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Abstract3

The ratio of conductances through carbon-ring based molecules are calculated for4

various positions of source-drain electrode leads on the molecule. These ratios are5

usually integers – the so-called magic numbers. We find that deviations of the magic6

number ratios are either zero or quadratic in ratios of tight-binding model parameters.7

Introduction8

Charge transport through nanostructures represents a challenge from the experimental point9

of view as well as for theoretical approaches1. Most of experimental work so far has been10

done for semiconducting structures2 as promising candidates for tailoring various electronic11

devices, such as single electron transistors3 and charge or spin quantum bits4. One of the12

advantages of semiconductor techology is its versitility in formating structures on demand,13
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with reliable and reproducible gating and connectivity to external leads. A disadvantage14

of these structures is their relatively large spatial extend limiting functional operation to15

low temperatures. For possible applications to sensors or quantum infromation processing16

devices room-temperatures operation is desired, which demands reduction of device size17

leading to larger energy scale. Molecules connected to metalic leads therefore represent18

ideal candidates for devices where phase-coherent transport between attached electrondes is19

required at moderate temperatures5,6.20

In general, nanostructures exhibit an extremely rich spectrum of quantum phenomena.21

In particular, in conductance measurements strong electron-electron interaction leads to22

Coulomb blockade7, the Kondo effect8, various spin dependent anomalies9,10 or instabili-23

ties due to vibrational degrees of freedom, where different electron-phonon interactions can24

play an important role11,12. Due to large coherence lengths in clean structures, interference25

effects also play an essential role in transport through the nano-device, as was recently stud-26

ied experimentally even at room temperature13–21. Small graphene based nanostructures27

are well-defined since they are nearly defect-free which enables reproducible conductance28

measurements exibiting subtle interference effects22–24.29

Here we concentrate on “magic” ratios, found recently in connectivity driven electrical30

conductance of graphene-like aromatic molecules25. Theoretical analyis of experiments using31

mechanically controlled break junctions to measure electrical conductance of such molecules32

reveal specific ratios between different connectivity geometry of external leads. These magic33

ratios appear in the regime of particle-hole symmetically filled molecules, where the chemical34

potential is located at the HOMO-LUMO mid-gap. Numerical analysis has been performed35

for a tight-binding approximation of a molecule weakly coupled to charge reservoirs connected36

to the graphene molecule via linear carbon chains referred to as source and drain leads. In37

this paper we analyse the stability of magic numbers, with respect to changes of the coupling38

to the leads and also due to changing to potential of top gates (not shown) which in turn39

change the electron occupation of the molecule.40
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Model and methods41

We consider polycyclic aromatic hydrocarbon-like graphene structures, coupled to two met-42

alic electrodes, via source and drain leads. This is shown schematically in Fig. 1 for the case43

of a benzene molecule.44
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Figure 1: A benzene-like structure (molecule) attached to the leads.

To model such a system we adopt the effective Hamiltonian45

H = H
molecule

+H
leads

+H
coupling

,

where the molecule is described in terms of a tight-binding Hamiltonian46

H
molecule

=

X

i,�

"ini,� �
X

i,j,�

�jic
†
j,�ci,�.

Here i in j run over the sites of the molecule, i.e., the pz orbitals on each of the carbon atoms,47

c†i,� and ci,� are the electron creation and anihilation operator, respectively, for site i and spin48

�, and ni,� = c†i,�ci,� is the electron number operator. "i are the on-site energies controlled by49

the top gate voltage with energy zero being the Fermi-energy in the leads in the limit of zero50

source-drain bias. They may also be influenced by the electrodes attached to the leads. To51

be specific in what follows, we assign a uniform on-site energy "0 to all molecular sites, which52

includes the effect of the top gate voltage. However, we allow on-site energies on the two sites53

where the leads are attached to the molecule to take a different value of "1. �ji are hopping54

integrals. Taking into account that next nearest neighbor hopping integrals in graphene are55
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at least an order of magnitude smaller than nearest neighbor hopping integrals26, in what56

follows we neglect all but nearest neighbor hopping integrals, for which we take a uniform57

value of �1.58

The leads, modelled as carbon-atom chains with sites connected by nearest neighbor59

hopping integrals �0, have Hamiltonian,60

H
leads

=

X

↵,i,�

"↵,in↵,i,� � �0
X

↵,i,�

c†↵,i+1,�c↵,i,� + H.c.

Here ↵ 2 {s, d} labels the source and drain leads, respectively, and i runs over the sites of61

a lead. c†↵,i,�, c↵,i,� and n↵,i,� = c†↵,i,�c↵,i,� are the electron creation, anihilation operator and62

the electron number operator for lead sites, respectively.63

The couplings between leads and the molecule are64

H
coupling

= �V
X

↵,�

c†↵,1,�ci↵,� + H.c.

