y. Yang, C. Gao, B. Li, L. Xu and L. Duan. Sensor. Actuat. B-Chem., 2014, 199, 121–126. http://dx.doi.org/10.1016/j.snb.2014.03.064

Povzetek

Razvili smo novo fluorescenčno senzorsko probo, osnovano na rodaminu B s pripeto danzilno skupino. Proba lahko selektivno prepoznava in zaznava Hg^{2+} in Cu^{2+} ione preko edinstvenih fluorescenčnih in absorpcijskih lastnosti, ne pa tudi ostalih običajnih kovinskih ionov. V pufrski raztopini MeCN/HEPES daje proba raciometrični fluorescenčni odgovor na Hg^{2+} , ki ga pripisujemo fluorescenčnemu resonančnemu prenosu energije z danzilne skupine na odprti obroč rodamina B, medtem ko prisotnost Cu^{2+} povzroči dušenje fluorescence. Poleg sprememb v fluorescenci prisotnost Cu^{2+} in Hg^{2+} povzroči tudi intenzivno absorpcijo pri približno 555 nm, zaradi česar se barva spremeni iz brezbarvne v rožnato.