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Abstract

The ratio of conductances through carbon-ring based molecules are calculated for
various positions of source-drain electrode leads on the molecule. These ratios are
usually integers — the so-called magic numbers. We find that deviations of the magic

number ratios are either zero or quadratic in ratios of tight-binding model parameters.

Introduction

Charge transport through nanostructures represents a challenge from the experimental point
of view as well as for theoretical approaches!. Most of experimental work so far has been
done for semiconducting structures? as promising candidates for tailoring various electronic
devices, such as single electron transistors® and charge or spin quantum bits*. One of the

advantages of semiconductor techology is its versitility in formating structures on demand,
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with reliable and reproducible gating and connectivity to external leads. A disadvantage
of these structures is their relatively large spatial extend limiting functional operation to
low temperatures. For possible applications to sensors or quantum infromation processing
devices room-temperatures operation is desired, which demands reduction of device size
leading to larger energy scale. Molecules connected to metalic leads therefore represent
ideal candidates for devices where phase-coherent transport between attached electrondes is
required at moderate temperatures®S.

In general, nanostructures exhibit an extremely rich spectrum of quantum phenomena.
In particular, in conductance measurements strong electron-electron interaction leads to

O or instabili-

Coulomb blockade”, the Kondo effect®, various spin dependent anomalies®!
ties due to vibrational degrees of freedom, where different electron-phonon interactions can
play an important role’*2. Due to large coherence lengths in clean structures, interference
effects also play an essential role in transport through the nano-device, as was recently stud-

13-21

ied experimentally even at room temperature Small graphene based nanostructures

are well-defined since they are nearly defect-free which enables reproducible conductance
measurements exibiting subtle interference effects?? 24,

Here we concentrate on “magic” ratios, found recently in connectivity driven electrical
conductance of graphene-like aromatic molecules?®. Theoretical analyis of experiments using
mechanically controlled break junctions to measure electrical conductance of such molecules
reveal specific ratios between different connectivity geometry of external leads. These magic
ratios appear in the regime of particle-hole symmetically filled molecules, where the chemical
potential is located at the HOMO-LUMO mid-gap. Numerical analysis has been performed
for a tight-binding approximation of a molecule weakly coupled to charge reservoirs connected
to the graphene molecule via linear carbon chains referred to as source and drain leads. In
this paper we analyse the stability of magic numbers, with respect to changes of the coupling

to the leads and also due to changing to potential of top gates (not shown) which in turn

change the electron occupation of the molecule.
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Model and methods

We consider polycyclic aromatic hydrocarbon-like graphene structures, coupled to two met-
alic electrodes, via source and drain leads. This is shown schematically in Fig. 1 for the case

of a benzene molecule.

€4

V V7
—o—o-- ---0—0—

source drain

Figure 1: A benzene-like structure (molecule) attached to the leads.

To model such a system we adopt the effective Hamiltonian
H = Hrnolecule + Hleads + Hcouplinga

where the molecule is described in terms of a tight-binding Hamiltonian

_ T
Hmolecule - Z EiNio — Z ﬁinciji,o"
1,0

7/7]70-

Here ¢ in j run over the sites of the molecule, i.e., the p, orbitals on each of the carbon atoms,

7

¢i » and c;, are the electron creation and anihilation operator, respectively, for site 7 and spin
o,and n;, = claci,g is the electron number operator. €; are the on-site energies controlled by
the top gate voltage with energy zero being the Fermi-energy in the leads in the limit of zero
source-drain bias. They may also be influenced by the electrodes attached to the leads. To
be specific in what follows, we assign a uniform on-site energy ¢, to all molecular sites, which
includes the effect of the top gate voltage. However, we allow on-site energies on the two sites

where the leads are attached to the molecule to take a different value of ;. 7;; are hopping

integrals. Taking into account that next nearest neighbor hopping integrals in graphene are
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at least an order of magnitude smaller than nearest neighbor hopping integrals?%, in what
follows we neglect all but nearest neighbor hopping integrals, for which we take a uniform
value of ~;.