Here V is the hopping integral between the lead site closest to the molecule and the molecular65

site i↵ to which lead ↵ is attached.66

The electron-electron and the electron-phonon interactions are not considered here -67

the systems are not in the Coulomb blockade regime and the Kondo temperature is, due to68

weak Coulomb interaction regime considered here, much lower than temperatures of interest.69

However, some interesting features due to the electron correlations in benzene were found70

recently27,28.71

In the absence of many-body effects, the conductance of such a molecule, i.e., the propor-72

tionality coefficient between the current through the molecule and the voltage V
sd

applied73

between the source and the drain electrode, is, in the limit of vanishing V
sd

, given by the74

Landauer-Büttiker formula29,30,75

G = G0

Z
T (")

 

�@f (")

@"

!

d",
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where G0 = 2e2/h is the conductance quantum, with e and h being the electron charge and76

the Planck constant, respectively. T (") is the transmission probability through the molecule77

at energy ". f(") = (exp

"�µ
kBT +1)

�1 is the equillibrium Fermi function of the leads with µ and78

T being their chemical potential and temperature, respectively, and kB being the Botzmann79

constant. For the sake of convenience we set the chemical potential to the middle of the80

band in the leads and vanishing on-site energies in the leads, µ = "↵,i = 0.81

To calculate the transmission probability T (") we need to find the scattering eigenstate82

| i of the Hamiltonian for an electron with energy " and spin �, incoming from the source83

electrode,84

H| i = "| i.

We expand such an eigenstate in the local basis states of the molecule c†j,�|0i and the leads85

c†↵,i,�|0i86

| i =
X

i

 ic
†
i,�|0i+

X

↵,i

 ↵,ic
†
↵,i,�|0i.

The wavefunction in the source electrode is a linear combination of an incoming and a87

reflected plane wave,  
s,j = e�ikj

+ reikj, while the wavefunction in the drain electrode88

consists of a transmitted wave,  
d,j = teikj. The wavevector k can be calculated from the89

dispersion relation of the leads, " = �2�0 cos k. r and t are the reflection and the transmission90

amplitude, respectively. The transmission probability is T (") = |t|2.91

Here we demonstrate the method of calculating the transmission probability T (") for92

the case of the simplest possible molecule, namely a single site with the on-site energy of "093

coupled to two leads. The Schrödinger equation for such a system reads as a set of linear94

equations for t, r and  095

��0
⇣
e�2ik

+ re2ik
⌘
� V  0 = "

⇣
e�ik

+ reik
⌘
,

�V
⇣
e�ik

+ reik
⌘
+ "0 0 � V teik = " 0,

�V  0 � �0te
2ik

= "teik.
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By eliminating r and  0 we find the transmission amplitude,96

t =
i2V

2

�0
sin k

"� "0 +
2V 2

�0
eik

.

A Breit-Wigner resonance of width �0 = �

s

+�

d

, where �

s

= �

d

=

2V 2

�0
are the partial width97

due to coupling to the source and the drain electrode, respectively, forms at energy "0 in the98

transmission probability in the wide band limit where �0 � ", "0,�0,99

T (") =

⇣
�0
2

⌘2

("� "0)
2
+

⇣
�0
2

⌘2 .

Generalization to more general molecules with arbitrary topology is straightforward. In100

the limit of weak coupling to the leads, � =

2V 2

�0
⌧ �1, the transmission probability consists101

of similar resonances, positioned at eigenenergies of the molecule.102

Results103

As shown in Fig. 2(a-c), sites of graphene-like molecules we consider in this work form a104

bipartite lattice, i.e. they break up into two sublattices in such a way that unprimed sites105

1, 2, 3 . . ., forming one sublattice, are connected only to primed sites 10, 20, 30 . . ., forming the106

other sublattice. The Hamiltonian of such a system possesses particle-hole symmetry31. In107

the molecules considered here, this symmetry is actually weakly broken due to next nearest108

neighbour hopping integrals �2. Since, as discussed in Sec. 2, �2/�1 ⌧ 1 for structures con-109

sidered in this work, we neglect such terms in what follows. Therefore, the conductance as a110

function of the top gate voltage "0 is even with respect to the particle-hole symmetric point111