The leads, modelled as carbon-atom chains with sites connected by nearest neighbor

hopping integrals vy, have Hamiltonian,

— 1
Hleads - Z €a,iNa,i,c — 0 Z Ca,i+1,0Cai,o + H.c.

a,t,o a,t,o

Here o € {s,d} labels the source and drain leads, respectively, and ¢ runs over the sites of

T

_ T
,i,0 Ca7i,o and na,i,a =cC

a,l,0

a lead. ¢ Ca,i,o are the electron creation, anihilation operator and
the electron number operator for lead sites, respectively.

The couplings between leads and the molecule are

_ T
Hcoupling =V Z Ca,1,6Cia,0 + H.c.

a,0

Here V is the hopping integral between the lead site closest to the molecule and the molecular
site 1, to which lead « is attached.

The electron-electron and the electron-phonon interactions are not considered here -
the systems are not in the Coulomb blockade regime and the Kondo temperature is, due to
weak Coulomb interaction regime considered here, much lower than temperatures of interest.
However, some interesting features due to the electron correlations in benzene were found
recently 2728,

In the absence of many-body effects, the conductance of such a molecule, i.e., the propor-
tionality coefficient between the current through the molecule and the voltage Viq applied
between the source and the drain electrode, is, in the limit of vanishing V.4, given by the

Landauer-Biittiker formula?®-3°,

G =G, / T(e) (— 8‘29) de,

4
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where Gy = 2¢?/h is the conductance quantum, with e and h being the electron charge and
the Planck constant, respectively. 7 (¢) is the transmission probability through the molecule
at energy €. f(e) = (exp ,i;—é,ﬁ +1)~! is the equillibrium Fermi function of the leads with x and
T being their chemical potential and temperature, respectively, and kg being the Botzmann
constant. For the sake of convenience we set the chemical potential to the middle of the
band in the leads and vanishing on-site energies in the leads, y =¢e,,; = 0.

To calculate the transmission probability 7 (¢) we need to find the scattering eigenstate

|1} of the Hamiltonian for an electron with energy ¢ and spin o, incoming from the source

electrode,

Hp) = ely)).

We expand such an eigenstate in the local basis states of the molecule c}70|0> and the leads
Chial0)

a,t,0

() = 32 wicl[0) + 3 taich i,10).

The wavefunction in the source electrode is a linear combination of an incoming and a
reflected plane wave, ¢ ; = e 7 + re*i while the wavefunction in the drain electrode
consists of a transmitted wave, ¢q; = te’™. The wavevector k can be calculated from the
dispersion relation of the leads, ¢ = —27, cos k. r and t are the reflection and the transmission
amplitude, respectively. The transmission probability is 7 () = ||*.

Here we demonstrate the method of calculating the transmission probability 7 (¢) for
the case of the simplest possible molecule, namely a single site with the on-site energy of g
coupled to two leads. The Schrodinger equation for such a system reads as a set of linear

equations for ¢, r and g

v (672% + T€2ik) — Vg = ¢ (e*ik 4 Teik) ’
B v (eﬂlk + Teik) +eot — Vie™ = ey,

—Vapg — yote** = etet.
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By eliminating r and 1)y we find the transmission amplitude,

A Breit-Wigner resonance of width I'g = I'y 4+ I'q, where I'y = T'q = 27%2 are the partial width

due to coupling to the source and the drain electrode, respectively, forms at energy ¢ in the

transmission probability in the wide band limit where vy > €, €g, [y,

T (e) = (f) N2
(8—60) +(70)

Generalization to more general molecules with arbitrary topology is straightforward. In
the limit of weak coupling to the leads, I' = 27%2 < 71, the transmission probability consists

of similar resonances, positioned at eigenenergies of the molecule.

Results

As shown in Fig. 2(a-c), sites of graphene-like molecules we consider in this work form a
bipartite lattice, i.e. they break up into two sublattices in such a way that unprimed sites
1,2,3..., forming one sublattice, are connected only to primed sites 1’,2’,3’. .., forming the
other sublattice. The Hamiltonian of such a system possesses particle-hole symmetry3!. In
the molecules considered here, this symmetry is actually weakly broken due to next nearest
neighbour hopping integrals 2. Since, as discussed in Sec. 2, 75 /7, < 1 for structures con-
sidered in this work, we neglect such terms in what follows. Therefore, the conductance as a
function of the top gate voltage ¢, is even with respect to the particle-hole symmetric point
g0 = 0, where the Fermi energy of the leads coincides with the center of the HOMO-LUMO
gap. This is shown in Fig. 2 where the zero temperature and room temperature conduc-
tances are plotted as a function of top gate voltage for benzene, naphthalene and anthracene

molecules for a particular choice of sites to which electrodes are attached. The zero temper-
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ature conductance curves consist of a set of resonances, each corresponding to a molecular
level being at the Fermi energy of the electrodes. The width of a resonance measures the
coupling of the molecular level to the electrodes. Note that some of the resonances are split
due to degeneracy of molecular orbitals. At room temperature, i.e., T' = 300K ~ 0.01vq,
with v, = 2.56V as appropriate for graphene®?, thermal broadening only slightly lowers the
peak heights, increases their widths and broadens minima. Within the HOMO-LUMO gap
the effect of finite temperature is negligible at room temperature. As we will concentrate on
the vicinity of the center of the HOMO-LUMO gap in the rest of this work, the calculations

will be done at zero temperature in what follows.

|
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Figure 2: Conductance as a function of top gate voltage of the (a) benzene, (b) naphthalene,
and (c) anthracene molecule when one electrode is connected to site 1 and the the other is
connected to site 17 of the molecule, at T = 0 (black lines) and at the room temperature
(red lines). The coupling of an electrode to the molecular site is I' = v, /5.

We now study the dependence of the conductance on the on-site energy € incorporating
the top gate voltage and the coupling I' of an electode to a molecular site, for different
combinations of molecular sites to which the electrodes are attached. Let us first discuss
the situation at the particle-hole symmetric point (indicated by arrows in Fig. 2), when the
coupling to the leads I' is weak?®. If the leads are connected to two sites in the same sublattice

the conductance is zero due to destructive interference. On the other hand, if the leads are

7
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attached to two sites in distinct sublattices, a “magic integer” can be associated with such a
system. The ratio of conductances of two such systems is the so called “magic ratio” which
is a square of the ratio of the corresponding magic integers. In Fig. 3 we show how magic
ratios evolve with the coupling I' increasing both at the particle hole symmetric point and
away from it at 9 = 7;1/5, which is still within the HOMO-LUMO gap of all the molecules
considered in this work. At the particle-hole symmetric point a magic ratio, provided its
weak coupling value is different from one, starts to deviate from its weak coupling value
when I' becomes of the order of v;. A magic ratio increases with T if its weak coupling value
is less than one and it decreases with I' if its weak coupling value is larger than one. At
the particle-hole symmetry point €9 = 0 the deviation of magic ratios greater than one is
quadratic in I' for I' < 7. Away from the center of the HOMO-LUMO gap magic ratios
deviate from a square of the ratio of magic integers even in the weak coupling limit. The
deviation is again quadratic in g for |gg| < 1. At g9 # 0 a molecule conducts even if
electrodes are attached to sites in the same sublattice. Compared to the conductance when

electrodes are attached to sites in different sublattices it is smaller by a factor of (go/71)? for

‘€0| < Y1-
10 |- -
1=1
08 | (a)
B
0.6 ¢
g — &0=0
S04 ==-- o :’}/1/5
02t 1
1 =2
00 =