"0 = 0, where the Fermi energy of the leads coincides with the center of the HOMO-LUMO112

gap. This is shown in Fig. 2 where the zero temperature and room temperature conduc-113

tances are plotted as a function of top gate voltage for benzene, naphthalene and anthracene114

molecules for a particular choice of sites to which electrodes are attached. The zero temper-115
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ature conductance curves consist of a set of resonances, each corresponding to a molecular116

level being at the Fermi energy of the electrodes. The width of a resonance measures the117

coupling of the molecular level to the electrodes. Note that some of the resonances are split118

due to degeneracy of molecular orbitals. At room temperature, i.e., T = 300K ⇠ 0.01�1,119

with �1 = 2.5 eV as appropriate for graphene32, thermal broadening only slightly lowers the120

peak heights, increases their widths and broadens minima. Within the HOMO-LUMO gap121

the effect of finite temperature is negligible at room temperature. As we will concentrate on122

the vicinity of the center of the HOMO-LUMO gap in the rest of this work, the calculations123

will be done at zero temperature in what follows.124
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Figure 2: Conductance as a function of top gate voltage of the (a) benzene, (b) naphthalene,
and (c) anthracene molecule when one electrode is connected to site 1 and the the other is
connected to site 1’ of the molecule, at T = 0 (black lines) and at the room temperature
(red lines). The coupling of an electrode to the molecular site is � = �1/5.

We now study the dependence of the conductance on the on-site energy "0 incorporating125

the top gate voltage and the coupling � of an electode to a molecular site, for different126

combinations of molecular sites to which the electrodes are attached. Let us first discuss127

the situation at the particle-hole symmetric point (indicated by arrows in Fig. 2), when the128

coupling to the leads � is weak25. If the leads are connected to two sites in the same sublattice129

the conductance is zero due to destructive interference. On the other hand, if the leads are130
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attached to two sites in distinct sublattices, a “magic integer” can be associated with such a131

system. The ratio of conductances of two such systems is the so called “magic ratio” which132

is a square of the ratio of the corresponding magic integers. In Fig. 3 we show how magic133

ratios evolve with the coupling � increasing both at the particle hole symmetric point and134

away from it at "0 = �1/5, which is still within the HOMO-LUMO gap of all the molecules135

considered in this work. At the particle-hole symmetric point a magic ratio, provided its136

weak coupling value is different from one, starts to deviate from its weak coupling value137

when � becomes of the order of �1. A magic ratio increases with � if its weak coupling value138

is less than one and it decreases with � if its weak coupling value is larger than one. At139

the particle-hole symmetry point "0 = 0 the deviation of magic ratios greater than one is140

quadratic in � for � ⌧ �1. Away from the center of the HOMO-LUMO gap magic ratios141

deviate from a square of the ratio of magic integers even in the weak coupling limit. The142

deviation is again quadratic in "0 for |"0| ⌧ �1. At "0 6= 0 a molecule conducts even if143

electrodes are attached to sites in the same sublattice. Compared to the conductance when144

electrodes are attached to sites in different sublattices it is smaller by a factor of ("0/�1)2 for145

|"0| ⌧ �1.146
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Figure 3: Magic ratios at T = 0 of the (a) benzene, (b) naphthalene, and (c) anthracene
molecule at the particle-hole symmetric point (full lines) and for "0 = �1/5 (dashed lines)
as a function of the coupling � of an electrode to a molecular site. Molecular sites to which
electrodes are attached are indicated next to each curve. The other combination of electrode
attachment sites appearing in the conductance ratio corresponds to the most distant sites of
a particular lattice.
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An electrode may shift the on-site energy at the molecular site to which it is attached.147

This turns out to be another cause of deviation of a magic ratio from a square of the ratio of148

the magic integers. Fig. 4 displays that the departure of on-site energies "1 at these molecular149

sites from on-site energies "0 = 0 at other molecular sites causes a magic ratio to increase150

quadratically with "1 if it is larger than one for "1 = 0. A magic ratio is independent of "1151

if it is equal to one for "1 = 0.152
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Figure 4: Magic ratios at T = 0 of the (a) benzene, (b) naphthalene, and (c) anthracene
molecule when the on-site energies "1 at molecular sites where the electrodes are attached
differ from those at other molecular sites where "0 = 0 (dashed lines). Full lines show magic
ratios for "1 = 0. Here � = �1/5.

Conclusions and outlook153

In conclusion, we have calculated the ratios of conductances of graphene-like structures for154

different combinations of sites to which electrodes are attached away from the regime where155

those ratios can be expressed in terms of magic integers. The deviations were due to top156

gate voltage pushing "0 away from the center of the HOMO-LUMO gap, due to the coupling157

to electrodes � being non-negligible and due to the electrodes causing on-site energies "1158

on atoms to which electrodes are attached to deviate from on-site energies on other atoms.159

The deviation from the ratio given by magic integers was found to become important when160

those parametes become of the order of the hopping integral �1 of the molecule. For small161
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values of those parameters, the deviation was found to increase proportionally to ("0/�1)
2,162

(�/�1)
2 or ("1/�1)2. Furthermore, if the top gate voltage is non-zero, the molecule conducts163

even when both electrodes are attached to sites in the same sublattice, which for other164

perturbations is not the case. What remains to be done is to study the robustness of magic165

ratios to Coulomb interaction and to perturbations breaking the particle hole symmetry, i.e.,166

the second neighbor hopping within the molecule.167
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