F/’Yl F/’71 L'/

Figure 3: Magic ratios at ' = 0 of the (a) benzene, (b) naphthalene, and (c) anthracene
molecule at the particle-hole symmetric point (full lines) and for g = 7,/5 (dashed lines)
as a function of the coupling I' of an electrode to a molecular site. Molecular sites to which
electrodes are attached are indicated next to each curve. The other combination of electrode
attachment sites appearing in the conductance ratio corresponds to the most distant sites of
a particular lattice.
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An electrode may shift the on-site energy at the molecular site to which it is attached.
This turns out to be another cause of deviation of a magic ratio from a square of the ratio of
the magic integers. Fig. 4 displays that the departure of on-site energies ; at these molecular
sites from on-site energies ¢y = 0 at other molecular sites causes a magic ratio to increase
quadratically with e, if it is larger than one for £; = 0. A magic ratio is independent of £,

if it is equal to one for £; = 0.

1.0 - : 10 f ' ] ' T,
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Figure 4: Magic ratios at 7' = 0 of the (a) benzene, (b) naphthalene, and (c) anthracene
molecule when the on-site energies £; at molecular sites where the electrodes are attached
differ from those at other molecular sites where ¢y = 0 (dashed lines). Full lines show magic
ratios for e = 0. Here I' = 7, /5.

Conclusions and outlook

In conclusion, we have calculated the ratios of conductances of graphene-like structures for
different combinations of sites to which electrodes are attached away from the regime where
those ratios can be expressed in terms of magic integers. The deviations were due to top
gate voltage pushing g away from the center of the HOMO-LUMO gap, due to the coupling
to electrodes I' being non-negligible and due to the electrodes causing on-site energies £;
on atoms to which electrodes are attached to deviate from on-site energies on other atoms.
The deviation from the ratio given by magic integers was found to become important when

those parametes become of the order of the hopping integral +; of the molecule. For small



162

163

164

165

166

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

values of those parameters, the deviation was found to increase proportionally to (g0/71)°,

(T'/71)? or (1/7)°. Furthermore, if the top gate voltage is non-zero, the molecule conducts

even when both electrodes are attached to sites in the same sublattice, which for other

perturbations is not the case. What remains to be done is to study the robustness of magic

ratios to Coulomb interaction and to perturbations breaking the particle hole symmetry, i.e.,

the second neighbor hopping within the molecule.

Acknowledgement

The authors thank J. H. Jefferson for discussions and acknowledge support from the Slovenian

Research Agency under contract No. P1-0044.

References

(1)

Datta, S. Electronic Transport in Mesoscopic Systems; Cambridge University Press:

Cambridge, 1995.

Iniewski, K. Nano-Semiconductors: Devices and Technology; CRC Press taylor & Fran-

cis Group: Boca raton, 2012.

Likharev, K. K. IBM J. Res. Develop. 1989, 32, 144.

Awschalom, D. D.; Bassett, L. C.; Dzurak, A. S.; Hu, E. L.; Petta, J. R. Science 2013,
359, 1174.

Chen, F.; Tao, N. Acc. Chem. Res. 2009, 42, 429.

Pisula, W.; Feng, X.; Miillen, K. K. Chem. Mater. 2011, 23, 554.

Kastner, M. A. Rev. Mod. Phys. 1992, 64, 849.

Hewson, A. C. The Kondo Problem to Heavy Fermions; Cambridge University Press:
Cambridge, 1993.

10



184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

(9) Rejec, T.; Ramsak, T.; Jefferson, J. H. J. Phys., Condens. Matter 2000, 12, 1.233-1.239.
(10) Jefferson, J. H.; Ramsak, A.; Rejec, T. Europhys. Lett. 2006, 74, 764.
(11) Mravlje, J.; Ramsak, A.; Rejec, T. Phys. Rev. B 2006, 7/, 205320.
(12) Mravlje, J.; Ramsak, A. Phys. Rev. B 2008, 78, 235416.

(13) Hong, W.; Valkenier, H.; Meszaros, G.; Manrique, D. Z.; Mishchenko, A.; Putz, A
Garcia, P. M.; Lambert, C. J.; Hummelen, J. C.; Wandlowski, T.; Beilstein, J. Nan-
otechnology 2011, 2, 699.

(14) Vazquez, H.; Skouta, R.; Schneebeli, S.; Kamenetska, M.; Breslow, R.; Venkatara-

man, L.; Hybertsen, M. Nanotechnology 2012, 7, 663.

(15) Ballmann, S.; Hartle, R.; Coto, P. B.; Elbing, M.; Mayor, M.; Bryce, M. R.; Thoss, M.;
Weber, H. B. Phys. Rev. Lett. 2012, 109, 056801.

(16) Aradhya, S. V.; Meisner, J. A.; Krikorian, M.; Ahn, S.; Parameswaran, R.; Steiger-
wald, M. L.; Nuckolls, C.; Venkataraman, L. Nano Lett. 2012, 12, 1643.

(17) Kaliginedi, V.; Moreno-Garcia, P.; Valkenier, H.; Hong, W.; Garcia-Suarez, V. M.;
Buiter, P.; Otten, J. L.; Hummelen, J. C.; Lambert, C. J.; Wandlowski, T. J. J. Am.
Chem. Soc. 2012, 134, 5262.

(18) Aradhya, S. V.; Venkataraman, L. Nature Nanotechnology 2013, 8, 399.

(19) Arroyo, C. R.; Tarkuc, S.; Frisenda, R.; Seldenthuis, J. S.; Woerde, C. H.; Eelkema, R.;
Grozema, F. C.; van der Zant, H. S. Chemistry 2013, 125, 3234.

(20) Guédon, C. M.; Valkenier, H.; Markussen, T.; Thygesen, K. S.; Hummelen, J. C;

van der Molen, S. J. Nature Nanotechnology 2012, 7, 305.

(21) Prins, F. Nano Letters 2011, 11, 4607.

11



206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

Cai, J.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.;
Seitsonen, A. P.; Saleh, M.; Feng, X. Nature 2010, 466, 470.

Ruffieux, P.; Cai, J.; Plumb, N. C.; Patthey, L.; Prezzi, D.; Ferretti, A.; Molinari, E.;
Feng, X.; Mullen, K.; Pignedoli, C. A. ACS Nano 2012, 6, 6930.

Cai, J.; Pignedoli, C. A.; Talirz, L.; Ruffieux, P.; Sode, H.; Liang, L.; Meunier, V.;
Berger, R.; Li, R.; Feng, X. Nature Nanotechnology 2014, 9, 896.

Geng, Y.; Sangtarash, S.; Huang, C.; Sadeghi, H.; Fu, Y.; Hong, W.; Wandlowski, T.;
Decurtins, S.; Lambert, C. J.; Liu, S.-X. Journal of the American Chemical Society

2015, 137, 4469-4476.

Reich, S.; Maultzsch, J.; Thomsen, C.; Ordejon, P. Phys. Rev. B 2002, 66, 035412.

Darau, D.; Begemann, G.; Donarini, A.; Grifoni, M. Phys. Rev. B 2009, 79, 235404.

Valli, A.; Sangiovanni, G.; Toschi, A.; Held, K. Phys. Rev. B 2012, 86, 115418.

Landauer, R. Philos. Mag. 1970, 21, 863.

Biittiker, M. Phys. Rev. Lett. 1986, 14, 1761.

Fazekas, P. Lecture Notes on Electron Correlation and Magnetism; Series in Modern

Condensed Matter Physics; World Scientific: Singapure, 1999; Chapter 4, pp 147-197.

Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. Rev.
Mod. Phys. 2009, 81, 109-162.

12



